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Abstract 

The Kolmogorov-Zurbenko Adaptive, kza package provides algorithms to deal with abrupt changes or breaks in the 

presence of heavy background noise. In a practical way, one-dimensional and high-dimensional simulated samples are 

generated to demonstrate signal recoveries and their accuracy evaluation by mean of squared error, mean difference and 

specificity index. Simulation investigation showed that smoothing window size need consider whenever applying kza 

package, and that kza could tolerate background noise about 10-folds heavier in higher-dimensional data compared to 

1-dimensional data. 
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1. What is Kolmogorov-Zurbenko Adaptive Algorithm?  

Kolmogorov-Zurbenko Adaptive (KZA) algorithm (Close, B. & Zurbenko, I. G., 2016), is a family member of 

Kolmogorov-Zurbenko (KZ) R-software (Kolmogorov–Zurbenko filter). KZ software is a moving average technique, 

belongs to the class of low-pass filters (Zurbenko, I. G., 1986). It is designed to identify temporal features in time series 

data, such as trends, short-term fluctuations, seasonal and long-term variations; however, KZ filter tends to smooth out 

abrupt discontinuities (including spikes and ditches), in turn makes it difficult to estimate their properties (Rao, S. T. & 

Zurbenko, I. G., 1994). Extended from KZ filter, KZA enables to reveal any abrupt discontinuities in time series without 

distorting other existed patterns (Zurbenko, I. G. et al., 1996). Compared to KZ filter, the beauty of KZA filter is applying 

a dynamic smoothing window driven by data, while operate the moving average process (Zurbenko, I. G. et al, 1996; 

Yang, W. & Zurbenko, I. G., 2010). The KZA filter first identifies potential intervals when a break occurs; it then 

examines these intervals more accurately by reducing the smoothing window length to improve the resolution of the 

smoothed outcome. 

2. When is KZA filter Used? 

According to Zurbenko and his colleagues (Kolmogorov–Zurbenko filter; Yang, W. & Zurbenko, I. G., 2010), KZA filter 

was developed to detect breaks in nonparametric signals embedded in heavy background noise. It detects sudden changes 

over a low frequency signal of any nature submerged in heavy noise. For data with 1-dimensional setting, it can be used to 

identify intervention application, policy change and data quality issues as well (Rao, S. T., & Zurbenko, I. G., 1994; 

Solaun O., et al., 2013; González, M. et al., 2013). As for data with 2-dimensional settings, such as 2D CT image data, 2D 

meteorological data, KZA can be applied to detect the breaks (change of color and/or change of density) 

(Kolmogorov–Zurbenko filter). Given data with 3-dimensional setting, like 3D spatial data, or 3D medical image, KZA 

can be applied directly to detect breaks (boundaries between layers) (Zurbenko, I. G., & Sun, M. 2016). In case of data 

with higher-dimensional setting, KZA can also be used to detect signal discontinuities with some modifications. KZA 

shows very high sensitivity for break detection, even with a very low signal-to-noise ratio. 

3. How is KZA Algorithm Manipulated 

The KZA algorithm acquires all the typical advantages of a nonparametric approach, and it does not require any specific 

model of the samples under investigation. 

3.1 Install R packages 

To run KZA algorithm, need to install ‘kza’ R package and the dependent package ‘polynom’. 
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3.2 Syntax 

The basic syntax for executing KZA algorithm is: 

y1<-kz(x1, m=c1, k=c2)  

v1 <- kza(x1,m=c1,y=y1,k=c2, impute_tails=TRUE) 

x1 – input data series, it can be in the form of 1D vector, 2D matrix or 3D array 

m – smoothing window size, it can take value of c1 in the compatible form of input data x1 

k – number of iterations, it can take any positive value of c2 

y1 – the outcome from KZ algorithm 

impute_tails - The default is to drop the tails. 

v1 – the outcome of KZA 

3.3 Output 

To conduct KZA smoothing, it needs to initiate the program by providing input data “x1”, window size ‘c1’ and iteration 

number ‘c2’. After executing KZA algorithm, the smoothed data is ‘cubed’ in the same form as the input data. It can be 

extracted by command “v1$kza”. 

