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Abstract  

Survival analysis techniques are used to study the amount of time between entry into observation and a subsequent event 

in estimating insurance attrition. Retention has always been a worldwide concern. A study is carried out on the profile of 

the policyholder and policies that produces better persistency based on one of the Sri Lanka experience using the 

nonparametric analysis (e.g. Kaplan-Meier estimator and life table analysis) and Cox regression model available through 

SPSS Statistics 20. This paper uses the survival model to evaluate the impact of covariates on the survival curves over a 

period of time. Newly opened life policies were considered during the period of 1st of January 2013 and 30
th

 of June 2014 

and our study period was end at 30
th

 of June 2016. Survival analysis techniques can take into account for dealing with 

time-dependent variables and can help researchers to understand how insurance attrition impacts to the economic 

environment. Instead, the survival model provides much more information to the management and the people who deal 

with policies than what the regression model can offer.  
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1. Introduction 

Survival analysis pertains to a statistical approach designed to allow the study of time between entry into observation and 

a subsequent event and is also named as time to event analysis. Kaplan and Meier (1958) are pioneers of the study of 

survival analysis and proposed to estimate survival functions from lifetime analysis and Kaplan-Meier curves using a 

series of horizontal steps of declining magnitude. Cox introduced the proportional hazard model in 1972, which describes 

the statistical relationships between a set of covariates and the survival function. Cox’s proportional hazard model 

significantly improves the applicability of survival analysis, hence it is considered as a milestone in survival techniques. 

Survival analysis plays an important role in biomedical sciences where the event of interest was death and the dependent 

variable of study is often time to death. However, these techniques are also widely used in the engineering, social and 

economic sciences, and events or outcomes are defined by time to event data (Hosmer and Lemeshow (1999)). Examples 

include time until onset of disease, time until stock market crash, time until equipment failure, Time until tumor 

recurrence, time until cardiovascular death after some treatment intervention, time until designation of an employee and 

so on. Survival analysis techniques allow for us to start without all experimental units enrolled into study and to end 

before all experimental units have experienced an event. This is extremely important because even in the most well 

developed studies, there will be subjects who decide to quit participating, who move too far away from follow up, who 

have a lapsation (Bull and Spiegelhalter (1997)) from some unrelated event, or will simply not have an event before the 

end of the study period. Instead, considering the censored observations (Efron (1977) and Cnaan et al (1989)) is must 

because it enables researchers to analyze incomplete data due to delayed entry or withdrawal from the study. That means 

censored observations are observations which have the incomplete survival time (Lagakos (1979)). This is most important 

in permitting each experimental unit to contribute all of the possible information to the model for the time measured which 

allows the researcher to observe the unit. In this paper we focus on insurance retention and attrition (Wu and Lin (2009)). 

The event of interest is the policy attrition (either through end-term non-renewal or mid-term cancellation).  

2. Survival Analysis and the Proportional Hazard Model  

In survival analysis, time is always a continuous random variable and then the probability of an event at a single point of 

a continuous distribution is zero. It is important to define the probability of the events over a distribution by graphing the 

distribution of event times. The reader should start with the same fundamental tools of survival analysis, such as the more 

detailed description of the probability density function (pdf), the cumulative distribution function (cdf), the hazard 
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function, and the survival function, which can be found in any intermediate level statistical textbooks and it is important to 

note that one-one relationship that these four functions possess. Instead, the most important concepts in survival analysis 

are survival and hazard functions. To ensure that, further readings will be assist you with better understand in survival 

analysis techniques. 

Suppose that the continuous probability distribution of a random variable, such as time, in survival analysis for a 

particular subject in study period is described by a cumulative distribution function. The cumulative distribution function 

(cdf) of a random variable, denoted F (t), is defined by  

F(t) = Prob(T < t) 

The probability density function (pdf) or event density is also very useful in describing the continuous probability 

distribution of a random variable. The pdf of a random variable T, denoted f (t), is defined by  

dF(t) f (t) =dt 

and every continuous random variable has its own density function. The density function represents the rate of attrition 

per unit of time. Let T denote the time until attrition occurs.  

