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Abstract

In this paper, we examine some often ignored or assumed problems relating with fitting probability models to count data
either exhibiting over, equi, or under dispersion. Of particular concern are last category truncated data, where most often,
expected values in this last category are collapsed together so that the sum of the expected values sum to the sample

size in the data. That is, so that
k∑

i=0

m̂i = n, the sample size. We shall for illustrative purposes in this paper, consider

the following distributions: the negative binomial (NB), the Inverse trinomial (IT), the hyper-Poisson (HP), the Quasi-
negative binomial (QNBD), the extended com-Poisson distribution (ECOMP) as well as the negative binomial-exponential
distribution (NBGE).Though, we have restricted our discussion to these six distributions, other distributions may also be
employed but the patterns are always the same, that is, the sum of the estimated probabilities does not equal 1.00 and
consequently, the sum of the expected values is always less or equal (Poisson case only) the sample size in the observed
data. We propose a common procedure to rectify this problem for both right truncated or non-truncated frequency count
data exhibiting either excess zeros or regular frequency data.

Keywords: Adaptive Gaussian quadrature, cumulative probabilities, Over-dispersion, right truncated, zero-inflated mod-
els

1. Introduction

Count data are often modeled with the Poisson distribution-it being the underlying probability model for count data.
However, its use had been restricted because of the absence of dispersion parameter in its function since both mean
and variance are equal, thus leading to equi-dispersion: the ratio of the variance to the mean, which in this case equals
1.00. For data exhibiting long tails or over or under dispersion, alternative models such as the negative binomial (NB), the
generalized Poisson, Famoye et al. (2004), the double Poisson and several other distributions, such as, the NB-generalized
exponential, Aryuyuen & Bodhisuwan (2013) have been proposed. Other distributions that have received considerable
attention in the literature are the Poisson Inverse Gaussian, the NB-Lindley Zamani & Ismail (2010); Lord et al. (2011);
Geedipally et. (2012) and many others.

For frequency count data, all these distributions have something in common when applied to real life data, namely, the
sum of estimated probabilities under these models, does not often add to 1 as would be expected. Consequently, the sum
of the expected values under these models therefore do not necessarily add up to the sample size n. Most authors just

combine the expected values in the last category with the left over, so that
k∑

i=0

m̂i = n. We shall illustrate this in the next

sections.

For this study, we plan to implement a procedure that corrects this anomaly when these distributions are applied to
frequency data. Consequently, we will be employing an array of distributions such as the two-parameter type distributions,
the negative binomial (NB), the hyper-Poisson and the Com-Poisson (CMP) distributions. We will also employ the three
parameter type distributions (the Quasi-negative binomial, the Inverse Tri-nomial and the generalized negative binomial-
exponential distribution), as well as the four parameter type distribution (the extended Com-Poisson distribution). These
distributions cover a broad spectrum of possible distributions usually employed for count data. These six to seven models
will be applied to two example frequency data. The second data set has excess zeros and we would apply our procedure
in the light of these excess zeros to the zero-inflated versions of the six models. We present these distributions in the
following sections.
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2. Probability Models Considered in this Study

We begin our discussion in this paper with brief introductions to some of these distributions.

2.1 The Poisson Distribution

The Poisson distribution has the form:

Pr(Y = y) =
e−λλy

y!
; y = 0, 1, . . . , (1)

E(Y) = λ; Var(Y) = λ

2.2 The Negative Binomial-NB

The negative-binomial model has the probability distribution:

Pr(Y = y) =
(
n + y − 1

y

)
pn(1 − p)y; y = 0, 1, . . . (2)

E(Y) = nq/p = µ; Var(Y) = nq/p2

Thus,

µ =
n(1 − p)

p
=⇒ p =

n
n + µ

Var(Y) =
n(1 − p)

p2 =⇒ Var(Y) = µ +
µ2

n

2.3 The Com-Poisson Distribution

For a random variable Y , Shumueli et al. (2005) introduced the Conway-Maxwell Poisson (COM-Poisson) distribution
defined by:

f (y; ν, λ) =
λy

(y!)ν
1

Z(λ, ν)
, y = 0, 1, 2, · · · , λ > 0, ν ≥ 0. (3)

Where

Z(λ, ν) =
∞∑
j=0

λ j

( j!)ν
. (4)

is the the normalizing term and ν is the dispersion parameter such that if ν > 1 we have under dispersion, and when ν < 1,
we have overdispersion. The distribution reduces to the Poisson distribution when ν = 1. The means and variance of Y
are respectively given as:

E(Y) =
1

Z(λ, ν)

∞∑
j=0

j λ j

( j!)ν
(5)

and,

Var(Y) =
1

Z(λ, ν)

∞∑
j=0

j2 λ j

( j!)ν
− E(Y)2 (6)

2.4 The Hyper-Poisson Distribution

The hyper-Poisson (HP) distribution first proposed by Bardwell & Crow (1964) and Crow & Bardwell (1965) is a two-
parameter discrete distribution with probability density function (pdf)

P(Y = y|λ, β) = Γ(β)
Γ(β + y)

.
λy

ϕ(1, β; λ)
; y = 0, 1, . . . , ; β, λ > 0 (7)
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where

ϕ(1, β; λ) =

∞∑
k=0

(1)k

(β)k
.
λk

k!
=

∞∑
k=0

Γ(β)
Γ(β + k)

