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Abstract

The paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate
regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid
statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random
coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate con-
ditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we
develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.

Keywords: multivariate conditional volatility, vector random coefficient autoregressive process, asymmetry, long memo-
ry, dynamic conditional correlations, regularity conditions, asymptotic properties

1. Introduction

Multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models are frequently used in the anal-
ysis of dynamic covariance structure for multiple asset returns of financial time series (see the survey papers of, among
others, Bauwens, Laurent, and Rombouts (2006), McAleer (2005), and Silvennoinen and Teräsvirta (2009)). One of the
most popular multivariate GARCH models is the BEKK model (see Baba, Engle, Kraft and Kroner (1985) and Engle and
Kroner (1995)). The BEKK model has a positive definite covariance process, and it is easy to verify its stationary con-
ditions. To reduce the number of parameters, and to show regularity conditions and asymptotic properties, the ‘diagonal
BEKK’ and ‘scalar BEKK’ models are often used in empirical analysis. Comte and Lieberman (2003) show the consis-
tency and asymptotic normality of the quasi-maximum likelihood (QML) estimator under conditions that are difficult to
verify.

For accommodating the asymmetric effects in the multivariate framework, McAleer, Hoti and Chan (2009) consider the
vector autoregressive and moving-average (VARMA) process with constant correlations and an asymmetric GARCH
extension of the univariate asymmetric model of Glosten, Jagannathan, and Runkle (GJR) (1992). Taking account of
dynamic correlations, Kroner and Ng (1998) develop the asymmetric BEKK (ABEKK) model. McAleer, Hoti and Chan
(2009) show the consistency and asymptotic normality of the QML estimator of the asymmetric model with static corre-
lations, but there are no asymptotic results for the ABEKK model.

In addition to asymmetric effects, another popular stylized fact is long-range dependence in volatility. In univariate
conditional volatility models, Baillie, Bollerslev, and Mikkelsen (1996) developed the fractionally-integrated GARCH
(FIGARCH) model, while Bollerslev and Mikkelsen (1996) suggested the fractionally-integrated exponential GARCH
(FIEGARCH) model (see McAleer and Hafner (2014) and Martinet and McAleer (2016) for reservations regarding ex-
ponential GARCH). Other studies have used the heterogeneous autoregressive (HAR) model of Corsi (2009), which is
inspired by the heterogeneous ARCH model of Müller, Dacorogna, Dav, Olsen, Pictet, and von Weizsacker (1997), to
approximate the hyperbolic decay rates associated with long memory models.

13



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

The first purpose of the paper is to derive the consistency and asymptotic normality of the QML estimator for the VARMA-
ABEKK model. For this purpose, we apply the approach of McAleer et al. (2008) based on the vector random coefficient
autoregressive (RCA) process suggested by Nicholls and Quinn (1981) (see also Tsay (1987) for an application to condi-
tional volatility models). The second purpose of the paper is to develop new extended asymmetric long memory BEKK
(ALBEKK) and heterogeneous BEKK models, and to discuss the asymptotic properties of the associated QML estimators.

The remainder of the paper is organized as follows. Section 2 introduces the VARMA-ABEKK model, and shows a
relationship between a vector RCA process and the conditional covariance model. Section 3 demonstrates the consistency
and asymptotic normality of the QML estimator for the VARMA-ABEKK model. Section 4 presents the new ALBEKK
and HABEKK models for long memory, and discusses the asymptotic properties of the associated QML estimators.
Section 5 gives some concluding remarks. All proofs are given in the Appendix.

2. Asymmetric Multivariate GARCH Models

Let yt be an m × 1 vector, and consider the following asymmetric multivariate GARCH model:

yt = µt + εt, (1)

εt = H1/2
t ξt, ξt ∼ iid(0, Im), (2)

Ht =W +
r∑

i=1

[
Aiεt−iε

′
t−i A

′
i + Ciηt−iη

′
t−iC

′
i
]
+

s∑
j=1

B jHt− jB′j, (3)

where yt = (y1t, . . . , ymt)′, εt = (ε1t, . . . , εmt)′, ξt = (ξ1t, . . . , ξmt)′, Ai, B j and Ci (i = 1, . . . , r) ( j = 1, . . . , s) are m-
dimensional square matrices, W is an m-dimensional positive definite matrix, ηt = (n1tϵ1t, . . . , nmtϵmt)′, and nit = 1(εit < 0).
For purposes of identification, the restrictions a11,i ≥ 0, b11, j ≥ 0 and c11,i ≥ 0 are imposed. As the model encompasses
the BEKK model of Engle and Kroner (1995), we will call this the ‘asymmetric BEKK’ (ABEKK) model. If r = s = 1,
the ABEKK specification reduces to the model of Kroner and Ng (1998).

