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Abstract

In this article, we present a Bayesian analysis with convex tent priors for step-stress accelerated life testing (SSALT)
using a proportional hazard (PH) model. As flexible as the cumulative exposure (CE) model in fitting step-stress data
and its attractive mathematical properties, the PH model makes Bayesian inference much more accessible than the CE
model. Two sampling methods through Markov chain Monte Carlo algorithms are employed for posterior inference of
parameters. The performance of the methodology is investigated using both simulated and real data sets.

Keywords: step-stress accelerated life testing, proportional hazard model, Weibull distribution, Bayesian analysis, convex
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1. Introduction

Widely used in the engineering industry, Accelerated Life Testing (ALT) is a process to shorten the testing period by
subjecting the products to more severe conditions, resulting in rapid failure data collection. By analyzing the product’s
lifetime in such tests, people can use a model to make predictions about the product failure behavior under normal
operating conditions. The design of an ALT is essential for data collection given limited time. Step-stress experiment
is a typical time-dependent accelerated test, where the test units are subjected to a stress level for a period of time,
and at the end of that time, the stress level is increased and held for another amount of time to the surviving units.
A general procedure of step-stress accelerated life testing (SSALT) is illustrated in Figure 1. SSALT is a commonly
used test in experiments and it has many advantages. Firstly, the use of SSALT can decrease the experiment duration
without compromising on the accuracy of the estimates of the lifetime distribution (Zhao & Elsayed, 2005). Secondly,
in comparison with parallel constant ALT, SSALT requires fewer test units to make tests more practical and economical
(Tseng & Wen, 2000; Tang & et al., 2004). In addition, the adaptability of SSALT enables the researchers to adjust the
stress level and stopping time as the information of a new product’s characteristic is gathered over time.

Many works of various models and optimum designs in SSALT have been studied over the last few decades, (Bai & Chun,
1991; Khamis & Higgins, 1996; Khamis, 1997; Bagdonavicius & et al., 2002; Srivastava & Shukla, 2008), just to name
a few. In general, there are a few methods to model SSALT. One way is known as tampered random variable (TRV)
(DeGroot & Goel, 1979), assuming that the product lifetime is related to a tampering or acceleration factor depending on
the magnitude of change of the stress. SSALT TRV was generalized to the Weibull lifetime distribution under multiple
step-stress levels (Zhao & Elsayed, 2005). Alternatively, (Nelson, 1980) proposed a Cumulative Exposure (CE) model
taking into account the worn-out conditions of the product accumulated from previous testing periods. The model assumes
that the products’ remaining lifetime depends on the current cumulative fraction failed and current stress level. Various CE
models were implemented among many research (Meeker, 1984; Bai & et al., 1989; Khamis, 1997; Van Dorp & Mazzuchi,
2005). It was shown that the CE model coincides with the TRV model if the product life distributions under different
stresses belong to the same location-scale parametric family such as exponential, Weibull and lognormal distributions
(Wang & Fei, 2004)). The limitations of CE, TRV and other models were discussed in (Xu & Fei, 2012). One method
of the SSALT inference was based on maximum likelihood (ML) estimation and asymptotic variances which play a vital
role in determining the optimum design of SSALT plans and the reliability of the statistical inferences (Bai & Chun, 1991;
Khamis, 1997). The method requires a large number of test units to make reliable inference. The Bayesian approach is
a more practical method for reasonable inferences in a fewer test units and has been adopted in various SSALT research
such as (Mazzuchi & Soyer, 1992) and (Van Dorp & et al., 1996). (Lee & Pan, 2008) presented a simple Bayes inference
model for a two-step-stress accelerated life test under type-II censored samples and exponentially distributed failure times
at each stress. The development of a general Bayes inference model for accelerated life testing was proposed to cater to
varying-stress reliability tests in (Van Dorp & Mazzuchi, 2004; Van Dorp & Mazzuchi, 2005), who developed a flexible
likelihood function resulting in easier application to different test scenarios such as fixed-stress testing, regular life testing,
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Figure 1. Step-Stress Accelerated Life Testing

progressive and profile step-stress testings. However, the mathematical intractability of likelihood function of the CE
model makes statistical inference extremely difficulty. Recently, the proportional hazard (PH) model (Bagdonavicius &
et al., 2002) becomes an alternative model for SSALT, where the change of stress has a multiplicative effect on the hazard
rate. In fact, in history, many physical failure acceleration models correlate the effect of physical stresses to the hazard rate
of products rather than the failure time. For examples, in the Arrhenius temperature acceleration model (Meeker & et al.,
1998), the product hazard rate is a log-linear function of the proportional inverse of temperature in degree Kelvin; in the
Peck humidity acceleration model, the hazard rate is a log-linear function of the logarithm of the relative humidity (Peck,
1986). Through the time-transformation of the exponential CE model, (Khamis & Higgins, 1998) presented a Weibull
PH model to make efficient statistical inference for SSALT. The PH model is as flexible as the CE model for fitting data,
and its appealing mathematical form enables the researchers to make a statistical computing simpler and more convenient
than the CE model, and so it is particularly desirable for Bayesian analysis.