λk (8)

and
(β)k = β(β + 1)(β + 2) . . . (β + k − 1) =

Γ(β + k)
Γ(β)

; k = 1, 2, . . . ,

is the confluent hyper-geometric series in which (β)0 = 1. Expressions for the mean and variance of the HP distribution
are provided in Kumar & Nair (2014) as:

µ =
ϕ(2, β + 1, λ)
ϕ(1, β, λ)

.
λ

β

σ2 =
1
β

[
2
β + 1

ϕ(3, β + 2, λ)
ϕ(1, β, λ)

− 1
β

[ϕ(2, β + 1, λ)]2

[ϕ(1, β, λ)]2

]
λ2 + µ

(9)

where:

ϕ(1, β; λ) =
∞∑

k=0

Γ(β)
Γ(β + k)

λk

ϕ(2, β + 1; λ) =
∞∑

k=0

(k + 1) Γ(β + 1)
Γ(β + k + 1)

λk

ϕ(3, β + 2; λ) =
∞∑

k=0

(k + 2)(k + 1)
2

.
Γ(β + 2)
Γ(β + k + 2)

λk

Alternatively, Lawal (2017) has used the expressions below to obtain the mean and variance of the HPP distribution. His
results agree with using expressions in (9).

E(Y) =
∞∑
j=0

jP(Y = y|λ, β)

Var(Y) =
∞∑
j=0

j2P(Y = y|λ, β) − [E(Y)]2

2.5 The Quasi-Negative Binomial-QNBD

The quasi-negative binomial distribution Janardan (1975); Sen & Jain (1996) and very recently by Li et al. (2011) has the
probability mass function Hassan & Bilal (2008) of the form:

P(Y = y) =
(
a + y − 1

y

)
θ1(θ1 + θ2y)y−1

(1 + θ1 + θ2y)a+y , y = 0, 1, . . . , (10)

This is equivalent to QNBD proposed in Li et al. (2011) which has the alternative probability mass function:

P(Y = y) =


Γ(y + α)
y!Γ(α)

(
1

1 + cy

) (
1 + cy

1 + b + cy

)y (
b

1 + b + cy

)α
, y = 0, 1, . . .

0 for y > m if c < 0
(11)

The properties of both alternative distributions have been outlined in the papers referred to above. In this paper, we will
employ the QNBD defined in (10).

2.6 The Inverse-Trinomial Distribution-IT

The inverse trinomial distribution Shimizu & Yanagimoto (1991) which is derived from the Lagrangian expression has
the probability mass function of the form :

P(Y = y) =
λpλqy

y + λ

|y/2|∑
t=0

(y + λ)!
t!(t + λ)!(y − 2t)!

.

(
pr
q2

)t

(12)
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y=0,1,. . . ; λ > 0, p ≥ r and p + q + r = 1. It is so named because its cumulant generating function is the inverse of that
for the trinomial distribution. The IT model was employed for overdispersed medical count data by Phang & Ong (2013).
It is a special case of the negative binomial distribution (NB)

LL = log(λ) + λ log(p) + y log(q) − log(y + λ) + log Q(y, λ)

where

Q(y, λ) =
|y/2|∑
t=0

(y + λ)!
t!(t + λ)!(y − 2t)!

.

(
pr
q2

)t

.

The mean and variance of the IT are, for p > r given respectively as:

E[X] = λ
{

1 − (p − r)
p − r

}
= µ (13a)

Var[X] =
λ

(p − r)2

{
1 − (p − r) +

2r
p − r

}
= σ2 (13b)

2.7 The Negative Binomial-Generalized Exponential Distribution NB-GE

The NB-GE distribution with parameters r, α, β is a mixture of the NB and the generalized exponential exponential distri-
butions, viz:

Y |π ∼ NB(r, π = exp(−λ)), and λ ∼ GE(α, β)

with the resulting unconditional pmf being given by:

f (y; r, α, β) =
(
r + y − 1

y

) y∑
j=0

(−1) j
(
y
j

) Γ(α + 1)Γ(1 + r+ j
β

)

Γ(α + r+ j
β
+ 1)

 (14)

for y = 0, 1, . . . , and r, α, β > 0.

The means and variances of the NB-GE distribution in (14) are:

E(Y) = r(δ1 − 1) and Var(Y) = rδ2(r + 1) − rδ1(1 + rδ1) (15)

where

δ1 =
Γ(α + 1)Γ(1 − 1

β
)

Γ(α − 1
β
+ 1)

, and δ2 =
Γ(α + 1)Γ(1 − 2

β
)

Γ(α − 2
β
+ 1)

.

2.8 The Extended COM-Poisson (ECOMP) Distribution

The pmf of a random variable Y having the extended COM-Poisson distribution with parameters (ν, α, , β) is given in
Chakraborty & Imoto (2016) by:

f (y; ν, α, β) =
[(ν)y]β

1S βα−1(ν, 1; p)
.

py

(y!)α
=

[Γ(ν + y)]β

[Γ(ν)]β 1S βα−1(ν, 1; p)
.

py

(y!)α
(16)

where

1S βα−1(ν, 1; p) =
∞∑
j=0

[Γ(ν + j)]β

[Γ(ν)]β
.

p j

( j!)α

The distribution is defined in the parameter space

ΘECOMP = {ν ≥ 0, p > 0, α > β} ∪ {ν > 0, 0 < p < 1, α = β}

To re-emphasize our problem, one common feature of the distributions described above, and indeed for most distributions
employed for count regression models is that they all defined to have infinite range. Consequently, for a real life data that
takes values Y = 0, . . . , k, it is most common to observe that the expected probabilities under any of the above models are
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not necessarily summing to 1.00 within the range 0 ≤ Y ≤ k as expected for a probability mass function, and consequently,
the expected values will also not sum to n, the sample size. To overcome this, the practice has often been to add this shor
fall expected values to the last category expected value, that is, category k in our case.