Then the survival function, S(t) takes on the following form:  

S(t) = Prob(T ≥ t) , where t ≥0 

=1- F(t) 

The survival function is the probability that the attrition occurs later than some specified value t that we choose. Because 

S(t) has the probability, ranges from 0 to 1 and then it is defined as S(0) = 1 and as t approaches ∞, S(t) approaches 0. The 

hazard function h(t) is the ratio of the density function to the survival ( )()( tStf ). In actuarial science, the S(t) is the 

hazard function is often called the force of mortality. In this paper, we are considering policy attrition as an event of 

interest. Therefore, the hazard function gives a measure of the tendency of attrition: the greater the value of the hazard 

function, the greater the probability of attrition. Instead, because hazard function attempts to quantify the instantaneous 

risk that an event will take place at time t given that a particular subject survived to time t, it seems to be more intuitive to 

use the hazard function than the pdf in survival analysis. Exponential and Weibull distributions are the most popular 

survival distributions. The survival and density functions associated with the exponential distribution are S(t) = e
- λt

 and f (t) 

= λe
- λt

, respectively. The hazard function for the exponential distribution is constant, h(t) = λ. The survival and density 

functions associated with the Weibull distribution are 𝑒−𝛽𝑡𝛼
 and 𝑓(𝑡) = 𝛼𝛽𝛼−1𝑒−𝛽𝑡𝛼

respectively. The hazard function 

of the Weibull distribution is h(t) = 𝛼𝛽𝛼−1 
. When α > 1, hazard rate is increasing over time. When α < 1, hazard rate is 

decreasing over time.  

When α = 0, the hazard rate is constant over time.  

In survival analysis, time to event for real applications is often not known because the event of interest may not occur 

before the end of study. In other words, the study is unable to wait for an event from a subject before the considered study 

period ends, and then this is called “right censoring” (Klein et al (1997)). In other words, a right censored subject's time 

terminates before the outcome of interest is observed. For example, in the context of analyzing the insurance policy 

attrition, if a policy is still active with an insurance company when the study ends, the data is right-censored. According to 

right censoring, time duration is only partially known above a given value. Survival analysis provides powerful tools 

through SPSS 20 to utilize this partial information without introducing statistical bias.  

Kaplan-Meier Method  

Kaplan-Meier method or one-sample nonparametric method (Kaplan et al (1958)) is used to estimate survival functions 

from lifetime data using a series of horizontal steps of declining magnitude. Because Kaplan-Meier method does not 

require any mathematical assumptions in obtaining hazard function or proportional hazard this is most interesting 

technique in comparing survival curves. In the context of Kaplan-Meier method, covariates within variables are not most 

important and it mainly deals with categorical predictors or grouped continuous variables. For the better understanding of 

failure events, the survival function is plotted as a stepwise reduction plot. In here, continuous variables are unable to 

consider directly, hence time-dependent variables will not be allowed. Because Kaplan Meier method treats censored data 

well, particularly right-censoring data, even today it is very important in survival analysis although these limitations exist.  

Cox Proportional Hazards Model  

In survival analysis, one model that is able to apply to determine which combination of potential explanatory variables 

affects the shape of the hazard function and to obtain an estimate of the hazard function for a particular study is the 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 6, No. 6; 2017 

87 

proportional hazard model proposed by Cox (1972), which is also known as Cox regression model. There are no 

assumptions with Cox model in the nature or shape of the hazard function. The model can also take advantage of 

explanatory covariates on survival times. Cox regression model (i.e. the proportional hazards model) is most widely used 

as method for the analysis of censored data (Van Den Poel et al (2004)). The model equation is usually written as  

ℎ(𝑡|𝑥𝑡) = ℎ0(𝑡)𝑒𝛽′ 𝑥𝑡                                       (2.1) 

Where ho(t) is called the baseline hazard; it is called the hazard function when there are no covariate impacts. Where xt = 

(x1t ,x2t , x3t ,....,xkt ), 𝛽 = (𝛽 1 , 𝛽 2 ,..., 𝛽 k ), where k is the total number of covariates, 𝛽 j is the constant proportional effect 

of x j . Dividing both sides of Equation (2.1) by h0(t) and then taking the natural logarithm of both sides, we can obtain a 

linear transformation of the model:  

