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Abstract

When private or stigmatizing characteristics are included in sample surveys, direct questions result in low cooperation
of the respondents. To increase cooperation, indirect questioning procedures have been established in the literature.
Nonrandomized response methods are one group of such procedures and have attracted much attention in recent years. In
this article, we consider four popular nonrandomized response schemes and present a possibility to improve the estimation
precision of these schemes. The basic idea is to require multiple indirect answers from each respondent. We develop
a Fisher scoring algorithm for the maximum likelihood estimation in the presented new schemes and show the better
efficiency of the new schemes compared with the original designs.

Keywords: Fisher scoring, indirect questioning, Löwner order, privacy of respondents, sample survey, sensitive charac-
teristic

1. Introduction

Surveys are important tools in many disciplines of science, for instance, social science and economics. Sometimes,
variables which are viewed as private or stigmatizing are involved in the survey. Examples for such sensitive variables are
financial situation, political views, cheating in examinations, undeclared work, insurance fraud, and discrimination. Direct
questions on such characteristics will often yield low cooperation of the respondents, i.e., answer refusal and untruthful
answers will often occur. Therefor, skilful questioning procedures that protect the interviewees’ privacy and deliver
data enabling statistical inference were developed in the literature. One group of procedures is the class of randomized
response (RR) methods. In RR techniques, the respondent conducts a random experiment and gives a certain indirect
answer depending on the result of the random experiment. For example, consider the following process with the sensitive
attribute undeclared work and throwing a die as random experiment: If the die shows 1 or 2, the interviewee answers the
question “Have you conducted work in the last year without declaring this to the relevant public authorities?”. If the die
shows 3-6, the opposite question “Did you declare all your work in the last year to the relevant public authorities?” must
be responded. The interviewer does not observe the random experiment and hears only yes or no, but does not know the
question that is answered. This protects the privacy. Based on the indirect answers of many respondents, the distribution
of the sensitive variable can be estimated. The described procedure corresponds to the RR technique by Warner (1965).
Various other RR methods are available today. See, for example, Fox and Tracy (1986), Chaudhuri (2011), Chaudhuri
and Christofides (2013), or Chaudhuri, Christofides and Rao (2016) for overviews.

The random experiment in RR methods is a bit cumbersome and causes doubts on the suitability of RR methods for
online surveys. This motivated diverse authors to introduce nonrandomized response (NRR) methods, for example, Yu,
Tian, and Tang (2008), Tan, Tian, and Tang (2009), Tang, Tian, Tang, and Liu (2009) or Groenitz (2014). In NRR
schemes, an indirect answer that depends on the respondent’s outcome of an auxiliary characteristic must be given. The
auxiliary characteristic is defined on the same population which the sensitive characteristic is defined on. Typically, the
auxiliary characteristic is independent of the sensitive attribute and possesses a known distribution. To give an example, we
mention the characteristic describing whether the respondent’s birthday is in January - April or not. In NRR procedures,
the respondent would give the same answer if he or she is asked again.

To improve the estimation efficiency of RR methods, some authors study repeated RR methods (Eriksson, 1973; Alavi
& Tajodini, 2016; Groenitz, 2016). Here, the interviewee must repeat the random experiment multiple times. Say, we
have two repetitions. Depending on the sensitive characteristic and the result of the first repetition of the experiment, the
first indirect answer must be given. Depending on the sensitive characteristic and the result of the second repetition, the
second indirect answer must be provided. That is, two indirect answers are necessary.

In this article, we present some repeated NRR techniques. We derive inference for these procedures and show that our
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repeated NRR methods improve the estimation efficiency of the original NRR techniques. The basic idea for repeated
NRR techniques is to involve multiple different auxiliary characteristics in the procedure. For example, one can consider
the characteristic describing whether the respondent’s birthday is in January to April and the characteristic describing
whether the respondent’s telephone number ends on 0-6.

In Section 2, we explain the NRR methods considered in this paper. In Section 3, we describe the corresponding re-
peated NRR designs. The maximum likelihood (ML) estimation and the estimation variance for the multiple-trial NRR
schemes are addressed in Section 4. The accuracy gains of repeated NRR techniques in comparison with single-trial NRR
techniques are demonstrated in Section 5.

2. NRR Methods

In this section, four NRR methods are described: The crosswise method and the triangular method (both Yu et al.,
2008), the multi-category design by Tang et al. (2009), and the diagonal technique by Groenitz (2014). Let the sensitive
characteristic be denoted by X. We give some concrete examples for X:

(i) X ∈ {1, 2} with X = 1 if the person has paid the taxes for the last year correctly and X = 2 if he or she has evaded
taxes last year.