While this practice is most common, there exists however situations, where such a practice may not lead to the right
decision being taken. The case in point is if the last category, k has been truncated. That is, we have observations
designated in k+ categories. We give example below, which is adapted from Hassan & Bilal (2008) and relates to the
number of absenteeism among shift workers in steel industry as reported in Arbous & Sichel (1954). The category 25+
actually stands for counts in categories (25-48) and are combined in that category with a frequency count of 16. Thus our
last category is k = 25 in this data. The distribution of Y and the corresponding frequencies are displayed in columns 1
and 2 respectively in Table 1.

Table 1. Distribution of absenteeism among Shift Workers

P NB CP HPP QNBD
Y Count Fit Cum Fit Cum Fit Cum Fit Cum Fit Cum
0 7 0.0344 0.034 10.7965 10.796 14.4774 14.477 17.178 17.178 12.963 12.963
1 16 0.3056 0.340 15.6027 26.399 16.0126 30.490 16.986 34.163 15.875 28.838
2 23 1.3573 1.697 17.8064 44.206 16.7297 47.220 16.674 50.838 16.910 45.748
3 20 4.0190 5.716 18.5175 62.723 16.9060 64.126 16.250 67.088 17.086 62.833
4 23 8.9254 14.642 18.3189 81.042 16.6849 80.811 15.724 82.812 16.775 79.608
5 24 15.8569 30.499 17.5657 98.608 16.1674 96.978 15.107 97.919 16.165 95.774
6 12 23.4763 53.975 16.4875 115.095 15.4329 112.411 14.412 112.331 15.367 111.141
7 13 29.7917 83.767 15.2369 130.332 14.5463 126.957 13.653 125.984 14.454 125.594
8 9 33.0802 116.847 13.9158 144.248 13.5610 140.518 12.843 138.827 13.474 139.068
9 9 32.6504 149.497 12.5917 156.840 12.5206 153.039 11.999 150.826 12.464 151.533

10 8 29.0035 178.501 11.3086 168.148 11.4604 164.499 11.133 161.959 11.450 162.983
11 10 23.4218 201.923 10.0937 178.242 10.4081 174.907 10.259 172.217 10.452 173.435
12 8 17.3381 219.261 8.9629 187.205 9.3850 184.292 9.390 181.607 9.483 182.919
13 7 11.8474 231.108 7.9238 195.129 8.4070 192.699 8.536 190.144 8.555 191.474
14 2 7.5172 238.625 6.9788 202.107 7.4852 200.184 7.709 197.853 7.674 199.148
15 12 4.4517 243.077 6.1262 208.234 6.6268 206.811 6.916 204.768 6.846 205.993
16 3 2.4716 245.549 5.3623 213.596 5.8357 212.647 6.163 210.931 6.073 212.067
17 5 1.2915 246.840 4.6816 218.278 5.1136 217.761 5.456 216.388 5.358 217.425
18 4 0.6373 247.477 4.0781 222.356 4.4598 222.220 4.799 221.187 4.701 222.126
19 2 0.2980 247.775 3.5451 225.901 3.8724 226.093 4.194 225.381 4.102 226.228
20 2 0.1323 247.908 3.0761 228.977 3.3482 229.441 3.642 229.023 3.558 229.786
21 5 0.0560 247.964 2.6647 231.642 2.8833 232.324 3.142 232.166 3.068 232.854
22 5 0.0226 247.986 2.3048 233.946 2.4735 234.798 2.694 234.859 2.630 235.484
23 2 0.0087 247.995 1.9908 235.937 2.1143 236.912 2.295 237.154 2.240 237.724
24 1 0.0032 247.998 1.7173 237.654 1.8009 238.713 1.943 239.097 1.896 239.620

25+ 16 0.0011 247.999 1.4797 239.134 1.5288 240.242 1.635 240.732 1.594 241.214
F(y) 0.9999 0.9643 0.9687 0.9707 0.9726

ML - µ̂ = 8.8831 µ̂ = 8.8827 λ̂ = 1.1060 λ̂ = 135.36 α̂ = 1.3447
Estimates k̂ = 0.5794 ν̂ = 0.0822 β̂ = 136.89 θ̂1 = 7.9775

θ̂2 = −0.0936

X2
T 1439.5486 234.1975 246.5021 247.1028 na

X2
E 1439.6407 365.1146 344.8319 325.6193 339.4635

d.f. 247 246 246 246 245

X2
G 4099.00 31.9082 38.5179 42.5328 38.6978

d.f. 24 23 23 23 22

Also presented in Table 1, are the expected values, ML estimated parameters, both true Wald’s Goodness-of-Fit test
statistic, X2

T , its corresponding empirical value X2
E and the grouped X2 values with their corresponding degrees of freedom

for five of the models, namely, (P, NB, CMP, HPP, and QNBD). We shall discuss the estimation procedures employed for
these models but first, we observe the following from our example data in Table 1.

