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Abstract

A special customer must complete service from two servers, each with an M/M/1 queueing system. It is assumed that
the two queueing systems have initial numbers of customers a and b at the instant when the special customer arrives,
and subsequent interarrival times and service times are independent. We find the expected total time (ETT) for the
special customer to complete service. We show that even if the interarrival and service time parameters of two queues are
identical, there exist examples (specific values of the parameters and initial lengths a and b) for which the special customer
surprisingly has a lower expected total time to completion by joining the longer queue first rather than the shorter one.
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1. Introduction

There is a great deal of literature on queues in series, with major results by Jackson (1957). Issues of the ordering of the
queues appear in works such as Weber (1979, Whitt (1985), Anantharam (1987). Our model assumptions and goals differ
from these articles.

We begin with assumptions and the goal of this work. A special customer must receive service from two independent
M/M/1 (Markovian) queueing systems with the same arrival and service rates λ and µ. The special customer arrives at
time 0, at which time queueing system 1 has a customers (including the customer in service) and queueing system 2 has b
customers. The special customer must get service from both servers, and this is not the case for any other customer. Given
a choice, which queue should the special customer join first, in order to minimize its expected total system time (sum
of two system times)? Customers are served in a FCFS order for each server. No reneging (switching lines) is allowed.
Letting S 1 and S 2 represent the servers, the special customer must choose between:

→ ∗ ∗ ∗ ∗S 1→ ???????S 2 or
→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ S 2→ ????S 1

Here “*” represents a non-special customer at time 0 (and the numbers a and b are known to the special customer). “!”
represents a non-special customer in the second system after the first queueing system is completed. The number of
customers in the second system after the first queueing system is completed is a random variable.

The concept of a special customer as discussed here is quite common. For example, a restaurant reviewer might need to
go to two restaurants consecutively whereas other customers only go to one. Similarly an inspector might have to inspect
two facilities and may have to wait in line like the other customers. A person may be given the task of filling out forms
for himself/herself and a friend, so must go to two stations rather than one.

Our intuition suggests that in order to have the lowest expected total system time for a pair of queues of the type described,
the special customer should join the shorter queue first, and upon completion, the customer should then join the other
queue (which may have its length changed during the time that the special customer was in the shorter queueing system).
The reason for this intuition is that if the special customer joins the shorter queue first, then during the system time for the
short queue, the expected length of the long queue might drop, resulting in a lowering of total system time for the special
customer. On the other hand, if the special customer joins the long queue first, then during the system time for the long
queue, the expected length of the short queue might increase, resulting in an increase in total system time for the special
customer. This intuition is NOT completely correct and should be examined more closely. When the question was posed
to a group of expert queueing theorists, the consensus conjecture was that the “longer queue first” might work for unusual
interarrival and service distributions, but not for standard distributions like the exponential.

In section 2, we consider the intuition more closely. In section 3, we add some mathematical analysis. In section 4, we
give some graphical results. Section 5 contains some numerical results. In section 6, we make some concluding remarks.
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2. Detailed Discussion of Intuition

We consider three cases.

Case 1: At time 0, queue 1 length is close to zero and and queue 2 is longer than average.
If queue 1 is selected first, then, during the special customer’s time in system 1 (including the special customer and the
customer in service), the expected length of queue 2 should get shorter.
If queue 2 is selected first, then, during the special customer’s system time in system 2 (which could be quite long) , the
expected length of queue 1 should increase.
Thus the shorter queue should be chosen first.

Case 2: At time 0, queue 1 and queue 2 lengths are both less than average, with queue 1 less than queue 2, and queue 1
length close to zero.
If queue 1 is selected first, then, during the special customer’s queue 1 system time, the expected length of queue 2 might
increase or decrease (but only slightly).
If queue 2 is selected first, then, during the special customer’s queue 2 system time, the expected length of queue 1 should
get noticeably longer.
Thus the shorter queue should be chosen first (again).

Case 3: Both queue 1 and queue 2 are longer than average, with queue 1 less than queue 2.
If queue 1 is selected first, then, during the special customer’s queue 1 system time, the expected length of queue 2 should
get shorter (less time, higher rate).
If queue 2 is selected first, then, during the special customer’s queue 2 system time, the expected length of queue 1 should
get shorter (more time, lower rate).
In Case 3, because of the time and rates move in opposite directions, the choice of which queue to select first is not clear.