(ii) X ∈ {1, 2} with X = 1 if the person’s annual income exceeds a certain value and X = 2 else.

(iii) X ∈ {1, 2, 3} where X = 1 holds if the person never has conducted insurance fraud, X = 2 holds if the person has
conducted insurance fraud once or twice, and X = 3 holds if the person has conducted insurance fraud three or more
times.

(iv) X ∈ {1, 2, 3, 4} where each value of X represents a certain income class.

For the crosswise and triangular method, X ∈ {1, 2}, i.e., X with two categories, is required. For the methods by Tang et al.
(2009) and Groenitz (2014), X can have an arbitrary number of categories coded by 1, 2, ..., k. The triangular method and
the Tang et al. (2009) method demand that the category X = 1 is nonsensitive. The crosswise method can be applied for
the examples (i) and (ii). The triangular method can handle example (i). The technique of Tang et al. (2009) is suitable
for (iii) and the diagonal technique can be applied for (iii) and (iv).

For each of the considered NRR designs, a nonsensitive auxiliary variable W is necessary. The respondents’ individual
values of W must not be known to the interviewer or the survey agency. W and X must be independent and W must possess
a known distribution. For the crosswise and triangular method, W must have the categories W = 1 and W = 2. For the
Tang et al. (2009) method and the diagonal technique, W must have the k categories W = 1, ...,W = k. Examples for W
with two categories were already given in the Introduction. A W with k = 4 is as follows: Let W be based on the number
formed by the last three digits of the interviewee’s telephone number. If this number is ≤ 624, 625 − 749, 750 − 874, and
875−999, we define W = 1, W = 2, W = 3, and W = 4, respectively. For example, the telephone number 9478722 results
in the number 722 and W = 2.

In the survey, the respondents provide an indirect answer A that depends on X and W. Giving an indirect answer A protects
the privacy. The concrete answer schemes are:

- Crosswise method: For X = W = 1 or X = W = 2, the answer A = 1 must be given. For other combinations of X
and W, the indirect answer is A = 2.

- Triangular method: For X = W = 1, we have A = 1. In the other cases, A = 2 is required.

- Tang et al. (2009) method: For X = 1, the answer is the value of the nonsensitive variable, that is, A = W. For X = i
with i = 2, ..., k, the answer is the value of the sensitive characteristic, that is, A = X.

- Diagonal technique: The answer is given by the formula A = [(W − X) mod k]+ 1, however, the respondents do not
receive this mathematical formula. Instead, they receive a table that illustrates the answer to give. For example, for
k = 4, Table 1 is such a table.
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Table 1. Table of required indirect answer A for diagonal technique

X/W W = 1 W = 2 W = 3 W = 4
X = 1 1 2 3 4
X = 2 4 1 2 3
X = 3 3 4 1 2
X = 4 2 3 4 1

3. Repeated NRR Methods

In this section, we introduce a repeated version for each of the NRR methods from Section 2. Here, every respondent
gives multiple indirect answers. We consider the case of two indirect answers in particular.

As preliminary consideration, let us fix some NRR scheme from Section 2 and assume that the respondent should give
a first indirect answer A1 based on the sensitive X and the nonsensitive auxiliary characteristic W and a second indirect
answer A2 also based on X and W. Then, A1 = A2 always follows. Consequently, the second indirect answer does not
contain additional information. Thus, it does not work to base both indirect answers on X and W.

The solution is to utilize a separate nonsensitive auxiliary attribute for each repetition. Say, the nonsensitive auxiliary
characteristic for the first and second trial is denoted by W1 and W2, respectively. For a fixed NRR scheme from Section 2,
the interview procedure for the two-trial version is as follows. The interviewee first gives the indirect answer A1 depending
on X and W1 according to the fixed NRR scheme. Afterward, he or she gives the second indirect answer A2 depending on
X and W2 also according to the selected NRR scheme.

For each NRR technique from Section 2, neither the respondent’s value of W1 nor the value of W2 must be known to the
interviewer or the survey agency. For the crosswise and triangular method, W1,W2 ∈ {1, 2} is necessary. For the Tang et al.
(2009) and Groenitz (2014) method, W1 and W2 both must have the categories 1, ..., k. We make three further assumptions:
The vector (W1,W2) and X are independent, W1 and W2 are independent, and W1 and W2 possess known distributions (W1
and W2 are allowed to have different distributions). These three assumptions can usually be seen as fulfilled when the
auxiliary characteristics are constructed, for example, from birthday periods, telephone numbers, or house numbers.