(a) Apart from the Poisson model, all the other models have
25∑
i=0

m̂i < 248, the sample size n = 248. Corresponding fits

of IT and ECOMP gives
25∑

y=0

m̂i of 237.707 and 239.3451 respectively. In all the cases,
25∑

y=0

m̂i < n, where n = 248

for this data set. The cumulative estimated probabilities under each model is given by the F(y).

For the NB and QNBD for instance, these sums are respectively, 239.134 and 241.214 at k = 25. Thus if we add
these shortfalls to the last category for instance, we will get the following for {NB, CMP, HPP, QNBD}={10.3457,
9.2868, 8.903, 8.380}. The corresponding contributions to X2

G in this case are {3.0903, 4.8528, 5.6574, 6.9289}.
Here,
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X2
G =

25∑
k=1

( fk − m̂k)2

m̂k
.

(b) The parameter estimates under each model are provided under the panel ‘ML estimates‘. Clearly, each F(y) < 1.00
in all cases.

(c) The mean and variance of the observed data are respectively, µ = 8.8831 and σ2 = 51.7717, giving a dispersion
parameter DP=5.8281. Thus the data is highly over-dispersed.

(d) In Table 2 are presented the following:

Table 2. Statistics Computed from implementation of the designated five Models

Models
Param P NB COMP HPP QNBD
F(25) 0.9999 0.9643 0.9687 0.9707 0.9726
F(y*) F(25) F(98) F(78) F(58) F(51)
µ 8.8831 8.8831 8.8831 8.8831 8.9061
σ2 8.8831 54.6018 51.8763 51.7502 48.7628
ȳ 8.8830 7.7448 7.9222 8.0064 8.00967
σ̂2 8.8825 35.9036 37.7476 39.8570 38.2273

1. F(25) < 1 for all models

2. F(y∗) gives the value of Y required to attain an F(y) to be 1. Thus, k has to be 25, 98, 78, 58 and 51
respectively for these estimated probabilities to sum to 1 and of course in this case, the expected values also
sum to n = 248. When we realize that the range of k here is 0 ≤ k ≤ 25 we can see that we need to make the
necessary adjustments to realize our expectations.

3. The estimates µ and σ2 are the theoretical means and variances under these models for the data. These are

used to compute Wald’s X2
T , where X2

T =

248∑
i=1

(yi − µi)2

σ2
i

. It is based on 248 − p − 1 d.f.

4. The estimated ȳ and σ̂2 are the estimated means and variances at k = 25, representing reality from the data
and are thus classified as empirical estimates on which the Wald’s test statistic X2

E are computed, where

X2
E =

248∑
i=1

(yi − ȳ)2

σ̂2
i

. It is based on n − p − 1 degrees of freedom. Here p is the number of parameters being

estimated.

5. For the grouped data, we employed Pearson’s X2
G =

25∑
k=0

( fk − m̂k)2

m̂k
statistic. However, we ascertain that the

expected values satisfy the Lawal (1980) rule for the χ2 approximation to be valid. The model is based on
k − p degrees of freedom.

6. We see that why the theoretical means and variances (apart from the Poisson, which has a much lower vari-
ance) of the models are much closer to the observed mean and variance of the data, however, when the models
are implemented, the empirical means and variances of all the distributions do not match up with the observed
values. The estimated variances grossly underestimates the true variance of the data. These we plan to correct
with the new procedure described at a later section of this paper.
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3. Estimation

The log-likelihood of a single observation i from P, NB, HPP, COMP, IT, ECP, QNBD, NBGE distributions are given in
expressions (17a) to (17h) respectively:

LL1 = −λ + y log(λ) − log(y!) (17a)

LL2 = logΓ(yi +
1
k

) − logΓ(yi + 1) − logΓ(
1
k

) + yi log(kµi) − (yi +
1
k

) log(1 + kµi) (17b)

LL3 = yi log(λ) + log Γ(β) − logΓ(yi + β) − log

 ∞∑
k=0

Γ(β)
Γ(β + k)

λk

 (17c)

LL4 = yi log λi − ν log yi! − log

 ∞∑
j=0

λ j

( j!)ν

 . (17d)

LL5 = log(λ) + λ log(p) + y log(q) − log(y + λ) + log

|y/2|∑
t=0

(y + λ)!
t!(t + λ)!(y − 2t)!

.

(
pr
q2

)t
 (17e)

LL6 = yi log(yi) + β log Γ(ν + yi) − β log Γ(ν) − α log(y!) − log

 ∞∑
j=0

[Γ(ν + j)]β

[Γ(ν)]β
.

p j

( j!)α

 (17f)

LL7 = log (a + y − 1)! − log(y!) − log (a − 1)! + log(θ1) + (y − 1) log(θ1 + θ2y)
− (a + y) log(1 + θ1 + θ2y) (17g)

LL8 =
n∑

i=1

log[Γ(r + yi) − Γ(r) − Γ(yi + 1)] +
n∑

i=1

log

 y∑
j=0

(−1) j
(
y
j

) Γ(α + 1)Γ(1 + r+ j
β

)

Γ(α + r+ j
β
+ 1)


 (17h)

Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in SAS, which minimizes
the function −LL(y,Θ) over the parameter space Θ numerically. The integral approximations in PROC NLMIXED is
the Adaptive Gaussian Quadrature Pinheiro & Bates (1995) and the Newton-Rapson Conjugate Gradient optimization
algorithm in PROC NLMIXED (NEWRAP). To obtain a quicker convergence, the Conjugate Gradient or quasi-Newton
optimization algorithms of Powell (1977) and Beal (1972) are initially employed in our computations (the latter is the
default in PROC NLMIXED). Convergence is often a major problem here and the choice of starting values is very crucial.
For each of the cases considered here, the above two initial optimizing algorithms were applied in turn to ascertain
accuracy and consistency. Although the results differ very slightly, on the whole, they all agree very well. Thus, we may
note here that each of these give slightly different parameter estimates. They all give values that are very close.