4. Example 

In practice, we have 2 things to carefully consider before executing the algorithm: smoothing window size and iteration 

number, to avoid under-smoothing or over-smoothing. We suggest 2 or 3 iterations in general; Regarding the smoothing 

window size, it depends on the data; in general, the bigger the smoothing window size, the better / smoother the outcome 

(Figure 1), but we need balance the smoothness and error. To illustrate our points, using simulated data, we estimate the 

KZA filter’s smoothing effect by window size and background noise in this article. While choosing window size, we also 

need pay enough attention to the meaningful logic for the real data, rather than pure statistics. 

4.1 Window Size 

Assumed that there is a vector, containing time series data with timepoint = 1 through 100, at all timepoints signal = 0 

except for timepoint 42 through timepoint 59, 18 timepoints in total (top left in Figure 1), where signal = 1. This signal is 

embedded in background noise with sigma=0.5 (top middle, Figure 1). Applying KZA algorithm with different window 

size. Figure 1 displays a better smoothness with bigger window, as long as the window size is within the signal size (18 is 

the signal coverage size). 

 

  

 

 

 

 

  

 

 

 

 

 

 

Figure 1. KZA smoothing effects by window size in 1-dimension space 
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4.2 Measures for Evaluating Smoothing Effects 

To illustrate the effect of KZA algorithm, we introduce three statistics: mean squared error (MSE), mean difference (MD) 

and specificity index (SI) to evaluate how window size and background noise affect smoothness and fidelity. 

MSE = ∑ |𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑣$𝐾𝑍𝐴|2𝑖,𝑗,𝑘  / N 

MD = ∑ (𝑆𝑖𝑔𝑛𝑎𝑙)/𝑁𝑖,𝑗,𝑘 − ∑ (𝑣$𝐾𝑍𝐴)/𝑁𝑖,𝑗,𝑘  

SI = ∑ |0 − 𝑣$𝐾𝑍𝐴|2𝑐(𝑖,𝑗,𝑘)  / Nc 

here, i, j, and k are the signal coordinate index in the sample space, N is the signal sample size; c(i, j, k) is the index for 

signal uncovered space, it is compensate to signal space; Nc is the difference between entire sample space and signal space, 

another word, it is the signal uncovered space size. 

4.3 One - Dimensional Time Series Data 

The simulated data are composed of non-signal area 1 from timepoint 1 through timepoint 41, signal area from timepoint 

42 through timepoint 59, and non-signal area 2 from timepoint 60 through timepoint 100; this signal is embedded in 

background noise (σ=0.5). Therefore, N=18, Nc=41 + 41=82.  

With different window size, we applied KZA algorithm to the simulated data. Smoothing effects by window size is 

summarized in figure 2. Overall, KZA could do a good job by using window size from 2 through 10, with the best window 

size falling at m=9, evidenced by a good combination of MSE=0.0297, SI=0.0627 and MD=0.171. 

 

Figure 2. Influence of window size on KZA smoothing effects of 1D signal 

We also looked at the influence of background noise on KZA smoothing effects. It is not surprise to see an increased 

smoothing error with the increase of background noise (Figure 3). Under 1-dimension setting, KZA could perform a 

decent job, while handling data with its background noise up to σ = 0.5. In terms of its power of handling background 

noise, KZA has a much better performance when smoothing higher-dimensional data, we will address this later.  
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Figure 3. Influence of background noise on KZA algorithm 

4.4 Two - Dimensional Data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. KZA algorithm unsmoothed and smoothed simulated signal data 

Simulated 2-dimensional signal is a cylinder with diameter=18, located in a 100 x 100 space (top left, Figure 4), this 

signal is embedded in background noise with σ = 1 (top right, Figure 4). After applied KZA algorithm using window size 