4. Statistical Inference for Repeated NRR Designs

We define πi to be the proportion of persons in the population having X value equal to i (i = 1, ..., k) and set π =
(π1, ..., πk−1)⊤. We now develop the ML estimation for π for the repeated NRR designs and a sample of size n drawn
by simple random sampling with replacement. The estimation variance is also addressed. Fix one of the repeated NRR
designs and define c1i and c2i to be the proportion of population units with W1 = i and W2 = i, respectively. Let the entry
(i, j) of the k × k matrix C1 be given by P(A1 = i|X = j). Analog, let the entry (i, j) of the k × k matrix C2 be given by
P(A2 = i|X = j). For the crosswise method, we have

C1 =

(
c11 c12
c12 c11

)
and C2 =

(
c21 c22
c22 c21

)
.

For the triangular method,

C1 =

(
c11 0
c12 1

)
and C2 =

(
c21 0
c22 1

)
hold. For the technique by Tang et al. (2009), the first column of C1 equals (c11, ..., c1k)⊤. The jth column of C1
for j = 2, ..., k has entry 1 as jth component while the other components are 0. In the matrix C2, the first column is
(c21, ..., c2k)⊤. The jth column of C2 for j = 2, ..., k has entry 1 as jth component and entry 0 for the other components.

For the diagonal technique, each row of C1 is a left-cyclic shift of the row above and the first row is (c11, ..., c1k). Regarding
C2, each row is again a left-cyclic shift of the row above where the first row is now (c21, ..., c2k).

Consider a1, a2, x ∈ {1, ..., k}, define

I1 = I1(a1, x) = {i ∈ {1, ..., k} : W1 = i, X = x result in answer A1 = a1},
I2 = I2(a2, x) = { j ∈ {1, ..., k} : W2 = j, X = x result in answer A2 = a2},
I = I(a1, a2, x) = {(i, j) ∈ {1, ..., k}2 : (W1,W2) = (i, j), X = x yield (A1, A2) = (a1, a2)}
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and obtain

P(A1 = a1,A2 = a2|X = x) = P(X = x)−1 · P(A1 = a1, A2 = a2, X = x)

= P(X = x)−1 ·
 ∑

(w1,w2)∈I
P(A1 = a1, A2 = a2,W1 = w1,W2 = w2, X = x)

+
∑

(w1,w2)<I

P(A1 = a1, A2 = a2,W1 = w1,W2 = w2, X = x)


= P(X = x)−1 ·

 ∑
(w1,w2)∈I

P(W1 = w1,W2 = w2, X = x) + 0


= P(X = x)−1 ·

 ∑
(w1,w2)∈I

P(W1 = w1) · P(W2 = w2) · P(X = x)


=

∑
(w1,w2)∈I

P(W1 = w1) · P(W2 = w2) =
∑

w1∈I1

P(W1 = w1) ·
∑

w2∈I2

P(W2 = w2)

= P(A1 = a1|X = x) · P(A2 = a2|X = x) = C1(a1, x) ·C2(a2, x),

where entry (p, q) of the matrix C1 and C2 is denoted by C1(p, q) and C2(p, q), respectively. Consequently, A1 and A2 are
conditionally independent. As next step, we define λi j to be the joint proportion of population units with A1 = i and A2 = j
(i, j = 1, ..., k). These joint proportions are arranged in the column vector λ of length k2 where we first sort by the value of
A1. For example, for k = 3, λ is given by λ = (λ11, λ12, λ13, λ21, λ22, λ23, λ31, λ32, λ33)⊤. It follows that λ = C · (π1, ..., πk)⊤

where C is a k2 × k matrix and the jth column of C is given by C1(:, j) ⊗C2(:, j). Here, C1(:, j) and C2(:, j) represents the
jth column of C1 and C2, respectively, and the symbol ⊗ stands for the Kronecker matrix product. The Kronecker matrix
product of two matrices R ∈ Rr1×r2 and S ∈ Rs1×s2 is defined as

R ⊗ S =


R11 R12 · · · R1,r2

R21 R22 · · · R2,r2

...
...