𝑙𝑜𝑔 {
ℎ(𝑡 | 𝑥𝑡 )

ℎ0 (𝑡)
} = 𝛽’ xt                                     (2.2) 

To estimate the 𝛽, Cox (1972, 1975) introduced the partial likelihood function. The statistical estimation of β has been 

studied expansively by Helsen and Schmittlein and has been obtained the semi-parametric partial maximum likelihood 

method as one of the popular numerical solutions. Suppose that a particular policy holder (say A) leaves the insurer at 

duration time t and then a number of other policies are at risk at t. Of all those policies at risk, policy A is the one that 

actually experienced the event (i.e. attrition) at t. Then the partial likelihood happened to the policy holder A within this 

duration time of t is given by the following equation:  

𝐿(𝛽) =
ℎ𝑖(𝑡)

∑ ℎ𝑗(𝑡)𝑗𝜖𝑅𝑖

=
𝑒𝛽′𝑥𝑖,𝑡

∑ 𝑒𝛽′𝑥𝑗,𝑡
𝑗𝜖𝑅𝑖

 

where Rt represents the risk set at t . The partial likelihood estimate of β can be obtained by maximizing this product; 

∏ [𝑒𝛽′𝑥𝑖,𝑡

∑ 𝑒𝛽′𝑥𝑗,𝑡
𝑗𝜖𝑅𝑖

⁄ ]𝑛
𝑖=1  over observed n distinct ordered survival times.  

3. Data Analysis  

A particular insurance company wishes to evaluate survival time of its policies busing a follow-up study. Subjects were 

enrolled in the study from January 1, 2013 to June 30, 2014. The study period ended on June 30, 2016. Since the subject 

entered the study at different times over a one and half year period, the maximum possible follow-up time is different for 

each study participant. Policies A and C entered into the study at March 5, 2013 and June 10, 2013. Policies B and D 

entered into the study at February 01, 2014 and January 01, 2013. Policy A did not renew for the next term and policy C 

cancelled the term as shown in Figure 1. Policies B and D were inforce at the end of the study. There were a total of 158 

policies at the beginning of the study. When we graph the estimator for survivorship function it clearly status that how to 

represent the actual values. For example, consider the first interval [0,3), where the value of the estimated survivorship 

function is reported in Table 1 as 0.68. Other intervals would be represented in a similar manner.  

 

 

 

 

 

  

 

 

 

Figure 1. Line plot in calendar time for four subjects in the study 
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Table 1. Life table analysis for the view of retention and attrition  

 

Interval  

Start  

Time  

Number  

Entering  

Interval  

Number  

Withdrawing  

during Interval  

Number  

of Terminal  

Events  

Cumulative  

Proportion  

Surviving at  

End of Interval  

[0,3)  

[3,6) 

[6,9) 

[9,12) 

[12,15) 

[15,18) 

[18,21) 

[21,24) 

[24,27) 

[27,30) 

[30,33) 

[33,36) 

[36,39) 

[39,42) 

158  

107 

91 

84 

78 

72 

64 

59 

57 

31 

22 

14 

11 

3 

0  

0 

0 

0 

0 

0 

0 

0 

20 

7 

5 

3 

8 

3 

51  

16 

7 

6 

6 

8 

5 

2 

6 

2 

3 

0 

0 

0 

.68  

.58 

.53 

.49 

.46 

.41 

.37 

.36 

.31 

.29 

.25 

.25 

.25 

.25 

 

To detect the attrition and retention patterns by individual subjects, we check the Kaplan Meier estimate for all subjects in 

the study as in Figure 2. It noticeably represents the censored observations by “cross” sign with the time period. The 

cumulative survival probabilities are derived by assuming other variables are at their average values. Figure 3 represents 

the baseline survival curves for male and female policy holders in the run-time. In Figures 2, the green lines are randomly 

above the blue lines, which demonstrate that male policy holders are more likely to renew their insurance policies than the 

female policy holders. But in advance, Wilcoxon test is used to compare survival distribution among groups, with the test 

statistic based on differences in group mean scores. Table 2 shows the significance value of the test is greater than 0.05 

and then we conclude that the survival curves are similar across the gender groups.  