Thus, with our more detailed analysis, our intuition suggests possible situations in which the special customer might
achieve a shorter expected total time to completion by joining the longer queue first. To find such situations, we should
seek values that belong to case 3 and where the change in the rates of drop of the queue length are similar for both queues
during the first queue’s system time. In the next section, we give a more rigorous analysis for the expected total time to
completion.

3. Analysis

We assume two M/M/1 queueing systems acting independently of each other, reach with exponential interarrival times
(arrival rate λ) and exponential service times (rate µ). We use the following notation.
Li(t) = queue length (including customer in service, at time t, beginning with i customers at time 0.
pi j(t) = transient probability of an M/M/1 queueing system having j customers at time t, given i customers at time 0.
ELi(t) = the expected number of customers at time t if there are i customers at time 0. Tn(t) = time to complete service
on n customers.
fn(t) = pdf of the time to service n customers which is Erlang(n).

fn(t) =
µntn−1

(n − 1)!
e−µt

Theorem 3.1 A special customer must complete service in either order from two servers, each with its own queue. The
two queues are independent M/M/1 with initial lengths a and b respectively and parameters λ and µ. The expected total
time (ETTab)to complete both queues (with queue “a” first), is

E(TTab) =
a + 2
µ
+

∫ ∞
0

fa+1(t)
1
µ

ELb(t)dt.

Proof.

E(TTab) =
a + 1
µ
+

∫ ∞
0

fa+1(t)
∞∑

n=0

pb,n(t)
n + 1
µ

dt

=
a + 2
µ
+

∫ ∞
0

fa+1(t)
1
µ

ELb(t)dt.

In order to compute ELb(t) in Theorem 3.1, we use two results presented in van de Coevering (1994) for transient proba-
bilities and expected values for an M/M/1 queue.
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Figure 1. Expected length ELi(t), i = 0, 1, 2, 3, 4, 5, 6, 7, λ = 3, µ = 4, 0 < t < 10

Theorem 3.2 For an M/M/1 queue,

pi j(t) =
2
π
ρ( j−i)/2

∫ π
0

e−µtγ(y)

γ(y)
ai(y)a j(y) dy +

(1 − ρ)ρ j ρ < 1
0 ρ ≥ 1,

where
γ(y) = 1 + ρ − 2

√
ρ cos(y) and ak(y) = sin(ky) − √ρ sin((k + 1)y).

Theorem 3.3 (van de Coevering) For an M/M/1 queueing system, let Ei(t) be the expected number of customers at time t
if there are i customers at time 0. Assume ρ < 1. Then

ELi(t) =
2
π
ρ(1−i)/2

∫ π
0

e−µtγ(y)

γ(y)2 ai(y) sin(y) dy + ρ/(1 − ρ)

Van de Coevering (1995) credits the statements of theorems 3.2 and 3.3 to work of Takacs (1962) and Morse (1955, 1958).
These two theorems allow us to create a graph of ELi(t) for various initial values of i. Graphs of this type appear in Abate
and Whitt (1988) and in Yu, He and Zhang (2006).

4. Graphical Results

Consider Figure 1 which shows ELi(t) for λ = 3, µ = 4, 0 ≤ t ≤ 10, i = 0, 1, . . . , 7. This diagram is very interesting. All
of the curves have the same negative slope at t = 0. The expected number of customers in the system in steady state is

given by E(L) =
λ

µ − λ , and equals 3 for λ = 3, µ = 4.

We observe that for lengths less than the steady state expected number, the curves all decrease before increasing to the
steady state value. Part of this observation is given in the following result.

Property 4.1 For an M/M/1 queue with interarrival rate λ and service rate µ,

dELi(t)
dt

∣∣∣∣∣
t=0
= (λ − µ) for i = 1, 2, . . . , .

Note that for large initial values i at time 0, the curve ELi(t) looks like a straight line with slope µ − λ before bending as t
gets larger.
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Figure 2. E(L) vs Expected Total Time ETTi, λ = 3, µ = 4, Red(dashes) : a = 3, b = 7; Blue(dots) : a = 7, b = 3.

In Figure 2, the parameters are λ = 3, µ = 4, with a = 3, b = 7, and the steady state expected length of the queueing system

is EL =
λ

µ − λ = 3. The slope of both curves EL3(t) and EL7(t) at t = 0 is λ − µ = −1. If the special customer chooses

to join the queueing system with 3 customers, we can follow what happens on red (dashed) path in Diagram 2. When the
special customer joins the 3 customers, there are then 4 customers to be served. The mean service rate is 4 customers so
the mean time to complete service on the 4 customers (at rate µ = 4) is 1 time unit. At time 1 (approximately), the special
customer joins the other queue. The other queue had 7 customers at time t = 0, but by time t = 1, the expected number has
declined as shown on the graph to approximately 6. Adding the special customer to the 6 customers moves the red path up
to approximately 7. The mean time to service these is approximately 7/4, giving a completion time of 1+7/4=2.75. The
expression in Theorem 2.1 gives an expected Total Time which is slightly different from this value because it is averaged
over all possible cases.