We develop a Bayesian approach on the Weibull PH model with a general likelihood function which allows censoring
times during the testing period at any stress levels. The rest of the article is arranged as follows. In Section 2, we briefly
present a Weibull PH model for SSALT. Section 3 introduces a Bayesian method to make inference by two sampling
schemes through Markov chain Monte Carlo (MCMC) algorithms. We assess the performance of the proposed Bayesian
methods on simulation studies and real data applications in Section 4. Lastly we conclude the article with a brief discussion
in Section 5.

2. Weibull Proportional Hazard Model

Unlike the CE model considering aggregate fatigue effect on the product lifetime in SSALT process, PH model assumes
that the stress level has a multiplicative effect on the hazard rate. (Khamis & Higgins, 1998) proposed a Weibull PH model
through a time transformation of the exponential CE model, whose distribution function at each step-stress is given by

F(w) = 1 −


exp{−θ1wδ}, 0 ≤ w < τ1

exp{−θ2(wδ − τδ1) − θ1τδ1}, τ1 ≤ w < τ2

...

exp{−θk(wδ − τδk−1) − · · · − θ2(τδ2 − τδ1) − θ1τδ1}, τk−1 ≤ w < ∞.

(1)

where the shape parameter δ > 0 is independent of time and stress, the scale parameter θi is related to the stress level of xi

through a log-linear function log(θi) = β0 + β1xi for i = 1, 2, ..., k with unknown parameters β0 and β1, and τ1, ..., τk−1 are
the pre-specified time points of changing stress levels. Thus the density and hazard rate functions at the ith step are given
by

fi(w) = δθiwδ−1 exp{−θi(wδ − τδk−1) − · · · − θ2(τδ2 − τδ1) − θ1τδ1}, (2)
hi(w) = δθiwδ−1, τi−1 ≤ w < τi, i = 1, 2, ..., k, τ0 = 0. (3)

The stress levels xi are multiplicatively related to the hazard rates, and the ratio of two failure rates under two different
stress levels, hi(w)/h j(w) = θi/θ j = eβ1(xi−x j), is a constant over time. Hence, it has the desirable proportional hazard
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property as outlined in (Lawless, 2003). As shown in (Khamis & Higgins, 1998), the Weibull PH model appears to be
as flexible as the Weibull CE model in the fitting step-stress test data and has major computational advantages due to
its mathematical simplicity. Moreover, the attractive mathematical properties will make Bayesian inference much more
convenient for the Weibull PH model than the Weibull CE model presented in (Van Dorp & Mazzuchi, 2005).

3. Bayesian Analysis

3.1 Likelihood Function

In SSALT procedure, besides failure times, right-censored life times of test units are often observed. One of the most
common assumptions is that lifetimes and censoring times are statistically independent each other. Let the observational
data D = {wi j, vil, i = 1, ..., k, j = 1, ..., ni, l = 1, 2, ...,mi} where at the ith stress level, wi j is the jth failure time, vil the
lth right-censored time, ni and mi are the numbers of failure and right censored units, respectively. Let n =

∑k
i=1 ni and

m =
∑k

i=1 mi, so there are totally n + m units initially placed on the test. The test starts with the first stress level x1 and
run until time τ1 when the stress level is changed to x2, and so on. The test is completed on the stress level xk at the
termination time τk < ∞. Therefore, the likelihood function can be written as

L(θ1, θ2, ..., θk, δ|D) =
k∏

i=1


ni∏
j=1

f (wi j)
mi∏
l=1

S (vil)

 , (4)

where the survival function at right-censored time vil in the ith step S (vil) = exp{−θi(vδil−τδi−1)−· · ·−θ2(τδ2−τδ1)−θ1τδ1}, τi−1 <
vil ≤ τi. By the density function of the PH model in (2) and the log-linear function of θi, log(θi) = β0 +β1xi, the likelihood
in (4) for the whole experiment design can be expressed as