The vector form of the covariance matrix is given by:

ht = w +
r∑

i=1

[(Ai ⊗ Ai) + (Ci ⊗ Ci)(Nt−i ⊗ Nt−i)] ε̃t−i +

s∑
j=1

(B j ⊗ B j)ht− j, (4)

where ht = vec(Ht), ε̃t = vec(εtε
′
t), w = vec(W), Nt is a diagonal matrix with diagonal elements formed from the vector

of indicator functions nt = (n1t, . . . , nmt)′, and ⊗ denotes the Kronecker product. As in Ling and McAleer (2003), we
assume:

µt =

p∑
i=1

ΦiLiyt +

q∑
j=1

Θ jL jεt, (5)

where Φi and Θ j are m × m matrices, the roots of the characteristic polynomials |Im −
∑p

i=1ΦiLi| and |Im −
∑q

j=1Θ jL j| lie
outside the unit circle, and L is the lag operator. Given the specification, yt follows the vector autoregressive moving-
average (VARMA) process with the ABEKK structure, and we will call this the ‘VARMA-ABEKK’ model.

Recently, Francq and Zakoı̈an (2012) extended the constant conditional correlation asymmetric GARCH model of M-
cAleer et al. (2009), by allowing different parameters for positive returns. We can consider a similar extension for the
ABEKK specification, and the theoretical results in the current paper can be applied in a straightforward manner.

By extending the work of McAleer et al. (2008), we can derive the ABEKK model from a vector RCA process, as shown
in the following proposition.

Proposition 1 (i) Consider the following vector RCA process:

εt =

r∑
i=1

{
Ãit + C̃it

}
εt−i + ζ t, ζ t ∼ iid(0,Γ), (6)

where ζ t = (ζ1t, . . . , ζmt)′, Γ is a positive definite covariance matrix, and the m × m matrices of random coefficients
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Ãit = {ã j,l,it} and C̃it = {c̃ j,l,it} satisfy:

Eε,t−1(Ãit) = O, ∀i, t,

Eε,t−1(ã j1,l1,itãl2, j2,it) = a j1,l1 al2, j2 ( j1, j2, l1, l2 = 1, . . . ,m),
Eε,t−1(ã j1,l1,itãl2, j2, js) = 0 if i , j and/or t , s, ( j1, j2, l1, l2 = 1, . . . ,m),

Eε,t−1(C̃it) = O, ∀i, t,

Eε,t−1(c̃ j1,l1,itc̃l2, j2,it) =
{

c j1,l1 cl2, j2 if εl1,t−1 < 0 and εl2,t−1 < 0
0 otherwise

( j1, j2, l1, l2 = 1, . . . ,m),
Eε,t−1(c̃ j1,l1,itc̃l2, j2, js) = 0 if i , j and/or t , s, ( j1, j2, l1, l2 = 1, . . . ,m),

and ηt, Ãit and C̃it are mutually independent for all i and t, but C̃it depends on εt. We denote Eε,t−1 as the expectation
conditional on {εt−1, εt−2, . . .}, so that the conditional variance of εt is:

Ht = Eε,t−1(εtε
′
t) =

r∑
i=1

[
Aiεt−iε

′
t−i A

′
i + Ciηt−iη

′
t−iC

′
i
]
+ Γ.

(ii) Consider the infinite-order vector RCA process:

εt =

∞∑
i=1

{
Ã∗it + C̃∗it

}
εt−i + ζ t, (7)

where Ã∗it and C̃∗it are defined similarly to Ãit and C̃it, respectively. Then the conditional variance is given by:

Ht =

∞∑
i=1

[
A∗i εt−iε

′
t−i A

∗′
i + C∗i ηt−iη

′
t−iC

∗′
i
]
+ Γ, (8)

which is also obtained by the ABEKK model (3), if the roots of the characteristic polynomials |Im2 − ∑s
j=1(B j ⊗ B j)L j|

lie outside the unit circle. For the case r = s = 1, under the condition that the roots of |Im2 − (B1 ⊗ B1) lie outside
the unit circle, the conditional covariance of εt in (7) is equivalent to (3) if and only if A∗i = Bi A, C∗i = BiC, and

vec(Γ) =
[∑∞

i=0(Bi ⊗ Bi)
]−1

vec(W).

For the equivalence of (2) and (7), we can derive the asymptotic theory of the VARMA-ABEKK model by applying the
results in McAleer et al. (2008).