4. New Procedure

We can overcome the above subjective approach by instead fit a model with the log-likelihood of a single observation i of
the form:

LL = (1 − δ) log[P(Yi = yi)] + δ log[P(Yi ≥ k)], (18)

where

δ =

0 for yi < k
1 for yi ≥ k

.

and k is the last category of the data. In our example in Table 1, this would be k = 25. To accomplish this, first we
compute:

ω =

k−1∑
j=0

f (y j) (19)

for each of the distributions NB, CP, HPP, ECP, QNBD, IT and NBGE, The expression in (18) for the HPP model for
example would be:

LL = (1 − δ)(LL) + δ log(1 − ω) (20)
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where LL represents the log-likelihood LL3 in (17c) for the Hyper-Poisson model. Thus, for the Hyper-Poisson model,
the above in (20) becomes:

LL = (1 − δ)[yi log(λ) + logΓ(β) − log Γ(yi + β) − log(ϕ(β, λ)]
+ δ log(1 − ω)

(21)

Here,

ϕ(β, λ) =
∞∑

k=0

Γ(β)
Γ(β + k)

λk and ω = 1 − 1
ϕ(β, λ)

.

k−1∑
j=0

Γ(β)
Γ(β + j)

λ j

Once the parameters λ and β are successfully estimated, the estimated probabilities and expected values are computed viz:

p̂i =

exp{i log(λ̂) + logΓ(β̂) − logΓ(i + β̂) − log ϕ̂} for 0 ≤ i ≤ (k − 1)
exp{log(1 − ω̂)} for i = k

(22)

Here again,

ϕ̂(β̂, λ̂) =
∞∑

k=0

Γ(β̂)
Γ(β̂ + k)

λ̂k and ω̂ = 1 − 1
ϕ̂(β̂, λ̂)

.

k−1∑
j=0

Γ(β̂)
Γ(β̂ + j)

λ̂ j

The results of implementing this approach (sometimes referred to as right truncated) is presented in Table 3 for the seven
models. Clearly now, the estimated probabilities sum to 1.00 in the range 0 ≤ Y ≤ 25 and consequently, the expected
values also sum to n. Chakraborty & Imoto (2016) have used a similar procedure.

Table 3. Results from the Implementation of the Procedure

Models
Y Count NB CP ECP QNB HPP IT NBGE
0 7 12.355 16.684 6.907 9.305 18.970 9.769 8.685
1 16 16.257 17.226 18.486 15.874 18.137 16.405 15.784
2 23 17.677 17.160 20.867 19.203 17.272 19.364 19.596
3 20 17.874 16.740 20.620 20.187 16.385 19.927 20.764
4 23 17.392 16.088 19.355 19.718 15.484 19.177 20.255
5 24 16.526 15.285 17.710 18.448 14.575 17.796 18.837
6 12 15.452 14.386 15.974 16.803 13.667 16.172 17.019
7 13 14.279 13.432 14.287 15.044 12.766 14.514 15.103
8 9 13.078 12.455 12.711 13.319 11.879 12.930 13.256
9 9 11.896 11.479 11.272 11.707 11.012 11.467 11.559

10 8 10.760 10.522 9.977 10.245 10.169 10.145 10.044
11 10 9.687 9.598 8.821 8.943 9.356 8.963 8.715
12 8 8.689 8.715 7.796 7.798 8.575 7.915 7.562
13 7 7.767 7.881 6.890 6.798 7.830 6.990 6.567
14 2 6.924 7.100 6.091 5.930 7.122 6.176 5.713
15 12 6.157 6.373 5.387 5.178 6.455 5.460 4.981
16 3 5.464 5.701 4.767 4.528 5.829 4.831 4.353
17 5 4.839 5.085 4.223 3.967 5.244 4.278 3.814
18 4 4.279 4.521 3.743 3.483 4.700 3.792 3.352
19 2 3.778 4.009 3.321 3.064 4.197 3.365 2.953
20 2 3.330 3.546 2.950 2.701 3.734 2.989 2.610
21 5 2.933 3.128 2.623 2.387 3.311 2.657 2.313
22 5 2.580 2.752 2.334 2.114 2.924 2.365 2.056
23 2 2.267 2.417 2.080 1.877 2.574 2.107 1.832
24 1 1.990 2.117 1.855 1.670 2.257 1.879 1.638

25+ 16 13.771 13.600 16.953 17.710 13.578 16.568 18.638
Total 248 248.00 248.00 248.00 248.00 248.00 248.00 248.00