L(β0, β1, δ|D) = δn exp

nβ0 +

 k∑
i=1

nixi

 β1 −
k∑

i=1

eβ0+β1 xi ui(δ)

 k∏
i=1

ni∏
j=1

wδ−1
i j , (5)

where ui(δ) =
∑ni

j=1(wδi j − τδi−1) +
∑mi

l=1(vδil − τδi−1) + (n + m − ∑i
l=1 nl −

∑i
l=1 ml)(τδi − τδi−1), i = 1, 2, ..., k with τ0 = 0. If

we treat wδi j and vδil as the power-transformed failure and censoring times, respectively, then ui(δ) is the total transformed
testing time of all test units experienced at the ith stress level. Notice that if vil = τi for l = 1, 2, ...,mi, i = 1, 2, ..., k, i.e.
the censored cases occur only at the end of each step, the likelihood function reduces to the one obtained in (Khamis &
Higgins, 1998). To make all parameters positive, we reparameterize the procedure by taking exponential transformation
α0 = exp(β0) and α1 = exp(β1), and then the likelihood function in (5) becomes

L(α0, α1, δ|D) = δnαn
0α

∑k
i=1 ni xi

1 exp

−α0

k∑
i=1

αxi
1 ui(δ)

 k∏
i=1

ni∏
j=1

wδ−1
i j . (6)

3.2 Prior Distribution

From the functional form of the likelihood function in (6), we consider the convex tent (CVT) family of priors introduced
in (Sarhan, 2001). The prior is defined on a finite interval and can be easily constructed once we have knowledge of the
range of parameter value. Also the prior is a conjugate for some common exponential family such as exponential and
gamma distributions. The prior for an indexed parameter θ is denoted as θ ∼ CVT (r, p, q), whose density function is given
by

π(θ) = K(ε − |θ − µ|)rθp exp(qθ), θ ∈ [µ − ε, µ + ε] ⊂ (0,∞), (7)

where the hyperparameters r is a non-negative integer, p, q are real values, and µ and 2ε are the pre-specified center and
length of interval. Clearly, the setting r = p = q = 0 results in a uniform prior. The normalizing constant K = (K1 +K2)−1

with

K1 =

r∑
j=0

(
r
j

)
(ε − µ)r− jG(p + j, q; µ − ε, µ), (8)

K2 =

r∑
j=0

(
r
j

)
(−1) j(µ + ε)r− jG(p + j, q; µ, µ + ε), (9)

where the integral function G(m, n; z1, z2) =
∫ z2

z1
xm exp(nx)dx, 0 < z1 < z2,m ≥ 0, n ∈ R. The cumulative distribution

function (cdf) of the prior can be expressed by

Π(θ) =

K
∑r

j=0

(
r
j

)
(ε − µ)r− jG(p + j, q; µ − ε, θ), θ ≤ µ

K
[
K1 +

∑r
j=0

(
r
j

)
(−1) j(µ + ε)r− jG(p + j, q; µ, θ)

]
, θ > µ

(10)
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Figure 2. Convex Tent Prior with Various Hyperparameter Values

The prior curves on a specified interval under various hyperparameter values are shown in Figure 2, where one may see
that the prior can be triangle, symmetric-like, right-skewed and left-skewed distributions, and so it is flexible for modeling
a wide variety of data. In practice, the interval center value µ can be taken to be the ML estimate of the parameter, the
width of the interval 2ε is specified as µ, and the hyperparameter (r, p, q) are set to be the values that make the prior less
informative such as the uniform prior with (r, p, q) = (0, 0, 0).

3.3 Bayesian Inference Procedure

The independent CVT priors are adopted for the unknown parameters α0, α1, δ, i.e.

αi ∼ CVT (ri, pi, qi), i = 0, 1, δ ∼ CVT (r2, p2, q2) (11)

with hyperparameters ri, pi, qi, i = 0, 1, 2. Bayesian inference can be made on the parameters from the posterior distribu-
tion, which is proportional to the product of the priors and the likelihood function

π(α0, α1, δ|D) ∝ L(α0, α1, δ|D)π(α0)π(α1)π(δ). (12)

The joint posterior distribution of the three parameters is complicated and non-standard, and so we resort to a Markov
chain Monte Carlo (MCMC) technique (Gilks & et al., 1996) to draw the posterior samples of (α0, α1, δ) for statistical
inference.