3. Structural and Statistical Properties

Denote the parameter vector λ = (θ′, τ′)′, θ = (vec(Φ1)′, . . . , vec(Φp)′, vec(Θ1)′, . . . , vec(Θq)′, τ = (vech(W)′, vec(A1)′,
. . . , vec(Ar)′, vec(B1)′, . . . , vec(Bs)′)′, and the true parameter vector as λ0. We assume that the parameter space Λ is a
compact subspace of Euclidean space, such that λ0 is an interior point in Λ. We do not consider the situation in which the
parameter is on the boundary of the parameter space.

For each λ ∈ Λ, we make the following assumptions.

Assumption 1 All the roots of:∣∣∣∣∣∣∣∣Im2 −
r∑

i=1

[(Ai ⊗ Ai) + (Ci ⊗ Ci)(Nt ⊗ Nt)] Li −
s∑

j=1

(B j ⊗ B j)L j

∣∣∣∣∣∣∣∣ = 0

are outside the unit circle. Moreover, Im2 −∑r
i=1 [(Ai ⊗ Ai) + (Ci ⊗ Ci)(Nt ⊗ Nt)] Li and

∑s
j=1(B j ⊗B j)L j are left coprime,

and satisfy other identifiability conditions given in Ling and McAleer (2003).

Assumption 2 For the vector RCA process (7), the distribution of ζ t is symmetric. For the vector of second moments,
ζ̃ t = vec

(
ζ tζ
′
t
)
, we assume E(ζ̃ t) = γ = vec(Γ) and Γζ̃ζ̃′ is positive definite, where Γζ̃ζ̃′ = E

[(
ζ̃ t − γ

) (
ζ̃ t − γ

)′]
. For the

fourth moments of Ãit and C̃it, we assume:

E|ã∗j1,l1,itã
∗
j2,l2,itã

∗
j3,l3,itã

∗
j4,l4,it | < ∞,

E|c̃∗j1,l1,itc̃
∗
j2,l2,itc̃

∗
j3,l3,itc̃

∗
j4,l4,it | < ∞ ( j1, j2, j3, j4, l1, l2, l3, l4 = 1, . . . ,m),
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respectively. Moreover, all the roots of:∣∣∣∣∣∣∣Im4 −
∞∑

i=1

E
[(

Ã∗2it ⊗ Ã∗2it

)
+

(
C̃∗2it ⊗ C̃∗2it

)]∣∣∣∣∣∣∣ = 0,

are outside the unit circle.

Assumption 3 The function ht is such that, ∀λ ∈ Λ and ∀λ0 ∈ Λ, ht,λ = ht,λ0 almost surely (a.s.), if and only if λ = λ0.

Note that Assumption 3 is an identifiability condition, analogous to Assumption A4 of Jeantheau (1998). The structural
properties of the model are developed and the analytical forms of the regularity conditions are derived in Proposition 2
and Theorem 1, respectively.

Proposition 2 Under Assumptions 1 and 2, the VARMA-ABEKK model based on the vector RCA process (7) possesses
an ℑy,t-measurable second-order stationary solution {yt, εt, ht}, where ℑy,t is a σ-field generated by {yk : k ≤ t}. Define
an m2(s + r) × 1 vector as vt = (0, . . . , 0, ε̃′t −ω′, 0, . . . , 0)′, with the subvector consisting of the (m2s + 1)th to m2(s + 1)th
columns as ε̃t − ω, where ω = vec(Ω). The solution ht has the following causal representation:

ht = ω + C′
∞∑
j=1

 j∏
i=1

Ψt+1−i

 vt−i, a.s.,

where C = [Im2 Om×m(s−1)]′, which is an ms × m matrix, and:

Ψt =

(
Ψ11 Ψ

†
12,t

Om2r×m2 s Ψ22

)
, Ψ11 =

(
B†1 · · · B†s−1 B†s

Im2(s−1) Om2(s−1)×m2

)
,

Ψ12,t =

(
A†1t · · · A†rt

Om2(s−1)×m2r

)
, Ψ22 =

(
Om2×m2r

Im2(r−1) Om2(r−1)×m2

)
,

with B†i = (Bi ⊗ Bi), A†it = (Ai ⊗ Ai) + (Ci ⊗ Ci)(Nt+1−i ⊗ Nt+1−i), and Nt is the m × m diagonal matrix with the diagonal
elements of (1(ε1t < 0), . . . , 1(εmt < 0)).

