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Abstract 

Consider the problem of estimating the common mean of k normal populations with known variances. We study the 

admisibility of the Best linear Risk Unbiased Equivariant (BLRUE) estimator of the common mean of k normal 

populations under the squared error and LINEX loss function when the variances are known. 

Keywords: Admissibility, asymmetric loss, best Equivariant estimator, common mean, LINEX loss, risk unbiased 

1. Introduction 

Suppose we have k independent populations where the ith population follows from N(θ,𝜎𝑖
2), 𝑖 = 1, … , 𝑘.  The parameter 

θ is unknown and 𝜎𝑖
2 > 0, 𝑖 = 1, … , 𝑘 are all assumed to be known. Let 𝑋𝑖𝑗 , 𝑗 = 1, … , 𝑛𝑖  be i.i.d observations from the 

ith population, 1≤ 𝑖 ≤ 𝑘. Define 𝑋𝑖 as  

𝑋𝑖 =
1

𝑛
∑ 𝑋𝑖𝑗

𝑛𝑖
𝑗=1  𝑖 = 1,2, … , 𝑘 

and note that 𝑋𝑖 ~ N(θ,𝜎
2

𝑛𝑖
⁄ ). 

Combining two or more unbiased estimators of an unknown parameter θ in order to obtain a batter unbiased estimators 

(in the sense of smaller risk) is a problem that often arises in statistics; for example when k independent sets of 

measurements of the same quantity are available. The problem of estimating the common mean of two or more 

independent normal populations has received attention from several authors in the past. For some references in this 

regard see Graybill and Deal(1959),Sinha and Mouqadem(1989) and Pal and Sinha(1996)for a complete bibliography. 

See also Lehmann and Casella (1998) pp 95-96, Sanjari Farsipour (1999), Sanjari Farsipour and Asgharzadeh (2002), 

for further references and comments. In section 2, a class of risk unbiased estimators which combines the means of the 

samples i.e., 𝑋𝑖’s, is developed and in section 3 the rejoin of admissibility of the estiomators of the from ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 +

𝑑 is derived under the squared error loss function. 

𝐿1(𝛿, 𝜃) = (𝛿 − 𝜃)2                                  (1.1) 

Which is a symmetric loss function. In section 4, the inadmissibility of the estimators of the from ∑ 𝑐𝑖 
𝑘
𝑗=1 𝑋𝑖 + 𝑑 are 

studied under the Loss function. In practice, the real loss function is often not symmetric and overestimation can lead to 

more or less severe consequences than underestimation. Varian(1975) employed an asymmetric loss function, which is 

known as LINEX loss, and was extensively used by Zellner(1986), Rojo(1987), Sadooghi-Alvandi and Nematollahi 

(1989) and others. In this Regard, our next loss function is  

𝐿2,b𝑒𝑎(𝛿−𝜃)a1 

where 𝑎 ≠ 0 and 𝑏 > 0. The region of the admissibility and inadmissibility of the estimators of the form ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 +

𝑑 under the loss function(1.2) are derived in section 5 and 6. 

2. Risk Unbiased Equivariant Estimation  

From decision theoretic approach when symmetries are present in a problem, It is natural to require a corresponding 

symmetry to hold for the estimators. The location parameter estimation problem is an important example. It is 
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symmetric, or, to use the usual terminology, equivariant with respect to translation of the sample space, that is  

𝛿(𝑋 + 𝑎) = 𝛿(𝑋) + 𝑎 for all a                                 (2.1) 

Where = (𝑋1, 𝑋2, … , 𝑋𝑛). An estimator satisfying (2.1) will called equivariant under translation. An alternative 

impartiality restriction which is applicable to our problem is the condition of unbiasedness.following Lehman and 

Casella (1998), an estimator 𝛿 of 𝜃 is said to be risk-unbiased if it satisfies 

𝐸𝜃[𝐿(𝜃, 𝛿)] ≤ 𝐸𝜃[𝐿(𝜃′, 𝛿)] for all 𝜃′ =  𝜃                          (2.2) 

and if the loss is as in (1.2),(2.2) reduces to 

𝐸 𝜃[𝑒𝑎𝜃̂] = 𝑒𝑎𝜃                                        (2.3) 

now note that 

𝐸 𝜃 [𝑒
𝑎𝑋𝑖−

𝑎2𝜎2
𝑖

2𝑛𝑖 ] = 𝑒𝑎𝜃 

so  𝑎𝑋𝑖 −
𝑎2𝜎2

𝑖

2𝑛𝑖
, 𝑖 = 1, … , 𝑘 are all risk unbiased estimators of θ. Now, consider a combined estimator of the from  