3.4 Sampling Techniques

MCMC methods such as the Metropolis-Hastings algorithm and Gibbs sampling have become increasingly popular in
Bayesian statistics field (Casella & Robert, 2010). In general, the MCMC sampling schemes provide an approximate
sampling for the researchers when dealing with complicated probability distributions. For comparison purpose in our
Bayesian analysis, we employ two common sampling approaches to draw the posterior samples of the parameters.
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Conditional Sampling

We draw the posterior samples of (α0, α1, δ) by a Gibbs sampling technique through their full conditional posterior distri-
butions given by

π(α0|α1, δ,D) ∝ π(α0)L(α0, α1, δ|D)

∝ (ε − |α0 − µ|)r0α
p0+n
0 exp


q0 −

k∑
i=1

αxi
1 ui(δ)

α0

 , (13)

π(α1|α0, δ,D) ∝ π(α1)L(α0, α1, δ|D)

∝ (ε − |α1 − µ|)r1α
p1+

∑k
i=1 ni xi

1 exp

α1q1 − α0

k∑
i=1

αxi
1 ui(δ)

 , (14)

π(δ|α0, α1,D) ∝ π(δ)L(α0, α1, δ|D)

∝ (ε − |δ − µ|)r2δp2+n exp

δ
q2 +

k∑
i=1

ni∑
j=1

log(wi j)

 − α0

k∑
i=1

αxi
1 ui(δ)

 . (15)

From the functional form in (13), we observe that the CVT prior is conjugate for α0, leading to α0|(α1, δ,D) ∼ CVT (r0, p0+

n, q0 −
∑k

i=1 α
xi
1 ui(δ)). However, it is not conjugate for α1 and δ, and their conditional posteriors are not standard distribu-

tions. The Metropolis-Hastings procedure within Gibbs sampling is adopted to draw the samples of α1 and δ. Specifically,
with their ML estimates as the initial values of α0, α1 and δ, given the samples of αt

0, α
t
1, δ

t at tth iteration, the Gibbs sam-
pling for the (t + 1)th iteration is displayed as follows:

Procedure

1) Sample αt+1
0 from π(α0|αt

1, δ
t,D) = CVT (r∗0, p

∗
0, q
∗
0) with r∗0 = r0, p∗0 = p0 + n, q∗0 = q0 −

∑k
i=1(αt

1)xi ui(δt) by the inverse
transform sampling technique through the distribution function in (10).

2) Sample αt+1
1 from π(α1|αt+1

0 , δ
t,D) in (14) by using a Metropolis-Hastings step: first, a proposed sample α∗1 ∼

CVT (r1, p1, q1) with the interval center µ being the current value αt
1, and then αt+1

1 = α∗ with the acceptance
probability being given by

rα1 = min

π(α∗1|αt+1
0 , δ

t,D)π1(αt
1|α∗1)

π(αt
1|αt+1

0 , δ
t,D)π1(α∗1|αt

1)
, 1

 , (16)

where π1(·) is the density function of CVT (r1, p1, q1).

3) Sample δt+1 from π(δ|αt+1
0 , α

t+1
1 ,D) in (15) through a Metropolis-Hastings step by proposing δ∗ ∼ CVT (r2, p2, q2) with

the interval center µ being the current value δt, and take δt+1 = δ∗ with the acceptance probability given by

rδ = min

π(δ∗|αt+1
0 , α

t+1
1 ,D)π2(δt |δ∗)

π(δt |αt+1
0 , α

t+1
1 ,D)π2(δ∗|δt)

, 1

 , (17)

where π2(·) is the density function of CVT (r2, p2, q2).

Joint Sampling

Alternatively, a joint sampling (usually more efficient than conditional sampling) through a Metropolis-Hastings pro-
cedure is adopted to jointly sample (α0, α1, δ) from the joint posterior distribution in (12). For the purpose of simple
demonstrations, let θ = (α0, α1, δ), γ = log(θ) = (β0, β1, η) with η = log(δ). To make samples converge more quickly,
we take their ML estimates as the initial values of α0, α1 and δ. Given the sample value θt at tth-iteration, and thus
γt = log(θt), at (t + 1)th iteration, the proposed value γ∗ is drawn from the asymptotic distribution of ML estimators, that
is, the trivariate normal distribution N(γt, Î−1(γt)) where the estimated variance-covariance matrix Î−1(γt) is obtained by
the observed inverse of the Fisher information matrix (shown in the appendix). With the proposed sample θ∗ = exp(γ∗),
the posterior sample at (t + 1)th step is taken by

θt+1 =

θ∗, with probability rθ,
θt, with probability 1 − rθ,

(18)

5



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

with the acceptance probability being

rθ = min
{
π(θ∗|D)g(θt |θ∗)
π(θt |D)g(θ∗|θt) , 1

}
, (19)

where the proposal density g(θ) = 1
α0α1δ
ϕ(log(θ)) with the trivariate normal density ϕ(·).

Finally, given the M posterior samples (αt
0, α

t
1, δ

t), t = 1, 2, ...,M drawn from both sampling techniques, the posterior
inference of the parameters β0 and β1 are made by their posterior samples βt

i = log(αt
i), i = 0, 1, t = 1, 2, ...,M.