In Figure 2, we also see what happens to the special customer if it joins the long queue first. We follow the blue (dotted)
path in this case. When the special customer joins the 7 customers, there are then 8 customers to be served. The mean
service rate is 4 customers so the mean time to complete service on the 8 customers (at rate µ = 4) is 2 time units. At
time 2 (approximately), the special customer joins the other queue. The other queue had 3 customers at time t = 0, but by
time t = 1, the expected number has changed but not by much since the curve EL3(t) curve drops and then increases to
about 2.6. in the 2 time units. Adding the special customer moves the blue path up to approximately 3.6. The mean time
to service these is approximately 3.6/4, giving a completion time of 2+3.6/4=2.9.

Thus in this example, the result is what we intuitively expect. Joining the shorter queue first leads to a lower expected
total time to completion.

In Figure 2, the parameters are λ = 3, µ = 4, with a = 3, b = 7, and the steady state expected length of the queueing system

is EL =
λ

µ − λ = 3. The slope of both curves EL3(t) and EL7(t) at t = 0 is λ − µ = −1. If the special customer chooses

to join the queueing system with 3 customers, we can follow what happens on red (dashed) path in Diagram 2. When the
special customer joins the 3 customers, there are then 4 customers to be served. The mean service rate is 4 customers so
the mean time to complete service on the 4 customers (at rate µ = 4) is 1 time unit. At time 1 (approximately), the special
customer joins the other queue. The other queue had 7 customers at time t = 0, but by time t = 1, the expected number has
declined as shown on the graph to approximately 6. Adding the special customer to the 6 customers moves the red path up
to approximately 7. The mean time to service these is approximately 7/4, giving a completion time of 1+7/4=2.75. The
expression in Theorem 2.1 gives an expected Total Time which is slightly different from this value because it is averaged
over all possible cases.
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Figure 3. E(L)vs Expected Total Time ETTi, λ = 3, µ = 4, Red(dashes) : a = 500, b = 1000; Blue(dots) : a = 1000, b =
500

In Figure 2, we also see what happens to the special customer if it joins the long queue first. We follow the blue (dotted)
path in this case. When the special customer joins the 7 customers, there are then 8 customers to be served. The mean
service rate is 4 customers so the mean time to complete service on the 8 customers (at rate µ = 4) is 2 time units. At
time 2 (approximately), the special customer joins the other queue. The other queue had 3 customers at time t = 0, but by
time t = 1, the expected number has changed but not by much since the curve EL3(t) curve drops and then increases to
about 2.6. in the 2 time units. Adding the special customer moves the blue path up to approximately 3.6. The mean time
to service these is approximately 3.6/4, giving a completion time of 2+3.6/4=2.9.

Thus in this example, the result is what we intuitively expect. Joining the shorter queue first leads to a lower expected
total time to completion.

Next we present an example for which it is advantageous to join the longer queue. In Figure 3, the parameters are λ = 3,

µ = 4, with a = 500, b = 1000, and the steady state expected length of the queueing system is EL =
λ

µ − λ = 3. The slope

of both curves EL500(t) and EL1000(t) at t = 0 is λ−µ = 3−4 = −1, and this stays approximately true for a long time. If the
special customer chooses to join the queueing system with 500 customers, we can follow what happens on red (dashed)
path in Figure 3. When the special customer joins the 500 customers, there are then 501 customers to be served. The mean
service rate is 4 customers so the mean time to complete service on the 501 customers (at rate µ = 4) is 501/4 time units. At
time 501/4 (approximately), the special customer joins the other queue. The other queue had 1000 customers at time t = 0,
but by time t = 501/4, the expected number has declined as shown on the graph to approximately 1000-501/4=874.75.
Adding the special customer to 874.75 moves the red path up to approximately 875.75. The mean time to service these is
approximately 875.75/4, giving an expected total time to completion of approximately 501/4+875.75/4=344.1875. The
expression in Theorem 2.1 would give an expected Total Time slightly different from this value because it is correctly
averaged over all possible variables.