...
Rr1,1 Rr1,2 · · · Rr1,r2

 ⊗ S =


R11 · S R12 · S · · · R1,r2 · S
R21 · S R22 · S · · · R2,r2 · S
...

...
...

Rr1,1 · S Rr1,2 · S · · · Rr1,r2 · S

 ,
that is, R ⊗ S is a matrix of size r1s1 × r2s2. Thus, C is the columnwise Kronecker product of C1 and C2. To give an
example, for k = 3, we have

C =



C1(1, 1) ·C2(1, 1) C1(1, 2) ·C2(1, 2) C1(1, 3) ·C2(1, 3)
C1(1, 1) ·C2(2, 1) C1(1, 2) ·C2(2, 2) C1(1, 3) ·C2(2, 3)
C1(1, 1) ·C2(3, 1) C1(1, 2) ·C2(3, 2) C1(1, 3) ·C2(3, 3)
C1(2, 1) ·C2(1, 1) C1(2, 2) ·C2(1, 2) C1(2, 3) ·C2(1, 3)
C1(2, 1) ·C2(2, 1) C1(2, 2) ·C2(2, 2) C1(2, 3) ·C2(2, 3)
C1(2, 1) ·C2(3, 1) C1(2, 2) ·C2(3, 2) C1(2, 3) ·C2(3, 3)
C1(3, 1) ·C2(1, 1) C1(3, 2) ·C2(1, 2) C1(3, 3) ·C2(1, 3)
C1(3, 1) ·C2(2, 1) C1(3, 2) ·C2(2, 2) C1(3, 3) ·C2(2, 3)
C1(3, 1) ·C2(3, 1) C1(3, 2) ·C2(3, 2) C1(3, 3) ·C2(3, 3)


.

For the following, it is advisable to number the k2 answer categories by 1, ..., k2 where we first sort by answer A1 and then
by A2. For example, for k = 3, the numbering scheme is given by Table 2.

Table 2. Answer categories 1, ..., 9 for A1 ∈ {1, 2, 3} and A2 ∈ {1, 2, 3}

answer category 1 2 3 4 5 6 7 8 9
answer A1 1 1 1 2 2 2 3 3 3
answer A2 1 2 3 1 2 3 1 2 3

Let nl (l = 1, ..., k2) be the observed absolute frequency of answer category l in the sample. Furthermore, let C̃ be the
k2 × (k − 1) matrix that arises as follows from C: The jth column of C̃ ( j = 1, ..., k − 1) is given by the difference
C(:, j) −C(:, k). The log-likelihood function is

l(π1, ..., πk−1) = (n1, ..., nk2 ) · log
[
C̃ · (π1, ..., πk−1)⊤ +C(:, k)

]
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with componentwise application of the logarithm. The score function corresponding to l is

s(π1, ..., πk−1) = [l′(π1, ..., πk−1)]⊤ = C̃⊤ ·
(

n1

λ1
, ...,

nk2

λk2

)⊤
.

For the second derivative of l, we obtain

l′′(π1, ..., πk−1) = − C̃⊤ · diag

n1

λ2
1

, ...,
nk2

λ2
k2

 · C̃.
Consequently, the Fisher matrix is

F = F(π1, ..., πk−1) = C̃⊤ · n · diag
(

1
λ1
, ...,

1
λk2

)
· C̃.

We maximize the log-likelihood by a Fisher scoring algorithm. However, other algorithms such as EM algorithm, Newton
algorithm or Nelder/Mead simplex algorithm are also possible. Our Fisher scoring algorithm generates a sequence π(t) =

(π(t)
1 , ..., π

(t)
k−1)⊤, t = 1, 2, ..., via the rule

π(t+1) = π(t) +
[
F(π(t)

1 , ..., π
(t)
k−1)

]−1 · s(π(t)
1 , ..., π

(t)
k−1)

until convergence. We denote the ML estimator for π = (π1, ..., πk−1)⊤ by π̂ = (π̂1, ..., π̂k−1)⊤. The asymptotic variance of
this ML estimator is given by [F(π1, ..., πk−1)]−1. An estimator for the asymptotic variance is [F(π̂1, ..., π̂k−1)]−1.

5. Precision Improvement

We quantify the estimation inaccuracy by the trace of the asymptotic variance matrix of the ML estimator for π =
(π1, ..., πk−1)⊤. For this variance matrix, we refer to the end of the previous section. We start this section with a formal
proof that the estimation inaccuracy of a two-trial NRR method is always less than or equal to the estimation inaccuracy
of the single-trial process.