4. Application

In this section, we will investigate the performance of the proposed Bayesian method on both simulated and real data.
Two real data sets are the step-stress testings of light emitting diodes (LED) in (Zhao & Elsayed, 2005) and the cable
insulation in (Nelson, 1980), respectively.

4.1 Simulation Study

The data sets are simulated from the Weibull PH model in (1) by arbitrarily setting the parameter values β0 = −2.00, β1 =

−1.00 and δ = 3.00 at various total number of stresses k = 3, 4, 5, 6. The numbers of failures ni and right-censored units
mi at ith stress changing time τi, i = 1, 2, ..., k, and the terminated time τk are specified in Table 1. The scale parameter
θi of Weibull distribution is specified by a log-scale function log(θi) = β0 + β1xi where xi is the increased stress level
generated from a normal distribution with mean 2 and standard deviation 1.

Table 1. Prespecified Values in Simulated Data

Stress No. Failures No. Censored No. Stress Changing Time Terminated Time
k ni mi τi τk

3 6, 3, 9 4, 2, 3 0.5, 2.0 3.5
4 9, 14, 5, 12 5, 3, 2, 4 0.5, 2.0, 3.5 5.0
5 15, 6, 3, 1, 10 4, 3, 1, 2, 4 0.5, 2.0, 3.5, 5.0 8.0
6 12, 6, 9, 2, 1, 8 3, 5, 5, 4, 3, 5 0.5, 2.0, 3.5, 5.0, 8.0 10.0

For the Bayesian analysis, we choose the same set of hyperparameter values, i.e. (ri, pi, qi) = (r, p, q), i = 0, 1, 2, for
the three CVT priors of parameters α0, α1, δ. To examine possible effects of the prior on the posterior inference, we
run three MCMC chains with three different sets of hyperparameter values (r, p, q) = (0, 0, 0), (1, 1,−20), (1, 2, 10) cor-
responding to a uniform, right-skewed and left-skewed prior, respectively. The scale reduction factor estimate

√
R̂ =√

[(N − 1)W/N + B/N]/W is used to monitor convergence of MCMC simulations (Gelman & et al., 1996), where N is
the iteration number, W, B denote the within and between-sequence variations, respectively. A burn-in period of 10,000
followed by 10,000 iterations is determined by the fact that

√
R̂ for the three parameters fall within 0.97-1.03, indicating

the convergence of the algorithm. The posterior means as the estimates of the parameters β0, β1, δ and the length of 95%
credible intervals are shown in Tables 2 for both joint and conditional sampling methods. As expected, the estimations
and precisions (based on the width of credible intervals) improve as the number of stresses k increases for both sampling
schemes, which produce similar estimation results. However, the joint sampling seems to be more efficient since it took
about a half of the amount of sampling time for convergence as the conditional sampling. Additionally, several other
findings can be seen from Table 2: (i) The estimation results are close each other for the three settings of hyperparameter
values, indicating that the Bayesian method is not sensitive to the shape of the prior distribution. (ii) When the number
of stress levels k = 3, 4, the estimate values, especially for the parameters β0 and β1, are less accurate. However, when
k = 5, 6, the estimations get improved much. These patterns are noticeable with different hyperparameter values. (iii)
Comparatively, δ estimates are more accurate than the estimates of β0, β1, even when the stress number k = 3, 4. It indi-
cates that for small stress number k, the Bayesian method produces an efficient and reliable estimation for the parameter
δ.

4.2 Real Data Analysis

The first SSALT data is from degradation experiments of light emitting diodes (LED) described in (Zhao & Elsayed, 2005).
The experiment was conducted under high temperature and humidity to shorten the lifetime of the LED considerably.
The observed failure data were used to predict the product lifetime under normal temperature usage of 323 in Kelvin
(50◦C). Specifically, the test was carried out at four different levels of temperature measured in Kelvin while setting the
humidity level constant. The temperature was first set at 363 Kelvin and increased at certain time periods, and the test
was terminated at time of 720 hours. Some testing units were removed from the experiment at the times of changing

6
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Table 2. Simulated Data: Estimation Results by Joint Sampling (Upper) and Conditional Sampling (Below) with True
Parameter Value β0 = −2.00, β1 = −1.00, δ = 3.00 (PT=Parameters, PE=Posterior Estimate, CI=Credible Interval)

Hyperparameter (r, p, q)
k PT (0, 0, 0) (1, 1, -20) (1, 2, 10)

PE (95% CI Length) PE (95% CI Length) PE (95% CI Length)
3 β0 -1.8293 (0.2921) -1.8180 (0.3190) -1.8616 (0.4068)