8 (left bottom, Figure 4) and window size 20 (right bottom, Figure 4), images of recovered signal indicate that window 

size plays an important role in performing KZA algorithm. Figure 5 showed KZA smoothing effects with different 

window size. It is possible for KZA to perform decently using window size from 3 through 10, with the best size m = 8 

(MAE = 0.022, SI = 0.008, MD = 0.118), which is about the half signal size. Similarly, as KZA performed in 

1-dimensional data, as long as the window size is not larger than half size of the signal dimension, KZA algorithm is 

capable of recovering the signal in a decent shape. 
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Figure 5. Influence of window size on KZA smoothing effects of 2D signal 

To better understand the role of window size in KZA algorithm, we used rectangle-shaped signal, instead of 

cylinder-shaped signal. Since it is under 2D setting, so the window size applied is logically in the form of 2D: m = c(a, b). 

The simulated data is composed of signal = 1 covering a field with the dimension of 32 x 16 and noise (σ = 1) covering the 

entire field with the dimension of 100 x 100. We recovered the signal using 3 types of smoothing windows: (1), square 

window – j x j; (2), rectangle window – 2j x j; and (3), rotated rectangle window – j x 2j. Figure 6 showed that the 

rectangle smoothing window performed the best, and the best smoothing window is m = c(16, 8), which are the half size 

of signal dimensions. 

 

Figure 6. Comparison of window shape and window size for 2D signal 

4.5 Three - Dimensional Data 

Three-dimensional simulated data are composed of cylinder-shaped signal = 1 (diameter = 18) located in a 100 x 100 

two-dimensional field; and in the time domain, there is 100 timepoints forming the 3
rd

 dimension; this signal only existed 

from timepoint 33 through timepoint 68, and at all the rest timepoints signal = 0. The signal mentioned above is embedded 

in a three-dimensional (100 x 100 x 100) background noise (σ = 1). Using dimension compatible smoothing window, e.g. 

m = c(j, j, 2j), we applied the data to KZA algorithm, and showed the results in figure 7. When 2 <= j <= 9, the recovered 

signal is in a good shape (Figure 7, 8). To visualize the recovered signal, we respectively displayed the signals recovered 

by using smoothing window m = c(2, 2, 4), m = c(4, 4, 8) and m = c(8, 8, 16) at the timepoint 50 (Figure 8). Basically, the 

recovered signals were good, with slight difference of background and/or signal between each other. This indicates that 

KZA could perform relatively better, given much more information is available under three-dimensional settings than that 

under one -dimensional settings. Another word, KZA could tolerate heavier background noise while applying to 

higher-dimensional data. 
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m=c(2,2,4) m=c(4,4,8) m=c(8,8,16) 

 

Figure. 7. Influence of window size on KZA smoothing effects of 3D signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of window size for smoothed 3D signal 

To better understand that KZA algorithm can work more efficiently to recover 3D signals embedded in the heavy 

background noise, we applied KZA to 1D, 2D and 3D signals addressed in section 4.3, 4.4 and 4.5, and signals were 

respectively embedded in a background noise (σ is from 0.5 to 10) with compatible dimensions. We displayed the results 

in figure 9. In general, KZA algorithm can handle background noise 10 folds heavier under two - dimensional (in brown) 

and three - dimensional (in black) settings than that under one - dimensional (in blue) settings. Regarding the difference 

between two - dimensional and three – dimensional data, while the noise is not very heavy, for example with σ < 3.5, KZA 

performs better for two - dimensional data; otherwise, KZA algorithm would perform better for three - dimensional data. 
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m=9, σ=1, p=0 m=9, σ=1, p=25% m=9, σ=1, p=50% 

 

 

Figure 9. Influence of variance and dimension on KZA smoothing effects 

5. Missing Data 

 

 

Figure 10. Influence of missing values on KZA smoothing effects. 