Let Ai j be the jth indirect answer of respondent i (i = 1, ..., n, j = 1, 2). We set fA11 (a11) = P(A11 = a11), fA11,A12 (a11, a12) =
P(A11 = a11, A12 = a12), as well as fA12 |A11 (a12|a11) = P(A12 = a12|A11 = a11). The Fisher matrix can be written as

F = F(π1, ...πk−1) = n · E
[(

d
dπ

log fA11,A12 (A11, A12)
)⊤
· d

dπ
log fA11,A12 (A11, A12)

]
.

We have

E
[(

d
dπ

log fA11,A12 (A11, A12)
)⊤
· d

dπ
log fA11,A12 (A11, A12)

]
= E

[(
d

dπ
log fA12 |A11 (A12|A11) +

d
dπ

log fA11 (A11)
)⊤

×
(

d
dπ

log fA12 |A11 (A12|A11) +
d

dπ
log fA11 (A11)

)]
= E

[(
d

dπ
log fA11 (A11)

)⊤
· d

dπ
log fA11 (A11)

]
+ E

[(
d

dπ
log fA12 |A11 (A12|A11)

)⊤
· d

dπ
log fA12 |A11 (A12|A11)

]
+ E

[(
d

dπ
log fA12 |A11 (A12|A11)

)⊤
· d

dπ
log fA11 (A11)

]
+ E

[(
d

dπ
log fA11 (A11)

)⊤
· d

dπ
log fA12 |A11 (A12|A11)

]
.

In the following, we show that the last two summands are zero (zero matrix). We introduce the function g with

g(a11, a12) =
(

d
dπ

log fA12 |A11 (a12|a11)
)⊤
· d

dπ
log fA11 (a11)

=
1

fA12 |A11 (a12|a11)
·
(

d
dπ

fA12 |A11 (a12|a11)
)⊤
· d

dπ
log fA11 (a11).
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It is true that

E
[
g(A11, A12)|A11 = a11

]
= E

[
1

fA12 |A11 (A12|a11)
·
(

d
dπ

fA12 |A11 (A12|a11)
)⊤
· d

dπ
log fA11 (a11) | A11 = a11

]
=

∑
a12∈{1,..,k}

1
fA12 |A11 (a12|a11)

·
(

d
dπ

fA12 |A11 (a12|a11)
)⊤
· d

dπ
log fA11 (a11) · fA12 |A11 (a12|a11)

=
∑

a12∈{1,..,k}

(
d

dπ
fA12 |A11 (a12|a11)

)⊤
· d

dπ
log fA11 (a11)

=

 d
dπ

∑
a12∈{1,..,k}

fA12 |A11 (a12|a11)

⊤ · d
dπ

log fA11 (a11)

= (0, ..., 0)⊤ · d
dπ

log fA11 (a11) = 0.

Consequently, E(E(g(A11, A12)|A11)) = E(g(A11, A12)) = 0 holds. That is, the third summand is zero. Regarding the fourth
summand, we have

E
[(

d
dπ

log fA11 (A11)
)⊤
· d

dπ
log fA12 |A11 (A12|A11)

]
=

{
E

[(
d

dπ
log fA12 |A11 (A12|A11)

)⊤
· d

dπ
log fA11 (A11)

]}⊤
= 0.

Thus, we obtain

F = n · E
[(

d
dπ

log fA11 (A11)
)⊤
· d

dπ
log fA11 (A11)

]
+ n · E

[(
d

dπ
log fA12 |A11 (A12|A11)

)⊤
· d

dπ
log fA12 |A11 (A12|A11)

]
=: G + n · E

[(
d

dπ
log fA12 |A11 (A12|A11)

)⊤
· d

dπ
log fA12 |A11 (A12|A11)

]
. (1)

The matrix G = G(π1, ...πk−1) is the Fisher matrix if we only have observations on A11, ..., An1, that is, if we only require
one indirect answer per respondent. It follows from (1) that F − G is positive-semidefinite. By a known property of
the Löwner order (Nordström, 1989, p. 4473), we obtain that G−1 − F−1 is positive-semidefinite. Thus, the trace of
G−1 is larger than or equal to the trace of F−1. G−1 is the asymptotic variance matrix of the ML estimator for π for one
indirect answer per interviewee and F−1 is the asymptotic variance matrix of the ML estimator for two indirect answers
per interviewee. Hence, we have shown that the estimation inaccuracy of a two-trial NRR method is always less than or
equal to the estimation inaccuracy of the single-trial process.