Theorem 1 (i) Under Assumptions 1 and 2 for the VARMA-ABEKK model without assuming the vector RCA structure, if
ρ
[
E

(
Ψ⊗l

t

)]
< 1, with l being a strictly positive integer, then the 2lth moments of {yt, εt} are finite, where ρ(A) denotes the

largest modulus of the eigenvalues of a matrix A, Ψt is defined as in Proposition 2, and A⊗l is the Kronecker product of
the l matrices A.
(ii) Under Assumptions 1 and 2 for the VARMA-ABEKK model based on the vector RCA process (7), if ρ

[
E

(
Ψ⊗l

t

)]
< 1,

with l being a strictly positive integer, and if 2lth moments of ζ t are finite, then the 2lth moments of {yt, εt} are finite.

Given these structural properties, the statistical properties of the model are established in Theorems 2–4, with sufficient
multivariate log-moment conditions for consistency in Theorem 2, sufficient second-order moment conditions for consis-
tency in Theorem 3, and sufficient conditions for asymptotic normality in Theorem 4.

The QMLE of the parameters in the model (1)–(3) are obtained by maximizing, conditional on the true (yt, ht), the
following log-likelihood function:

LT (λ) =
1
T

T∑
t=1

lt(λ), (9)

lt(λ) = −
1
2

(
log |Ht | + εH−1

t ε
′
)
,

where lt(λ) takes the form of the Gaussian log-likelihood function, so that the QMLE is given as:

λ̂ = argmax
λ∈Λ

LT (λ).

Maximization of (9) leads to the following consistency result.

Theorem 2 Denote λ̂ as the QMLE of λ. Under Conditions C1–C6 in the Appendix, λ̂→p λ.

An alternative proof of consistency of the QMLE based on second moments is to verify the sufficient conditions of
Theorem 4.1.1 in Amemiya (1985), as demonstrated for the VARMA-GARCH model in Ling and McAleer (2003).
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Theorem 3 Denote λ̂ as the QMLE of λ0. Under Conditions D1–D6 in the Appendix, λ̂→p λ0.

Given the consistency of λ̂, the following theorem provides sufficient conditions for asymptotic normality.

Theorem 4 Let yt be generated by VARMA-ABEKK model, based on the vector RCA process (7). Given the consistency
of λ̂ for λ0, under Conditions E1–E3 in the Appendix, it can be shown that:

√
T

(
λ̂ − λ0

) d→N
(
0,Σ−1

0 ΩλΣ
−1
0

)
.

4. Multivariate Long Memory Asymmetric Conditional Volatility Models

In this section, we develop a new long memory ABEKK model as follows. Using the notation in Proposition 2, we can
write equation (4) as:

ht = w +
r∑

i=1

A†i ε̃t−i +

s∑
j=1

B†j ht− j = w + A†(L)ε̃t + B†(L)ht.

For simplicity, we assume Ci = O so that A†it = A†i . Upon rearranging the terms, it follows that:[
Im2 − A†(L) − B†(L)

]
ε̃t = w + [Im2 − B†(L)]νt,

where νt = ε̃t − ht, so that Eε,t−1(νt) = 0. Following Bollerslev (1986) and Engle and Kroner (1995), we can interpret
the volatility equation of the ABEKK model as a VARMA(max(r, s), r) model for ε̃t. As a multivariate extension of the
integrated GARCH model of Engle and Bollerslev (1986), we can set Im2 − A†(L)− B†(L) =

(
Im2 − A‡(L)

)
[(1 − L)Im2 ] to

obtain: (
Im2 − A‡t (L)

)
[(1 − L)Im2 ] ε̃t = w + [Im2 − B†(L)]νt.

By using the fractional differencing operator of a diagonal matrix, defined by:

D(L) = Dε(L) ⊗ Dε(L), Dε(L) =


(1 − L)d1 O

. . .

O (1 − L)dm

 ,
where |d j| < 1/4 ( j = 1, . . . ,m), we obtain a multivariate extension of the fractionally-integrated GARCH (FIGARCH)
model of Baillie et al. (1996) as: (

Im2 − A‡(L)
)

D(L)ε̃t = w + [Im2 − B†(L)]νt,

which has an alternative form:
ht = w +

[
Im −

{
Im2 − A‡(L)

}
D(L)

]
ε̃t + B†(L)ht,

to produce the long memory BEKK specification:

Ht =W +
[
εtε
′
t − Dε(L)εtε

′
t Dε(L)

]
+

r∑
i=1

Ai Dε(L)εt−iε
′
t−i Dε(L)A′i +

s∑
j=1

B jHt− jB′j.

By extending the above result, we can develop the asymmetric long memory BEKK (ALBEKK) model (1), (2) and:

Ht =W +
[
εtε
′
t − Dε(L)εtε

′
t Dε(L)

]
+

r∑
i=1

Ai Dε(L)εt−iε
′
t−i Dε(L)A′i

+

r∑
i=1

Ci Dε(L)ηt−iη
′
t−i Dε(L)C′i +

s∑
j=1

B jHt− jB′j. (10)

The following proposition shows the equivalence of the ALBEKK representation (10) and the infinite-order vector RCA
process.