-1.8177 (0.2774) -1.8276 (0.3064) -1.8625 (0.3814)
β1 -0.6967 (0.1387) -0.7191 (0.1420) -0.7028 (0.1982)

-0.7038 (0.1172) -0.7128 (0.1410) -0.8391 (0.2084)
δ 2.9893 (0.4385) 2.9963 (0.2611) 3.0853 (0.2538)

3.0260 (0.4449) 3.0094 (0.2613) 3.0869 (0.2288)
4 β0 -1.8770 (0.1221) -1.8724 (0.1399) -1.8888 (0.1392)

-1.8634 (0.1065) -1.8524 (0.1196) -1.8526 (0.1212)
β1 -0.9252 (0.1132) -0.9239 (0.1277) -0.9394 (0.1235)

-0.9389 (0.1170) -0.9458 (0.1332) -0.9356 (0.1135)
δ 2.9820 (0.1543) 2.9932 (0.1647) 3.0410 (0.1273)

3.0176 (0.1485) 2.9902 (0.1531) 3.0356 (0.1347)
5 β0 -1.9743 (0.1196) -1.9897 (0.1367) -1.9875 (0.1283)

-2.0304 (0.0837) -2.0317 (0.0830) -2.0310 (0.0829)
β1 -0.9957 (0.0781) -1.0093 (0.0514) -1.0069 (0.0505)

-1.0226 (0.0439) -1.0235 (0.0434) -1.0228 (0.0421)
δ 3.0043 (0.0390) 2.9955 (0.0337) 2.9986 (0.0355)

3.0012 (0.0481) 2.9990 (0.0467) 3.0040 (0.0447)
6 β0 -2.0056 (0.0474) -2.0041 (0.0391) -1.9989 (0.0398)

-2.0153 (0.0276) -2.0152 (0.0276) -2.0351 (0.0276)
β1 -1.0065 (0.0228) -1.0038 (0.0196) -1.0020 (0.0206)

-1.0087 (0.0395) -1.0095 (0.0397) -1.0087 (0.0404)
δ 2.9975 (0.0145) 2.9983 (0.0115) 2.9993 (0.0120)

3.0003 (0.0304) 2.9998 (0.0307) 3.0017 (0.0312)

temperature due to various reasons, and so in this case the right censored times vil = τi, i = 1, 2, 3, 4. Table 3 shows the
LED experimental conditions and lifetime data. Using the Arrhenius model of reliability testing with temperature, the
stress level is the reciprocal of the temperature, and in this study, the stress level is set as xi = 323/Ti to make x = 1 at
T = 323(50◦C).

For Bayesian analysis, the uniform priors are chosen by setting the hyperparameter values (r, p, q) = (0, 0, 0) to make
the priors non-informative. 20,000 iterations of MCMC algorithm seems to be sufficient for convergence as the Gelman-
Rubin statistic

√
R̂ are near 1 for the three parameters α0, α1 and δ in both sampling methods. The posterior estimates are

computed by taking the means of the remaining samples after a burn-in period of 10,000. For the purpose of comparison,
Table 5 shows the ML estimates, large-sample based 95% confidence intervals for CE and PH models, posterior estimates
and 95% credible intervals for both sampling schemes. It is observed that the estimates using Bayesian approach are
close to the ones from the ML approach. However, the widths of the interval estimations for the Bayesian method are
much smaller as compared to the ML method. We also notice that the 95% confidence intervals of β1 include zero which
suggests the effect of the stress is not identifiable at 5% significance level, whereas for the Bayesian approach, there is
no such difficulty as the credible intervals do not include zero. The estimated posterior densities of each parameter are
shown in Figure 3, where the curves in the left and right panels are from the joint and conditional samplings, respectively.
The resemblance of the curves demonstrates the similar performance of both sampling approaches, leading to the close
posterior estimates and credible intervals for each parameter. For the prediction under the normal temperature usage of
323 in Kelvin (50◦C), Table 6 shows the predicted 99th, 95th and 90th LED lifetime percentiles and their 95% credible
intervals, and the Kaplan-Meier’s estimation (Kaplan & Meier, 1958). It is worth noting that the predicted values are
close to the Kaplan-Meier’s estimates, indicating the efficiency of our estimation approach.