For numerical illustration, we now compute the estimation inaccuracy of our two-trial NRR techniques for concrete
parameter specifications and make comparisons to the estimation inaccuracy of the single-trial versions. For the crosswise
method, we set π1 = 0.8 and consider

c11 ∈ {0.1, 0.2, ..., 0.9, 1} and c21 ∈ {0.1, 0.2, ..., 0.9, 1}. (2)

The quantity n times the asymptotic variance of the ML estimator for π1 for the two-trial crosswise method is presented
for any combination of c11 and c21 in the middle of Table 3. In the right column of Table 3, we provide the quantity n times
the asymptotic variance of the ML estimator for π1 for the single-trial crosswise method depending on the parameter c11.
Here, the asymptotic variance for the single-trial version is(

C̃1
⊤ · n · diag

(
1./(C1 · (π1, π2)⊤)

)
· C̃1

)−1
with C̃1 = C1(:, 1) −C1(:, 2)

and ./ symbolizing componentwise division. For the triangular method, we again consider π1 = 0.8 and proceed analo-
gously to the crosswise method. The computational results for the triangular method are given in Table 4. For the Tang
et al. (2009) technique, we consider k = 3 categories, (π1, π2, π3) = (0.6, 0.3, 0.1), and 10 distributions of an auxiliary
variable as follows:
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c(1)
Tang =

(
0.3333 0.3333 0.3333

)
, c(2)

Tang =
(
0.4372 0.5123 0.0504

)
,

c(3)
Tang =

(
0.4153 0.5167 0.0680

)
, c(4)

Tang =
(
0.1353 0.7807 0.0841

)
,

c(5)
Tang =

(
0.0901 0.4471 0.4628

)
, c(6)

Tang =
(
0.7780 0.1278 0.0942

)
,

c(7)
Tang =

(
0.4384 0.5243 0.0373

)
, c(8)

Tang =
(
0.2212 0.4280 0.3509

)
,

c(9)
Tang =

(
0.0617 0.5125 0.4257

)
, c(10)

Tang =
(
0.3799 0.4751 0.1450

)
.

The first distribution is a uniform distribution. The other vectors c(2)
Tang, ..., c

(10)
Tang were drawn randomly. The middle of

Table 5 shows n times the trace of the asymptotic variance matrix of the ML estimator for (π1, π2) for the Tang et al.
(2009) method with two indirect answers per respondent for each combination c(i)

Tang and c( j)
Tang. The right column of this

table provides the quantity n times the trace of the asymptotic variance of the ML estimator for (π1, π2) for the single-trial
method. The asymptotic variance for the single-trial Tang et al. (2009) method is(

C̃1
⊤ · n · diag

(
1./(C1 · (π1, π2, π3)⊤)

)
· C̃1

)−1

with
C̃1 = [C1(:, 1) −C1(:, 3), C1(:, 2) −C1(:, 3)].

We finally come to the diagonal technique. Say, we have k = 4 categories, the vector (π1, ..., π4) = (0.4, 0.3, 0.2, 0.1), and
the 10 distributions of an auxiliary characteristic

c(1)
DT =

(
0.3250 0.2250 0.2250 0.2250

)
, c(2)

DT =
(
0.4000 0.2000 0.2000 0.2000

)
,

c(3)
DT =

(
0.4750 0.1750 0.1750 0.1750

)
, c(4)

DT =
(
0.5500 0.1500 0.1500 0.1500

)
,

c(5)
DT =

(
0.6250 0.1250 0.1250 0.1250

)
, c(6)

DT =
(
0.7000 0.1000 0.1000 0.1000

)
,

c(7)
DT =

(
0.7750 0.0750 0.0750 0.0750

)
, c(8)

DT =
(
0.8500 0.0500 0.0500 0.0500

)
,

c(9)
DT =

(
0.9250 0.0250 0.0250 0.0250

)
, c(10)

DT =
(
1.0000 0.0000 0.0000 0.0000

)
.

The distributions were chosen according to Groenitz (2014, p. 219) where we consideredσ ∈ {1/20, 2/20, ..., 9/20, 10/20}
in Groenitz (2014, p. 219). For the two-trial and single-trial diagonal technique, the results concerning estimation inac-
curacy are given in Table 6. For the right column of this table, we remark that the asymptotic variance matrix of the ML
estimator for (π1, π2, π3) in the single-trial diagonal technique is equal to(

C̃1
⊤ · n · diag

(
1./(C1 · (π1, ..., π4)⊤)

)
· C̃1

)−1

where

C̃1 = [C1(:, 1) −C1(:, 4), C1(:, 2) −C1(:, 4), C1(:, 3) −C1(:, 4)].