Proposition 3 Consider the infinite-order vector RCA process defined by (7) for εt. The conditional variance of εt given
by (8) is also obtained from the ALBEKK model (10) if the roots of the characteristic polynomials, |Im2 −∑s

j=1(B j⊗B j)L j|,
lie outside the unit circle.

The proof is a straightforward extension of the proof of Proposition 1.
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To prove consistency and asymptotic normality of the QML estimator for the ALBEKK model, we need to derive a causal
representation, as in Proposition 2:

ht = ω + C′
∞∑

i=1

Ψ
†
t+1−ivt−i, a.s.,

where Ψ†t+1−i are defined by Dε(L) in addition to the matrices in Proposition 2. Derivation of the exact conditions for
consistency and asymptotic normality of ALBEKK will be considered in future work.

As an alternative approach for empirical analysis, we may extend the approximation of long-range dependence in volatility
processes by using the heterogeneous autoregressive (HAR) model of Corsi (2009) and heterogeneous ARCH model of
Müller et al. (1997). Assume t denotes time on a daily basis, and consider the mean of the residuals for the past h days as:

(εt−1)h = h−1(εt−1 + · · · + εt−h).

Then we can obtain the weekly (h = 5) and monthly (h = 22) means of the past εt as (εt−1)5 and (εt−1)22, so as to define(
ηt−1

)
5 and

(
ηt−1

)
22, to obtain the heterogeneous ABEKK (HABEKK) model as:

Ht =W + Adεt−1ε
′
t−1 A′d + Aw (εt−1)5 (εt−1)′5 A′w + Am (εt−1)22 (εt−1)′22 A′m

+ Cdηt−1η
′
t−1C′d + Cw

(
ηt−1

)
5
(
ηt−1

)′
5 C′w + Cm

(
ηt−1

)
22

(
ηt−1

)′
22 C′m

+ BHt−1B′.

Since the HABEKK model is a special case of ABEKK(22,1), we can apply Theorems 2–4 for the consistency and
asymptotic normality of the associated QML estimator.

5. Concluding Remarks

This paper considered alternative versions of the vector ARMA and asymmetric BEKK GARCH, or VARMA-ABEKK,
models as extensions of the widely-used univariate asymmetric (or threshold) GJR model of Glosten et al. (1992). We
showed the equivalence of the ABEKK specification and the infinite-order random coefficient autoregressive process, and
established the unique, strictly stationary and ergodic solution of the model, its causal expansion, and convenient sufficient
conditions for the existence of moments. We derived sufficient conditions for consistency and asymptotic normality of the
associated QML estimator. We also developed asymmetric long memory BEKK and heterogeneous BEKK models for
capturing long-range dependence in the volatility matrix, and discussed the asymptotic properties of the QML estimators.
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Appendix

A.1 Proof of Proposition 1

Under the assumptions of Proposition 1, the VRCA process (6) gives{
Eε,t−1

(
εtε
′
t
)}

j1, j2

=

Eε,t−1

 r∑
i=1

r∑
n=1

Ãitεt−iεt−n Ã′nt


 +

Eε,t−1

 r∑
i=1

r∑
n=1

C̃itεt−iεt−nC̃′nt


 + γ j1, j2

=

r∑
i=1

r∑
n=1

m∑
l1=1

m∑
l2=1

(
εt−iε

′
t−m

)
l1,l2 Eε,t−1

(
ã j1,l1,itãl2, j2,mt

)
+

r∑
i=1

r∑
n=1

m∑
l1=1

m∑
l2=1

(
εt−iε

′
t−m

)
l1,l2 Eε,t−1

(
c̃ j1,l1,itc̃l2, j2,mt

)
+ γ j1, j2

=

r∑
i=1

m∑
l1=1

m∑
l2=1

[(
εt−iε

′
t−i

)
l1,l2 a j1,l1,ial2, j2,i +

(
ηt−iη

′
t−i

)
l1,l2 c j1,l1,icl2, j2,i

]
+ γ j1, j2 ,

which is equivalent to the matrix given in Proposition 1(i).