ML - µ̂ = 9.3189 λ̂ = 1.0325 ν̂ = 0.1684 α̂ = 2.5405 λ̂ = 243.71 p̂ = 0.3394 α̂ = 18.7176
Estimates k̂ = 0.6527 ν̂ = 0.0517 p̂ = 0.7388 θ̂1 = 2.6409 β̂ = 254.90 q̂ = 0.5610 β̂ = 2.6710

β̂ = −0.7225 θ̂2 = 0.0802 λ̂ = 2.9931 r̂ = 3.0601
α̂ = −0.7738

ȳ 8.8831 8.9438 8.9411 8.8435 8.8101 8.9358 8.8617 8.7979
s2 51.7717 48.7326 50.5937 50.3520 49.8801 52.1445 50.1559 50.4271

AIC 1520.5 1527.0 1518.0 1518.4 1530.7 1517.2 1518.3

X2
E 262.4224 252.7676 253.9202 256.3934 245.2475 254.9596 256.9035

d.f. 246 246 244 245 246 245 245

X2
G - 29.2406 34.6457 24.8582 28.0935 37.6379 25.7397 28.7451

d.f. 24 24 22 23 24 23 23
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We see here from Table 3 that the sums of expected values all sum to 248, the sample size as expected. Further, the
empirical means and variances are much closer to the true values of 8.8831 and 51.7717 than in the earlier models.
Consequently, the empirical Wald’s GOF X2

E are much smaller than those observed in Table 1. Also, the grouped Pearson’s
X2

G fit much better. The ECP gives the lowest values but it is based on 22 d.f., while the Inverse tri-nomial (IT) gives a X2
G

of 25.7397 on 23 d.f. and more parsimonious.

4.1 Data Set II

As a second example, the data set in Table 4, is taken from Aryyuen & Bodhisuwan (2013) and gives the number of
hospital stays by United States residents aged 66 and above. The data was originally presented in Flynn (2009) but
recently re-analyzed in Aryyuen & Bodhisuwan (2013) with zero inflated models. Here, Yi is the number of hospital stays
and ni is the frequency in each category. The sample size here is n = 4406.

Table 4. Parameter Estimates and Expected values under the various Models

Expected Values Under the Six Models
Y ni NB COMP HPP QNBD IT NBGE
0 3541 3544.41 3399.79 3400.15 3540.940 3542.80 3540.87
1 599 583.49 776.42 776.28 601.642 593.76 601.74
2 176 177.49 177.31 177.19 165.996 169.93 166.44
3 48 62.25 40.49 40.433 56.836 59.25 56.58
4 20 23.28 9.25 9.22 22.185 23.01 21.96
5 12 9.03 2.11 2.10 9.495 9.56 9.39
6 5 3.59 0.48 0.48 4.361 4.16 4.34
7 1 1.45 0.11 0.11 2.120 1.87 2.13
8 4 0.59 0.03 0.03 1.080 0.86 1.10

Total 4406 4405.0000 4405.9926 4405.993 4404.655 4405.220 4404.547

ML r̂ = 2.6957 λ̂ = − λ̂ = 929.97 â = 14.1597 p̂ = 0.6568 α̂ = 0.5625
Estimates λ̂ = 0.2960 ν̂ = 0.000 β̂ = 4073.34 θ̂1 = 0.0156 q̂ = 0.3231 β̂ = 8.6148

θ̂2 = 0.0165 λ̂ = 0.5187 r̂ = 3.4023

-2LL 6019.2 6136 6136.2 6015.0 6015.7 6015.0
AIC 6023.2 6140 6140.2 6021.0 6021.7 6021.0

µ 0.2960 0.2960 0.2960 0.2958 0.2960 0.2959 0.2960
σ2 0.5571 0.5321 0.3834 0.3832 0.5601 0.5454 0.5629
ȳ 0.2950 0.2960 0.2958 0.2928 0.2942 0.2925
s2 0.5235 0.3834 0.3831 0.5270 0.5287 0.5259

WE 4687.75 6400.47 6406.15 4657.11 4642.10 4402.31
WT 4612.19 6398.20 6403.82 4381.33 4499.86 4360.07
d.f. 4403 44403 4403 4402 4402 4402

As in the previous example, under the models considered for this data, again, the sums of the expected frequencies in
each model do not add to n = 4406. Both the estimated variances of the Com-Poisson and Hyper-Poisson models grossly
underestimate the variance of the observed data. However, the NG, IT, QNB and the NBGE models give estimated
variances that are closer to the observed variance of 0.5571 in the data, than the HPP, and CP models. The estimated
means of all the models are very close to the observed mean of 0.2960. It is noted here that, both the QNB and the NBGE
fit the data best. The dispersion parameter is 1.89 for this data, which by the size of the data gives significant indication
of over-dispersion in the data. This is not necessarily unexpected because of the excess zeros in the data. We examine the
effect of this in the next section.