Altogether, the Tables 3-6 demonstrate that large efficiency gains are possible by two-trial NRR methods in comparison
with single-trial NRR schemes.

Table 3. Inaccuracy crosswise method

inaccuracy two-trial crosswise method single trial
c11/c21 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -
0.1 0.21 0.25 0.27 0.29 0.30 0.29 0.27 0.25 0.21 0.16 0.30
0.2 0.25 0.34 0.45 0.56 0.60 0.56 0.45 0.34 0.25 0.16 0.60
0.3 0.27 0.45 0.75 1.19 1.47 1.19 0.75 0.45 0.27 0.16 1.47
0.4 0.29 0.56 1.19 3.08 6.16 3.08 1.19 0.56 0.29 0.16 6.16
0.5 0.30 0.60 1.47 6.16 — 6.16 1.47 0.60 0.30 0.16 —
0.6 0.29 0.56 1.19 3.08 6.16 3.08 1.19 0.56 0.29 0.16 6.16
0.7 0.27 0.45 0.75 1.19 1.47 1.19 0.75 0.45 0.27 0.16 1.47
0.8 0.25 0.34 0.45 0.56 0.60 0.56 0.45 0.34 0.25 0.16 0.60
0.9 0.21 0.25 0.27 0.29 0.30 0.29 0.27 0.25 0.21 0.16 0.30
1.0 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
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Note. This table shows the quantity n times the asymptotic variance of the ML estimator for π1 for the crosswise method.
For c11 = 0.5 in the single-trial procedure and c11 = c21 = 0.5 in the two-trial procedure, the log-likelihood does not
depend on π implying that ML estimation is not adequate in these cases.

Table 4. Inaccuracy triangular method

inaccuracy two-trial triangular method single trial
c11/c21 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -
0.1 3.57 2.22 1.52 1.10 0.81 0.61 0.46 0.34 0.24 0.16 7.36
0.2 2.22 1.58 1.18 0.90 0.69 0.54 0.41 0.31 0.23 0.16 3.36
0.3 1.52 1.18 0.93 0.74 0.59 0.47 0.37 0.29 0.22 0.16 2.03
0.4 1.10 0.90 0.74 0.61 0.50 0.41 0.34 0.27 0.21 0.16 1.36
0.5 0.81 0.69 0.59 0.50 0.43 0.36 0.30 0.25 0.20 0.16 0.96
0.6 0.61 0.54 0.47 0.41 0.36 0.31 0.27 0.23 0.19 0.16 0.69
0.7 0.46 0.41 0.37 0.34 0.30 0.27 0.24 0.21 0.18 0.16 0.50
0.8 0.34 0.31 0.29 0.27 0.25 0.23 0.21 0.19 0.18 0.16 0.36
0.9 0.24 0.23 0.22 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.25
1.0 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Note. This table provides the quantity n times the asymptotic variance of the ML estimator for π1 for the triangular
method.

Table 5. Inaccuracy for Tang et al. (2009) design

inaccuracy two-trial Tang et al. (2009) design single trial
c(1)

Tang c(2)
Tang c(3)

Tang c(4)
Tang c(5)

Tang c(6)
Tang c(7)

Tang c(8)
Tang c(9)

Tang c(10)
Tang -

c(1)
Tang 0.70 0.71 0.72 0.91 0.82 0.52 0.72 0.76 0.85 0.72 2.05

c(2)
Tang 0.71 0.88 0.89 1.26 0.83 0.54 0.89 0.81 0.90 0.84 1.89

c(3)
Tang 0.72 0.89 0.89 1.27 0.85 0.54 0.90 0.82 0.92 0.85 1.99

c(4)
Tang 0.91 1.26 1.27 2.36 1.16 0.59 1.29 1.10 1.32 1.18 7.46

c(5)
Tang 0.82 0.83 0.85 1.16 1.03 0.55 0.84 0.93 1.09 0.85 8.11

c(6)
Tang 0.52 0.54 0.54 0.59 0.55 0.48 0.54 0.54 0.56 0.54 0.71

c(7)
Tang 0.72 0.89 0.90 1.29 0.84 0.54 0.91 0.81 0.91 0.85 1.91

c(8)
Tang 0.76 0.81 0.82 1.10 0.93 0.54 0.81 0.85 0.98 0.81 3.32

c(9)
Tang 0.85 0.90 0.92 1.32 1.09 0.56 0.91 0.98 1.16 0.91 12.44

c(10)
Tang 0.72 0.84 0.85 1.18 0.85 0.54 0.85 0.81 0.91 0.82 2.07

Note. This table shows n times the trace of the asymptotic variance matrix of the ML estimator for (π1, π2) for the Tang et
al. (2009) method.