In Figure 3, we also see what happens to the special customer if it joins the long queue first. We follow the blue (dotted)
path in this case. When the special customer joins the 1000 customers, there are then 1001 customers to be served.
The mean service rate is 4 customers per time unit so the mean time to complete service on the 1001 customers (at rate
µ = 4) is 1001/4 = 250.25 time units. At time 1001/4 (approximately), the special customer joins the other queue.
The other queue had 500 customers at time t = 0, but by time t = 250.25, the expected number has changed to an
average of 500 − 250.25 = 249.75 customers. Adding the special customer moves the blue path up to approximately
250.75. The mean time to service these is approximately 250.75/4, giving an expected total time completion time of
1001/4 + 250.75/4 = 312.9375 time units.
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Thus in this example, the result is not what we intuitively expect. Joining the shorter queue first leads to a higher expected
total time to completion.

5. Numerical Results

The figures in the previous section convincingly show that sometimes the special customer should choose the shorter
queue first and sometimes the customer should join the longer queue first. However, the correct version of the expected
total time to completion is given in Theorem 3.1, whereas the diagrams are only approximate.

We now present some results using Theorem 3.1 and comment on the results. The exact expected value which corresponds
to Figure 2 follows.
λ = 3; µ = 4; a = 3; b = 7; ETT = 2.7607
λ = 3; µ = 4; a = 7; b = 3; ETT = 2.8560

We note that to minimize ETT , the special customer should join the shorter queue first and the expected value of the total
time to completion is 2.7607.

The result corresponding to Figure 3 is a fairly extreme case. The expected number of customers in the system is 3, yet
we are working with a = 500 and b = 1000 customers. Such an unusual situation might occur if there is a one time
major input into an otherwise pair of stable M/M/1 queues (perhaps an unexpected bus load of customers arrives from
out-of-town, temporarily swamping the two queues).

The reason for the success of the longer queue first strategy is that both ELi curves are decreasing in an approximately
parallel way.

In order to have a more reasonable set of values for a and b, yet keeping the reason for the success of the longer queue
first strategy , we take parameters λ = 3, µ = 4. We look at the two cases a = 10, b = 12 and a = 12; b = 10. The results
follow:
λ = 3; µ = 4; a = 10; b = 12; ETT = 5.3301
λ = 3; µ = 4; a = 12; b = 10; ETT = 5.2599

This shows that sometimes under reasonable circumstances, a customer should choose the longer queue first. We can even
make a and b lower and still have the special customer gain by joining the longer queue (although the gain is very small).
λ = 3; µ = 4; a = 5; b = 9; ETT = 3.6354
λ = 3; µ = 4; a = 9; b = 5; ETT = 3.6254

Both of the above examples fit into Case 3 of Section 2 (both queueing system lengths a and b are longer than the steady
state average). We surmise that if the steady state expected length EL is large, then the for i near EL, the curve ELi has an
intital decrease for a relatively long time before increasing again. Thus it might be possible to find examples belonging to
Case 1 and Case 2 where it is also better to join the longer queue first. In order to achieve this, we seek parameters such

that EL is fairly large but µ − λ is small. We try λ = 9, µ = 10. Then EL =
λ

µ − λ = 9 and µ − λ = 1. We then choose

a = 8, b = 9 and the reverse version a = 9, b = 8. This example is on the border of Case 1 and Case 2. The results are:
λ = 9; µ = 10; a = 8; b = 9; ETT = 1.8181
λ = 9; µ = 10; a = 9; b = 8; ETT = 1.8177

Again, the special customer has a lower ETT by choosing the longer queue first. If we change µ by ±ϵ where ϵ > 0 is
very small (say .00000001), this will not affect ETT (rounded to 4 decimal places). However, for ϵ > 0, EL < 9 so the
example belongs to Case 2; and for ϵ < 0, EL > 9 so the example belongs to Case 1. thus we have found an example
for which the special customer should join the longer queue first even though the shorter queue is shorter than the steady
state average and the longer queue is longer than the steady state average!

6. Conclusions

Contrary to intuitive reasoning, it is NOT ALWAYS true that a special customer should join the shorter queue when
required to pass through two queues (in either order), even if all parameters (other than current length) are equal. A
counterexample has been presented. Even if one queueing system exceeds the steady state expected system length and
the other is less than the expected length, we have constructed examples for which the special customer should join the
longer queue first. If there is reason to believe that there is only a finite population for the source of customers, it would
be less likely that joining the longer queue first would be advantageous.
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Future research on this subject could involve more than two queues. One time jockeying (or multiple jockeying) could be
allowed. It is possible that examples exist for which a special customer may save time by jockeying to a second queue if
the second queue becomes longer!
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