The second step-stress test is the cable insulation data described in (Nelson, 1980). The purpose of the test is to estimate
the lifetime of cable at a design stress of 400 volts/mil. Each specimen was held for 10 minutes each at 5kV, 10kV,
15kV and 20kV before the test began. The specimens were separated into four different tests with holding times being
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Table 3. LED Testing Conditions and Lifetime Data

Temperature Testing Period Failure or Suspension (+) Time
(Kelvin) (100 hours) (100 hours)
363 (0, 3) 3.00+
413 (3, 5) 3.47, 3.97, 4.32, 4.91, 5.00+, 5.00+
433 (5, 6) 5.12, 5.67, 5.74, 5.88, 5.97, 6.00+, 6.00+
448 (6, 7.2) 6.03, 6.05, 6.15, 6.33, 6.34, 6.37, 6.44, 6.53, 6.75, 6.84,

6.99, 7.06, 7.18, 7.20, 7.20+, 7.20+, 7.20+, 7.20+

Table 4. Test Data on Cable Insulation

Kilovolts Final Step Hold Time Failure or Suspension (+) Time
(hours) (hours)

26.0 1 16 6.1+, 14.9+
28.5 2 16 19.3
31.0 3 16 32.7, 41.0, 41.0+, 45.0
33.4 4 16 48.7
36.0 5 0.25 1.7, 1.9, 1.9

5 4 18.3, 18.3
5 16 69.0

38.5 6 1 5.75, 5.75+, 6.2
6 4 20.8, 20.9, 22.2, 22.2+

15 minutes, 1 hour, 4 hours, or 16 hours for a specimen at each voltage (stress) in steps 1 through 6. Being different
from the previous experiment, some specimens were removed during the test at stress levels, and so in this case, the
right-censored time vil < τi, i = 1, 2, ..., 6. Table 4 shows the pattern of specified stress values (Kilovolts), final step,
failure and right-censored times of the tested specimens. Same as the previous, the hyperparameters are set as (ri, pi, qi) =
(0, 0.02,−0.02), i = 0, 1, 2. 20,000 MCMC iterations are conducted for posterior sampling to give the Gelman-Rubin
statistic

√
R̂ close to 1. The posterior estimates are computed from the 10,000 remaining samples after a burn-in period of

10,000. Table 5 shows the ML estimates, 95% confidence intervals for CE and PH models, posterior estimates and 95%
credible interval for both sampling schemes. The estimation results are similar for the two Bayesian sampling methods (the
marginal posterior densities are omitted here), and the credible intervals are much narrower than the confidence intervals,
indicating that the Bayesian method is more efficient. It is also observed that the confidence and credible intervals for β1
do not contain zero, suggesting that the effect of the stress is significant at 5% significant levels.

Finally, at the design stress of 400 volts/mil, some predicted percentiles and their 95% credible intervals of cable lifetime
are shown in Table 6, where the close values of prediction and the Kaplan-Meier’s estimation demonstrate the efficiency
of our Bayesian approach.

5. Conclusion

In our study, a Bayesian approach for Weibull PH model in SSALT data analysis was presented. The Weibull PH model
has one appealing proportional hazard property which explains the relationship between the physical stress and the hazard
rate. In addition, it helps avoid the model complexity caused by the time transformation in a cumulative way. Moreover,
the model enables us to carry out the posterior inference much easier than the Weibull CE model mathematically and
computationally without compromising on the flexibility of modeling data. The convex tent prior adopted is flexible in
terms of fitting different shapes of distribution function which allows us to meet various scenarios. With the help of
MCMC algorithms, we conducted two posterior samplings with much convenience and efficiency for posterior inference.
Most of the time, reliability testing only produces limited failure time data, which could potentially gives an extremely
flat likelihood function and results in large uncertainties in the parameter estimation. We have illustrated, with simulation
study and two real data sets, that our Bayesian method could resolve this problem by integrating some prior information
from engineering experience or other studies on the model to make efficient, reliable and precise inference.
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Figure 3. LED Data: Posterior Distributions of Parameters (left panel: joint sampling, right panel: conditional sampling)

Table 5. Estimation Results for the Two Real Data

ML Method Bayesian Method
MLE (95% Confidence Interval) Posterior Mean (95% Credible Interval)

Parameter CE Model PH Model Joint Sampling Conditional Sampling

LED Data
β0 -6.7812 -7.2160 -6.7215 -6.6661

(-10.0282, -3.5349) (-10.4628, -3.9692) (-7.2021, -6.3798) (-7.2007, -6.3078)
β1 -1.4326 -1.5640 -1.1534 -1.10075

(-7.5259, 4.6607) (-7.6571, 4.5291) (-1.5396, -0.8346) (-1.4227, -0.7083)
δ 5.9724 4.5250 4.1854 4.1132

(4.3119, 7.6359) (2.8635, 6.1865) (3.9709, 4.3607) (3.9925, 4.2222)

Cable Insulation Data
β0 -7.4785 -7.0385 -6.8064 -6.9076

(-8.7795, -6.7175) (-8.3117, -6.7653) (-7.3936, -6.3583) (-7.2889, -6.6315)
β1 1.5780 1.3002 1.2465 1.2710