When the procedure outlines earlier is employed on these data, the corresponding results for the right truncated models
are displayed in Table 5.
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Table 5. Results from the Implementation of the Procedure

Models
Y Count NB CP ECP QNB HPP IT NBGE
0 3541 3544.833 3471.876 3541.399 3540.051 3399.002 3543.400 3540.399
1 599 581.911 696.730 599.950 606.002 776.922 591.788 604.724
2 176 177.693 168.623 167.748 162.758 177.526 170.126 163.459
3 48 62.624 45.537 56.936 55.230 40.551 59.667 55.546
4 20 23.544 13.291 21.594 21.837 9.260 23.324 21.940
5 12 9.184 4.121 8.830 9.651 2.114 9.757 9.670
6 5 3.669 1.342 3.818 4.651 0.482 4.274 4.638
7 1 1.490 0.456 1.725 2.403 0.110 1.936 2.380
8 4 1.052 4.025 4.000 3.415 0.033 1.728 3.246

Total 4406 4406.00 4406.00 4406.00 4406.00 4406.00 4406.00 4406.00

ML - µ̂ = 0.2966 λ̂ = 0.2007 ν̂ = 0.9222 α̂ = 6.2721 λ̂ = 699.490 p̂ = 0.6527 α̂ = 0.6943
Estimates k̂ = 2.7203 ν̂ = −0.2703 p̂ = 0.3574 θ̂1 = 0.0355 β̂ = 3060.250 q̂ = 0.3270 β̂ = 6.7101

β̂ = 9.2240 θ̂2 = 0.0330 λ̂ = 0.5107 r̂ = 2.1974
α̂ = 9.0506

ȳ 0.2964 0.2923 0.2959 0.2962 0.2962 0.2964 0.2962
s2 0.5329 0.4650 0.5542 0.5588 0.3838 0.5444 0.5575

-2LL 6014.9 6039.3 6007.7 6007.9 6134.2 6010.5 6007.9
AIC 6018.9 6043.3 6015.7 6013.9 6138.2 6016.5 6013.9

X2
E 4605.3459 5278.2617 4428.1272 4391.6755 6393.4352 4508.0241 4402.3110

d.f. 4403 4403 4401 4402 4403 4402 4402

X2
G 14.2428 44.6147 3.7369 3.7768 640.527 7.1245 3.7780

d.f. 6 6 4 5 6 5 5

Results from Table 5 again indicate that the right-truncated models behave much better than those in Table 4. The
estimated probabilities sum to 1.00, as well as the estimated frequencies summing to 4402. For both data considered here,
the QNB, IT, the NB-GE, and ECP all give means and variances that are very close to the means and variances of the
observed data. Also for both data sets, the HPP and Com-Poisson give estimated variances that grossly underestimate the
true variances and both therefore are not very good for modeling these data sets. The ECP, QNB and NBGE all fit the
data very well, but the QNB model is the most parsimonious for this data set. It also gives the lowest empirical Wald’s
test statistic of 4391.6755 on 4402 d.f.

5. Zero-Inflated Models

We present in this section the effect of applying the procedure employed in the last section to data exhibiting excess zeros
(like the data in Table 4) where 80.4% of the data are zeros. Lawal (2017) has fitted the zero-inflated negative binomial-
generalized exponential distribution (ZINBGE) to the accident data in Table 4. We present here the results of fitting the
ZINB, the ZIIT, the ZIQNB and the ZINBGE to the data in Table 4. To accomplish these, we recall that a zero-inflated
(ZI) model is a two-part process manifested by the structural zeros part and the process that generates random counts and
can be written in the form:

Pr(Y = y|ϕ) =

ϕ + (1 − ϕ) Pr(Y = 0) if yi = 0

(1 − ϕ) Pr(Y = yi)) if yi = 1, 2, · · ·
(23)

where ϕ is the extra proportion of zeros and Y is the count random variable with specified parameters. ϕ is modeled
here in the logit form. Thus, the probability mass function for the ZINB, ZIIT, ZIQNB and ZINBGE models are given
respectively in expressions (24) to (27).

Pr(Yi = yi) =


ϕ + (1 − ϕ)(1 + kµi)−k−1

, yi = 0

(1 − ϕ)Γ(yi + k−1)
yi! Γ(k−1)

(k µi)yi

(1 + kµi)yi+k−1 yi > 0
(24)

Pr(Y = y) =


ϕ + (1 − ϕ) pλ if y = 0

(1 − ϕ)λpλqy

y + λ

|y/2|∑
t=0

(y + λ)!
t!(t + λ)!(y − 2t)!

.

(
pr
q2

)t

if y > 0
(25)
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Pr(Y = y) =


ϕ + (1 − ϕ)

[
1

(1 + θ1)a

]
if y = 0

(1 − ϕ)
(
a + y − 1

y

)
θ1(θ1 + θ2y)y−1

(1 + θ1 + θ2y)a+y , if y > 1
(26)

Pr(Yi = y) =


ϕ + (1 − ϕ)

Γ(α + 1)Γ(1 + r
β
)

Γ(α + r
β
+ 1)

 , if y = 0

(1 − ϕ)
(
r + y − 1

y

) y∑
j=0

(−1) j
(
y
j

) Γ(α + 1)Γ(1 + r+ j
β

)

Γ(α + r+ j
β
+ 1)

 if y > 1
(27)

From the above, it is not too difficult to formulate the corresponding log-likelihoods. The results of implementing these
models are given in the first panel in Table 6.