It is straightforward to derive equation (8) from the result of (i). From the vector representation of the variance equation
of the ABEKK model (4), if the roots of

∣∣∣Im2 −∑s
j=1(B j ⊗ B j)L j

∣∣∣ lie outside the unit circle, we obtain

ht = γ +

Im2 −
s∑

j=1

(B j ⊗ B j)L j

−1 r∑
i=1

[
(Ai ⊗ Ai)Li + (Ci ⊗ Ci)Li(Nt ⊗ Nt)

]
ε̃t

= γ +
∞∑

i=1

[
(Ái ⊗ Ái) + (Ći ⊗ Ći)(Nt−i ⊗ Nt−i)

]
έt−i

where γ =
[
Im2 −∑s

j=1(B j ⊗ B j)
]−1

w. Therefore, we establish the equivalence between (8) and the variance equation of
ABEKK by setting γ = vec(Γ), Ái = A∗i , and Ći = C∗i . For r = s = 1, we obtain the condition straightforwardly by
substituting past Ht recursively in equation (3). �
A.2 Proof of Proposition 2

Let y†t = (y′t , . . . , y′t−p+1)′. It is straightforward to show that:

y†t = Φ
†y†t−1 +Θ

†ε†t =
∞∑

i=0

(
Φ†

)i
Θ†ε†t−i,

where ε†t = (ε′t , . . . , ε
′
t−q)′, and

Φ† =

(
Φ1 · · · Φp−1 Φp

Im(p−1) Om(p−1)×m

)
, Θ† =

(
I Θ1 · · · Θq

Om(p−1)×m(q+1)

)
.

For the vector RCA process (7), which has the conditional covariance (3), we obtain:

E(εt) = 0, V(εt) = Ω, Cov(εt1 , εt2 ) = O (t1 , t2),

where

vec(Ω) =

Im2 −
r∑

i=1

(Ai ⊗ Ai) −
r∑

i=1

(Ci ⊗ Ci)E(Nt ⊗ Nt) −
s∑

j=1

(B j ⊗ B j)

−1

vec(W).

Note that the diagonal elements of the matrix E(Nt ⊗Nt) are E(1(εl1,t < 0)) or E(1(εl1,t < 0)1(εl2,t < 0)) (l1, l2 = 1, . . . ,m),
with finite values. By Assumption 1, Ω exists. Since εt satisfies the conditions of the white noise process, y†t is second-
order stationary, as is yt.

Let xt = (h′t , . . . , h
′
t−s+1, ε̃

′
t , . . . , ε̃

′
t−r+1)′ − (ιs+r ⊗ω), where ω = vec(Ω), and ιl is l × 1 vector of ones. It is straightforward

to show that:

xt = Ψt xt−1 + vt = vt +

∞∑
j=1

 j∏
i=1

Ψt+1−i

 vt−i,
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where Ψt and vt are defined in Proposition 2. Note that ht = ω + C′xt. Since vt consists of zero and (ε̃t − ω), we
consider the variance of ε̃t. By Assumptions 1 and 2, and Proposition 1, we can show that E(ε̃t) = ω, and the conditional
covariance matrix of ε̃t is given by:

Eε,t−1
[
(ε̃t − ω) (ε̃t − ω)′

]
= Γζ̃ζ̃′ +

∞∑
i=1

(A∗i ⊗ A∗i ) (ε̃t−i − ω) (ε̃t−i − ω)′ (A∗i ⊗ A∗i )′ (11)

+

∞∑
i=1

[(
Γ ⊗ (A∗i εt−iε

′
t−i A

∗′
i )

)
+ (Im ⊗ A∗i )Eε,t−1

[
vec(εt−iζt

′)vec(εt−iζt
′)′

]
(A∗′i ⊗ Im)

+(A∗i ⊗ Im)Eε,t−1
[
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′] (Im ⊗ A∗′i ) +

(
(A∗i εt−iε

′
t−i A

∗′
i ) ⊗ Γ)]

+

∞∑
i=1

(C∗i Nt−i ⊗ Nt−iC∗i ) (ε̃t−i − ω) (ε̃t−i − ω)′ (C∗i Nt−i ⊗ C∗i Nt−i)′

+

∞∑
i=1

[(
Γ ⊗ (C∗i Nt−iεt−iε

′
t−iNt−iC∗′i )

)
+ (Im ⊗ C∗i Nt−i)Eε,t−1

[
vec(εt−iζt

′)vec(εt−iζt
′)′

]
(Nt−iC∗′i ⊗ Im)

+ (C∗i Nt−i ⊗ Im)Eε,t−1
[
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′] (Im ⊗ Nt−iC∗′i )
+

(
(C∗i Nt−iεt−iε

′
t−iNt−iC∗′i ) ⊗ Γ)] .