 

Figure 2. Estimated survivorship function defined by gender 
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Table 2. Use Wilcoxon test to compare survival distributions of gender 

 

Wilcoxon (Gehan)  

Statistic  

Degrees of freedom  p-value  

.002  1  .967  

Table 3 provides overall comparison tests of the equality of survival times across gender groups. Since the significance 

values of the tests are all greater than 0.05, there is no statistically significant difference between two gender groups in 

survival time. As in Table 4, there is a lot of overlap in the confidence intervals; it is unlikely that there is much difference 

in the "average" survival times. If confidence intervals do not overlap between levels, differences in effect on time to 

event can be inferred.  

Table 3. Test statistics, degrees of freedom and p-values for the equality of the survivorship functions among the two 

gender groups in the study.  

 

Statistic  Chi-Square Degrees of freedom p-value 

Log Rank (Mantel-Cox) .004 1 .952 

Breslow (Generalized  

Wilcoxon) 
.002 1 .967 

Tarone-Ware  .006 1 .938 

 

Table 4. Estimator, standard error and 95% confidence interval of Means and Medians for Survival Time  

 

Gender  Mean Median 

Estimate Std. Error 95% Confidence 

Interval 

Estimate Std. Error 95% Confidence 

Interval 

Lower 

Bound 

Upper Bound Lower 

Bound 

Upper 

Bound 

male 17.060 1.907 13.323 20.797 12.000 3.765 4.621 19.379 

female 16.675 1.729 13.286 20.065 10.000 3.751 2.647 17.353 

overall 16.817 1.280 14.308 19.326 11.000 2.957 5.204 16.796 

 

The nature of the Cox proportional hazard model allows us to approximate the coefficients relate to the covariates in a 

study. Table 8 displays the coefficients of four selected variables from survival analysis: age, gender, policy type and 

mode of payment. It reports the coefficients of age and gender is consistent with insurance attrition since the significance 

values are less than p-value (0.05). But, the value of the coefficient of age is very small. Other two variables; mode of 

payment and policy type are not consistent as the significance values are higher than 0.05. The sign of the coefficient for 

age is negative, implying that older is more likely to stay with an insurer. The sign of the coefficient for gender is positive, 

implying that it will drive up the probability of attrition.  
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Table 5. Parameter estimates using survival analysis  

 

Variable name B (estimated coefficient) SE Wald df p-value 

Gender 

Age 

Type of policy 

Mode of payment 

.533 

-.010 

.019 

.269 

.203 

.001 

.027 

.391 

6.860 

101.162 

.470 

.471 

1 

1 

1 

1 

.009 

.000 

.493 

.493 

 

Table 6. Adjusted parameter estimates using survival analysis 

Variable name B (estimated coefficient) SE Wald df p-value 

Gender 

Age 

.564 

-010 

.202 

.001 

7.848 

103.759 

1 

1 

.005 

.000 

 

4. Conclusion 

Actually, survival analysis provides a new perspective on the persistency problem beyond the information about the 

duration of holding a policy. Insurance attrition minimizes the size of sales or the top line of an insurance company. 

Therefore, it should be carefully scrutinized to develop the methods for retention policies. Instead the profit gaining from 

policy holders, retention tendency of the customer should be understand deeply to estimate the customer accurately. In 

this paper, survival analysis has been applied as an alternative approach to the other regressions to analyze insurance 

attrition using the tools available through SPSS Statistics 20. Survival analysis uses the continuous time as the response 

variable and is responsible for answering not only whether but also when a policy will leave. In the expiration month, a 

significant number of policies have no renewal process and this scenario will happen in further months. Survival analysis 

is able to model the cancellation and nonrenewal sequentially and capture this seasonality of attrition well. By analyzing 

the life table and the survivorship probability plot, more information can be gathered to policyholder, product and agent 

that provide better persistency for the insurance industry. Cox proportional hazard model focuses upon the variables with 

higher impact of creating a validate model because of time-dependent macroeconomic variables affect to insurance 

retention and attrition. Thus, agents are able to identify which variables related to the better persistency of policies within 

their units and management as well.  
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