Table 6. MLEs, expected values and empirical means and variances for the four models

Models Right Truncated ZI Models
Y ni ZINB ZIIT ZIQNB ZINBGE ZINB ZIIT ZIQNB ZINBGE
0 3541 3544.410 3542.802 3541.076 3541.017 3544.834 3543.403 3541.007 3541.024
1 599 583.484 593.762 600.810 600.846 581.910 591.786 601.901 602.106
2 176 177.494 169.931 167.372 167.802 177.692 170.125 166.721 165.793
3 48 62.251 59.254 56.702 56.362 62.624 59.667 55.428 55.792
4 20 23.281 23.014 21.841 21.669 23.544 23.324 21.388 21.750
5 12 9.032 9.562 9.273 9.243 9.184 9.757 9.298 9.487
6 5 3.588 4.159 4.260 4.282 3.669 4.274 4.452 4.522
7 1 1.449 1.870 2.090 2.122 1.490 1.936 2.307 2.315
8 4 0.592 0.862 1.085 1.113 1.052 1.728 3.499 3.210

Total 4405.580 4405.216 4404.510 4404.456 4406.00 4406.000 4406.000 4406.00

MLE ϕ̂ = 0.0000 ϕ̂ = 0.0000 ϕ̂ = 0.0060 ϕ̂ = 0.1647 ϕ̂ = 0.0000 ϕ̂ = 0.0000 ϕ̂ = 0.2180 ϕ̂ = 0.1445
µ̂ = 0.2960 p̂ = 0.6568 α̂ = 0.5252 α̂ = 1.0345 µ̂ = 0.2966 p̂ = 0.6527 α̂ = 1.8224 α̂ = 2.0183
k̂ = 2.6957 q̂ = 0.3231 θ̂1 = 0.5203 β̂ = 7.3548 k̂ = 2.7203 p̂ = 0.3270 θ̂1 = 0.1719 β̂ = 5.9202

λ̂ = 0.5187 θ̂2 = 0.0509 r̂ = 2.2017 λ̂ = 0.5107 θ̂2 = 0.0580 r̂ = 1.1005

µ 0.2960
σ2 0.5571
ȳ 0.2950 0.2942 0.2924 0.2923 0.2964 0.2965 0.2961 0.2961
s2 0.5235 0.5287 0.5244 0.5243 0.5329 0.5444 0.5568 0.5556

-2LL 6019.2 6015.7 6015.1 6015.0 6014.9 6010.5 6007.4 6007.7
AIC 6025.2 6023.7 6023.1 6023.0 6020.9 6018.5 6015.4 6015.7
WE 4687.7627 4612.1862 4340.5217 4680.9653 4605.3546 4508.0324 4407.4183 4416.9216
d.f. 4403 4402 4402 4402 4402 4402 4402 4402
X2 25.4209 15.4115 11.2699 10.8060 14.2428 7.1246 3.2806 3.5316
d.f. 6 5 5 5 5 5 5 5

For the data in this example, its mean and variance are respectively, 0.2960 and 0.5571, with a dispersion parameter
DP=1.88 which indicates over dispersion. This is not surprising because of the excess zeros in the data. We see again
here for the first part of the results that none of the zero-inflated models have expected values summing to n = 4406.
Clearly, for this data set, both ZINB and ZIIT are clearly not improving our fits since the estimates of ϕ in both cases are
zero. We might as well do with NB and IT models. The ZIQNB and the ZINBGE both fit the data better with grouped X2

being respectively, 11.2699 and 10.8060 on 5 d.f. The equivalent Wald’s test statistic X2
W are 4340.5217 and 4680.9653,

indicating that the ZIQNB now fits better, each is of course on 4402 degrees of freedom. Because the sum of the m̂i < n =
4406 in all the four models, it is often the case that the last categories usually carries the difference. Thus for instance,
most analysis in the literature would assign an expected value of 0.592 + (4406 − 4405.216) = 0.592 + 0.784 = 1.376
under the ZINB model. We can do the same for the other three models to ensure that the sums all add to n = 4406 in this
case.

We also observe that the empirical means and variances for the four models fall short of the true values for the data, hence
the models did not fit very well. We have employed here the Lawal (1980) rule of the χ2 approximation to X2. These
are all satisfied in our data. As discussed in the previous section, the results in the second half of the table designated
right truncated are the same models with truncation at Y = 7. The results are much better for these models based on
the groups’ X2. For instance, for the ZIQNB, this is 3.2806 on 5 d.f. In particular, both ZIQNB and ZINBGE fit very
well. The reasons for this can be traced to their empirical means and variances which are very close to that observed for
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the data. Further, both the Akaike Information Criterion (AIC) and -2log-likelihood (-2LL) are lowest for both models.
Consequently the Wald’s test statistics are much lower for the two models. Under the ZIQNB model, the corresponding
parameter estimates with the Li et al. model would be ĉ = 5.8174 and b̂ = 0.3374.

6. Conclusions

The study here indicates that for all models usually considered for modeling count data (the exception being the Poisson in
a few situations), the estimated probabilities often do not sum to 1 and consequently, the sum of the expected values does
not necessarily sum to the sample size n in the observed data. We have demonstrated here that a right-truncated model
approach works better that the usual addition to last category expected values that often is the norm in the literature. This
procedure will particularly be better for right truncated long right tail data, where it is sometimes necessary to truncate at
some values of Y = yt.

A major problem with estimating the MLE for these distributions is setting the initial values to be used in the optimization
algorithm in SAS PROC NLMIXED to achieve convergence. However, by first using the conjugate gradient optimization
algorithm congra(it converges faster than the Newton-Rapson), one is able to get good initial value estimates.

The SAS programs for implementing these models are available from the author.
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