Note that Eε,t−1
(
vec(εt−iζt

′)vec(εt−iζt
′)′

)
and Eε,t−1

(
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′
)

consist of elements of (Γ⊗εt−iε
′
t−i). By equa-

tion (11), the unconditional covariance matrix of the second moments of εt is given by:

vec
(
E

[
(ε̃t − ω) (ε̃t − ω)′

])
=

Im4 −
∞∑

i=1

E
[(

Ã∗2it ⊗ Ã∗2it

)
+

(
C̃∗2it ⊗ C̃∗2it

)]−1

× vec

Γζ̃ζ̃′ + ∞∑
i=1

[(
Γ ⊗ (A∗iΩA∗′i )

)
+

(
(A∗iΩA∗′i ) ⊗ Γ) (12)

+ (Im ⊗ A∗i )E
[
vec(εt−iζt

′)vec(εt−iζt
′)′

]
(A∗′i ⊗ Im)

+(A∗i ⊗ Im)E
[
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′] (Im ⊗ A∗′i )

]
+

∞∑
i=1

[(
Γ ⊗ (C∗i E(NtΩNt)C∗′i )

)
+

(
(C∗i E(NtΩNt)C∗′i ) ⊗ Γ)

+ E
(
(Im ⊗ C∗i Nt)E

[
vec(εt−iζt

′)vec(εt−iζt
′)′

]
(NtC∗′i ⊗ Im)

)
+E

(
(C∗i Nt ⊗ Im)E

[
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′] (Im ⊗ NtC∗′i )

)]
.

By Assumption 2, the inverse on the right-hand side of (12) exists, and Γζ̃ζ̃′ is positive definite. By Assumption 1 and
Proposition 1, we can show that the matrices comprising the second and third infinite sums in (12) are positive definite, and
all elements take finite values. Note that, E

(
vec(εt−iζt

′)vec(εt−iζt
′)′

)
and E

(
vec(ζtε

′
t−i)vec(ζtε

′
t−i)
′
)

consist of elements
of (Γ⊗Ω). By Assumptions 1 and 2, and by Proposition 1, we can show that all the elements of E

[
(ε̃t − ω) (ε̃t − ω)′

]
are

finite, and the matrix is positive definite.

Corresponding to the above causal representation, define:

x́t = vt +

T∑
j=1

 j∏
i=1

Ψt+1−i

 vt−i,

and let el = (0, . . . , 0, 1, 0, . . . , 0)′, which is an m(r+ s)×1 vector, and 1 appears in the lth position. Denote the lth element
of

(∏ j
i=1Ψt+1−i

)
vt−i by st:

st = e′l

 j∏
i=1

Ψt+1−i

 vt−i.
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By Assumption 1, E|st | < ∞ if and only if E|e′lvt | < ∞, which we can show by applying Hölder’s inequality:

E|e′lvt | ≤
[
e′l E

(
vtv′t

)
el

]1/2
,

which we can show by the above result that E
(
ε̃tε̃
′
t
)

is positive definite, corresponding to the fourth moment of εt. By
Assumption 1, we can show E|st | → 0 as T → ∞. Therefore, each component of x́t convergences almost surely (a.s.) as
T → ∞, as does ht. Hence, there exists an ℑt-measurable second-order solution εt to (4).

To show uniqueness, let ε̆t be another ℑt-measurable second-order stationary solution to (4). Propositions 1 and 2 suffice
to apply Corollary 2.2.2 of Nicholls and Quinn (1982) to show the uniqueness of εt. Thus, x̆t = Ψt x̆t−1 + vt, where
x̆t = (h̆′t , . . . , h̆

′
t−s+1, ε̃

′
t , . . . , ε̃

′
t−r+1)′ − (ιs+r ⊗ ω). Let ut = xt − x̆t to obtain ut =

(∏ j
i=1Ψt+1−i

)
ut−i. By Assumption 1 and

Hölder’s inequality, we obtain:
E|e′lut | ≤

[
e′l E

(
utu′t

)
el

]1/2 → 0 as T → ∞,

since vec
(
E

(
utu′t

))
= E

[(∏ j
i=1Ψt+1−i

)
⊗

(∏ j
i=1Ψt+1−i

)]
vec

(
E

(
ut−iu′t−i

))
. Hence, the solution is unique. As ht = ω+C′xt,

it follows the unique causal representation is given by:

ht = ω + C′
∞∑
j=1

 j∏
i=1

Ψt+1−i

 vt−i, a.s. �

A.3 Proof of Theorem 1

For the first part, using the results on finite moments in Tweedie (1988), Lemma A.3 in Ling and McAleer (2003), and
Lemma 1 in McAleer et al. (2008), Hölder’s inequality implies that Eπ1 ||εt ||2 <

(
Eπ1 ||εt ||2l

)1/l
< ∞, where π1 are the

stationary distributions of {εt}. Furthermore, Eπ2 ||yt ||2 < ∞ by the proof of Proposition 2. Thus, {yt, εt} is a secondary
stationary solution of (4). Moreover, the solution {yt, εt} is unique and ergodic by Proposition 2. Therefore, {yt, εt}
satisfying model (4) has finite 2lth moment. For the second part, it is straightforward from the first part. �
A.4 Proof of Theorem 2

It is sufficient to verify the following conditions for consistency in Jeantheau (1998).