Table 6. Inaccuracy for diagonal technique

inaccuracy two-trial diagonal technique single trial
c(1)

DT c(2)
DT c(3)

DT c(4)
DT c(5)

DT c(6)
DT c(7)

DT c(8)
DT c(9)

DT c(10)
DT -

c(1)
DT 28.60 11.60 5.88 3.50 2.31 1.64 1.22 0.94 0.75 0.61 56.97

c(2)
DT 11.60 7.38 4.64 3.07 2.14 1.57 1.19 0.93 0.75 0.61 14.41

c(3)
DT 5.88 4.64 3.45 2.56 1.92 1.48 1.16 0.92 0.75 0.61 6.47

c(4)
DT 3.50 3.07 2.56 2.08 1.68 1.36 1.11 0.90 0.74 0.61 3.68

c(5)
DT 2.31 2.14 1.92 1.68 1.45 1.24 1.05 0.88 0.74 0.61 2.37

c(6)
DT 1.64 1.57 1.48 1.36 1.24 1.11 0.98 0.85 0.73 0.61 1.66

c(7)
DT 1.22 1.19 1.16 1.11 1.05 0.98 0.90 0.81 0.72 0.61 1.23

c(8)
DT 0.94 0.93 0.92 0.90 0.88 0.85 0.81 0.77 0.70 0.61 0.95

c(9)
DT 0.75 0.75 0.75 0.74 0.74 0.73 0.72 0.70 0.67 0.61 0.75

c(10)
DT 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61

Note. This table presents n times the trace of the asymptotic variance matrix of the ML estimator for (π1, π2, π3) for the
diagonal method by Groenitz (2014).
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6. Summary

NRR designs for sensitive attributes have attracted much attention in the literature of the last years. In this article, we have
considered two-trial versions of four NRR schemes. In a two-trial design, each person in the sample must provide two
indirect answers. Each answer depends on a separate auxiliary characteristic. We have developed the maximum likelihood
inference for the distribution of the sensitive variable and derived the asymptotic estimation variance. Moreover, we
analyzed the gains in estimation precision by two indirect answers per respondent instead of one indirect answer.

Acknowledgements

The author thanks the Editor and two anonymous reviewers for their comments and suggestions on the manuscript.

References

Alavi, S. M. R., & Tajodini, M. (2016). Maximum Likelihood Estimation of Sensitive Proportion Using Repeated Ran-
domized Response Techniques. Journal of Applied Statistics, 43, 563-571.
https://doi.org/10.1080/02664763.2015.1070811

Chaudhuri, A. (2011). Randomized Response and Indirect Questioning Techniques in Surveys. Chapman & Hall/CRC.
https://doi.org/10.1201/b10476

Chaudhuri, A., & Christofides, T. C. (2013). Indirect Questioning in Sample Surveys. Springer.
https://doi.org/10.1007/978-3-642-36276-7

Chaudhuri, A., Christofides, T. C., & Rao, C. R. (2016). Data Gathering, Analysis and Protection of Privacy Through
Randomized Response Techniques: Qualitative and Quantitative Human Traits. Handbook of Statistics 34, North
Holland. https://doi.org/10.1016/s0169-7161(16)x0002-8

Eriksson, S. A. (1973). A New Model for Randomized Response. International Statistical Review, 41, 101-113.
https://doi.org/10.2307/1402791

Fox, J. A., & Tracy, P.E. (1986). Randomized Response - A Method for Sensitive Surveys. Sage.
https://doi.org/10.4135/9781412985581

Groenitz, H. (2014). A New Privacy-Protecting Survey Design for Multichotomous Sensitive Variables. Metrika, 77,
211-224. https://doi.org/10.1007/s00184-012-0406-8

Groenitz, H. (2016). Valid Estimates for Repeated Randomized Response Methods. Journal of Applied Statistics, in
press. https://doi.org/10.1080/02664763.2016.1267119
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