Another impressive feat of kza algorithm is its capability to handle missing data (Close, B. & Zurbenko, I. G., 2016; 

Zurbenko, I. G. et al., 1996), as visualized in figure 10. Two-dimensional simulated data (section 4.4) was made missing 

randomly with missing rate p, then applied to kza filter. Smoothing effects of kza algorithm on data with missing rate from 

0 to 0.9, was displayed in figure 11. Overall, the specificity index was not affected by data missing rate; but mean squared 

error and mean difference were strongly affected as the missing rate went above 50%. However, this influence seemed 

only concentrated on reflecting changes of mean difference; for example, while using kza to recover data with 50% 

missing values (for actual data, 50% missing is very high), we still get a pretty fair result with mean squared error = 0.42 

and mean difference = 0.64. When plotted the image (Figure 10), we could see a decent image (right, Figure 10); although 

its mean declined to 0.4 (original signal was 1), but the signal was very well identifiable. 
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Figure 11. Influence of data missing rate on KZA smoothing effects 

6. Discussion 

KZ(m, k) filter is arranged by polynomial coefficients which can be interpreted as convolution of k uniform distributions 

length m. Sum of k independent uniform distributions is approximately normal distribution N(0, k m
2
/12 ) with Gaussian 

coefficients. Time window of KZ(m, k) filter has finite support mk and effective width 𝑚√𝑘 / 2√3. It is a smooth 

function with continuous k-2 derivatives equal 0 outside mk /2. This property provides very small vulnerability to the 

noise (Kolmogorov–Zurbenko filter; Zurbenko, I. G., 1986; Yang, W., & Zurbenko, I. G. 2010). Truncated Gaussian 

window is discontinuous at the edges and vulnerable to the noise. KZ filter in other words repeat mathematical beauty of 

Gaussian infinite support, but transferring it to an inevitable finite support of computer applications. KZ filter provide 

suppression of the noise to the value 2√3ϭ / 𝑚√𝑘  and has extraordinary good frequency resolution. It provides 

suppression of the noise by power function of the order 2k. MSE of KZ reconstruction is closest to the optimal compare 

with any other filtrations (Zurbenko, I. G., 1986). KZ adaptive filter is starting with KZ(m, k), then “zooming in” at the 

area of a possible break. Value of the suppressed noise obviously should be smaller than possible break. Larger values of 

m and/or k will provide better reconstruction of the break. Multidimensional KZ filter may provide better reconstruction 

because of multidimensional power of coefficient 2√3 / 𝑚√𝑘.  

Without considering the actual meaning of data in this article, we addressed the questions, recommendations and concerns 

regarding performance of kza algorithm from a practical point of view. However, for real data in the actual world, we have 

to consider the logic meaning behind our data when we apply statistical techniques. Generally speaking, larger values of 

m, k are better for the reconstruction. Nevertheless, very big values of m, k may start to include specific 

frequencies/periods which hard to interpret as noise. For example, frequently we are searching for the breaks in the long 

term component (Zurbenko, I. G. et al., 1996; Close, B. & Zurbenko, I., 2008). Seasonality of the data may provide fast 

changing values which may wrongly be interpreted as break. To avoid such effect we may select m = 365 days (or 730 

days). KZ filter with such m will remove completely annual component from initial consideration and will make KZA 

invulnerable from annual fluctuations. In the same way, we are removing strong variation cosine square law from spatial 

images to let opportunity to search for the regional breaks. 

7. Conclusion  

Understanding KZA algorithm, when it is used, what could affect its performance, and how to manipulate are very 

important in its application. This article has covered these very basics of KZA algorithm in a practical way, trying to 

convince readers: (1). KZA is simple, it does not require any specific model of your data. (2). It is practical and useful, it 

can handle data embedded in heavy noise. (3). It is powerful, it is non-parametric, does not require any assumptions of the 

data under study; it can apply to data in various of format, such as one – dimensional data vector, two – dimensional data 

matrix, three – dimensional data array, and even higher dimensional data (with modification). KZA algorithm even works 

better while applied to three - dimensional data. 
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