(1.1421, 2.0139) (1.1573, 1.6931) (1.2054, 1.2930) (1.2255, 1.3024)
δ 0.8556 0.8647 0.9491 0.9615

(0.5108, 1.2003) (0.4735, 1.0560) (0.8381, 1.0867) (0.8922, 0.9951)
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Table 6. Predicted Percentiles and 95% Credible Intervals of Lifetime at Usage Conditions for the Two Real Data

Real Data (Condition) 99th 95th 90th
LED (323◦K) 9.49 8.55 8.03
95% Credible Intervals (7.67, 13.03) (6.93, 11.69) (6.52, 10.95)
Kaplan-Meier 9.41 8.47 7.94

Cable (0.4 kvolts/mil) 39.91 25.38 19.24
95% Credible Intervals (13.51, 173.18) (8.94,105.04) (6.94, 77.35)
Kaplan-Meier 39.23 24.92 18.88
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Appendix

We present the estimation of Fisher information matrix used for the variance-covariance matrix of the asymptotic normal
distribution in Section 3.4.
Let η = log(δ), then the likelihood function in (5) and log-likelihood function become

L(β0, β1, η|D) = enη exp

nβ0 +

 k∑
i=1

nixi

 β1 −
k∑

i=1

eβ0+β1 xi ui(η)

 k∏
i=1

ni∏
j=1

weη−1
i j , (20)

l(β0, β1, η) = nη + nβ0 +

 k∑
i=1

nixi

 β1 −
k∑

i=1

eβ0+β1 xi ui(η) + (eη − 1)
k∑

i=1

ni∑
j=1

log(wi j). (21)

The Fisher information matrix is I(γ) = I(β0, β1, η) = −E(H), where the 3×3 Hessian matrix H is the second-order partial
derivatives of the log-likelihood function whose elements are

h11 =
∂2l(β0,β1,η)
∂β2

0
= −∑k

i=1 eβ0+β1 xi ui(η),

h22 =
∂2l(β0,β1,η)
∂β2

1
= −∑k

i=1 eβ0+β1 xi x2
i ui(η),

h33 =
∂2l(β0,β1,η)
∂η2 = −∑k

i=1 eβ0+β1 xi u′′i (η) + eη
∑k

i=1
∑ni

j=1 log(wi j),

h12 = h21 =
∂2l(β0,β1,η)
∂β0∂β1

= −∑k
i=1 eβ0+β1 xi xiui(η),

h13 = h31 =
∂2l(β0,β1,η)
∂β0∂η

= −∑k
i=1 eβ0+β1 xi u′i(η),

h23 = h32 =
∂2l(β0,β1,η)
∂β1∂η

= −∑k
i=1 eβ0+β1 xi xiu′i(η),

(22)

where, for i = 1, 2, ..., k with τ0 = 0,

ui(η) =
∑ni

j=1(weη
i j − τeη

i−1) +
∑mi

l=1(veη
il − τeη

i−1) + (n + m −∑i
l=1 nl −

∑i
l=1 ml)(τeη

i − τeη
i−1),

u′i(η) =
∑ni

j=1

[
eηg1(wi j) − eηg1(τi−1)

]
+

∑mi
l=1

[
eηg1(vil) − eηg1(τi−1)

]
+(n + m −∑i

l=1 nl −
∑i

l=1 ml)
[
eηg1(τi) − eηg1(τi−1)

]
,

u′′(η) =
∑ni

j=1

[
e2ηg2(wi j) + eηg1(wi j) − e2ηg2(τi−1) − eηg1(τi−1)

]
+

∑mi
l=1

[
e2ηg2(vil) + eηg1(vil) − e2ηg2(τi−1) − eηg1(τi−1)

]
+(n + m −∑i

l=1 nl −
∑i

l=1 ml)
[
e2ηg2(τi) + eηg1(τi) − e2ηg2(τi−1) − eηg1(τi−1)

]
,

(23)

with the specified functions g1(x) = xeη log(x), g2(x) = xeη log2(x), x > 0. Since there are no analytic forms of the
moments E(ui(η)), E(u′i(η)) and E(u′′i (η)), we estimate the following quantities by the observational data to approximate
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these moments and then obtain the estimated Fisher information matrix Î(γ)

E(weη
i j ) = 1

ni

∑ni
l=1 weη

il , E(log(wi j)) = 1
ni

∑ni
l=1 log(wil),

E(g1(wi j)) = 1
ni

∑ni
l=1 g1(wil), E(g2(wi j)) = 1

ni

∑ni
l=1 g2(wil), j = 1, 2, ..., ni.

(24)
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