C1. Λ is compact.

C2. ∀λ ∈ Λ, the model admits a unique strictly stationary and ergodic solution yt.

C3. There exists a deterministic constant c > 0 such that, ∀t and ∀λ ∈ Λ, |Ht | > c.

C4. Assumption 3.

C5. yt and Ht are continuous functions of the parameter λ.

C6. Eλ0 | log(Ht)| < ∞, ∀λ0 ∈ Λ.

Under Proposition 2, (4) admits a unique strictly stationary and ergodic solution of yt (C2). Furthermore, the model is
identifiable under Assumption 3 (C4). Note that the determinant of the conditional covariance matrix is strictly positive,
by the structure of the BEKK representation (3) for all t. Hence, there exists a constant c > 0 such that |Eϵ,t−1(εtε

′
t)| > c

∀t and ∀λ ∈ Λ, where Λ is a compact subspace of Euclidean space (C1 and C3). By the square integrability of εt,
Eλ0 (vech(Ht,λ)) < ∞, which establishes C6 (for details, see Comte and Lieberman, 2003, p.67). Under Assumption 1, C6,
and the structure (4)–(5), yt and Ht are continuous functions of the parameter λ (C5). �
A.5 Proof of Theorem 3

It is sufficient to verify the following conditions in Theorem 4.1.1 in Amemiya (1985).

D1. Λ is compact.

D2. LT (λ) is continuous in λ ∈ Λ for yt and is a measurable function of yt ∀λ ∈ Λ.

D3. T−1LT (λ) converges to a non-stochastic function L(λ) in probability uniformly in λ ∈ Λ as T → ∞, and L(λ) attains
a unique global maximum at λ0.
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Condition D1 is equivalent to C1 and D2 follows from C5, so D1 and D2 are satisfied under Theorem 2. To verify D3,
it is convenient to introduce the unobserved process, {ε∗t ,H∗t } : t = 0,±1,±2, . . .}. Define the unobserved log-likelihood
function conditional on the infinite past observations:

L∗T (λ) =
1
T

T∑
t=1

l∗t (λ),

l∗t (λ) = −1
2

(
log |H∗t | + ε∗′t H∗−1

t ε
∗
t

)
.

Lemmas 4.2, 4.4 and 4.6 in Ling and McAleer (2003), and condition C3, imply that L(λ) exists for all λ ∈ Λ, supλ∈Λ |LT ∗
(λ) − L(λ)| = op(1), L(λ) has a unique maximum at λ0, and |LT ∗ (λ) − LT (λ)| = op(1). Thus,

sup
λ∈Λ
|LT (λ) − L(λ)| ≤ sup

λ∈Λ
|L∗T (λ) − L(λ)| + sup

λ∈Λ
|L∗T (λ) − LT (λ)| = op(1).

Therefore, LT (λ)→p L(λ) uniformly in Λ (D3). �
A.6 Proof of Theorem 4

Given the consistency of λ̂ for λ0 in Theorems 2 and 3, it is sufficient to verify the following conditions of Theorem 4.1.3
in Amemiya (1985):

E1. ∂2LT/∂λ∂λ exists and is continuous in an open, convex neighborhood of λ0.

E2. T−1(∂2LT /∂λ∂λ
′)||λT converges to a finite nonsingular matrix Σ0 = E

[
T−1(∂2LT/∂λ∂λ

′)||λT

]
in probability for any

sequence λT , such that λ̂→p λ0.

E3. T−1/2(∂LT/∂λ)||λ0 →d N(0,Ωλ), where Ωλ = lim E
[
T−1(∂LT /∂λ)||λ0 × (∂LT /∂λ

′)||λ0

]
.

By Theorems 2 and 3, λ̂ is consistent for λ0. It follows from the conditions in Theorem 2 that ∂2LT /∂λ∂λ exists and is
continuous in Λ. Lemma 5.4 in Ling and McAleer (2003) can be used to verify that conditions E1 and E2 hold. Under the
existence of fourth moments of ζ t in Assumption 2, using the central limit theorem of Stout (1974), and the Cramér-Wold
device, it follows that

T−1/2
T∑

t=1

∂lt
∂λ

d→N(0,Ωλ),

where Ωλ is positive definite (E3). �
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