𝜃̂𝛼 = ∑ 𝛼𝑖
𝑘
𝑖=1 (𝑋𝑖 −

𝑎2𝜎2
𝑖

2𝑛𝑖
) 

Where 0 < 𝛼𝑖 < 1, 𝑖 = 1, … , 𝑘, are real numbers and ∑ 𝛼𝑖
𝑘
𝑖=1 =1. We can verify that 𝜃̂𝛼 is a translation-equivariant 

estimator. Also note that 

𝐸 [𝑒
𝑎𝜃̂𝛼+

𝑎2

2
∑

𝑎𝑖(1−𝜎𝑖)𝜎2
𝑖

𝑛𝑖

𝑘
𝑖=1 ] = 𝑒𝑎𝜃  

and hence  

𝜃𝑅.𝑈̂(𝛼) = ∑ 𝛼𝑖

𝑘

𝑖=1

(𝑋𝑖 −
𝑎2𝜎2

𝑖

2𝑛𝑖

) +
𝑎

2
∑

𝑎𝑖(1 − 𝜎𝑖)𝜎2
𝑖

𝑛𝑖

𝑘

𝑖=1

 

Is a risk unbiased estimator of θ on the basis of 𝑋𝑖  ′𝑠 under the LINEX loss function. The risk function of 𝜃𝑅.𝑈̂(𝛼) 

with respect to the loss (1.2) is easily computed as 

𝑅(𝜃, 𝜃𝑅.𝑈̂) =
𝑏𝑎2

2
∑

𝛼2
𝑖𝜎2

𝑖

𝑛𝑖

𝑘
𝑖=1                                  (2.4) 

The risk (2.4) in minimized under ∑ 𝛼𝑖
𝑘
𝑖=1 =1, when  

𝛼𝑖 =
𝑛𝑖/𝜎2

𝑖

∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

, 𝑖 = 1, … , 𝑘 

and hence the Best Linear Risk Unbiased Equivariant (BLURE) estimator of θ under the LINEX loss is  

∑ (
𝑛𝑖/𝜎2

𝑖

∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

)𝑋𝑖
𝑘
𝑖=1 −

𝑎

2 ∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

                              (2.5) 

With the same approach, the BLRUE estimator of θ under the squared error (1.1) is 

∑ (
𝑛𝑖/𝜎2

𝑖

∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

)𝑋𝑖
𝑘
𝑖=1                                      (2.6) 

The estimator (2.6) is also the unique minimum variance unbiased estimator (UMVUE) as well as the best linear 

unbiased estimator (BLUE) (without normality) for estimating θ. Both estimators (2.5) and (2.6) are special cases of the 

more general class of linear estimators of the form ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑. To study admissibility of the estimators (2.5) and 

(2.6), we study admissibility of the class of linear estimators of the form ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑. 

It should be mentioned here that in (2.5) and (2.6), the BLURE estimators are seen to depend on 𝜎𝑖
2(𝑖 = 1, … , 𝑘).when 

𝜎𝑖
2(𝑖 = 1, … , 𝑘) are completely unknown, they can be replaced by ∑ (𝑋𝑖 − 𝑋𝑖)

2
/(𝑛𝑖 − 1) 𝑘

𝑖=1  (𝑖 = 1, … , 𝑘). 
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In this case reasonable estimators of 𝜃 are provided by  

∑ (
𝑛𝑖/𝑠2

𝑖

∑ 𝑛𝑖/𝑠2
𝑖

𝑘
𝑖=1

)𝑋𝑖
𝑘
𝑖=1 −

𝑎

2 ∑ 𝑛𝑖/𝑠2
𝑖

𝑘
𝑖=1

                             (2.7) 

And 

∑ (
ni/s2

i

∑ ni/s2
i

k
i=1

)Xi
k
i=1                                   (2.8) 

Obviously the estimators (2.7) and (2.8) are location equivariant (see(2.1)) but their risks are complicated. 

3. Admissibility Results under Loss(1.1) 

Consider the admissibility of an arbitrary linear function ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑  under the loss (1.1). The risk 

function∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑 with respect to the squared error loss (1.1) is 

ρ(c1, … , ck, d) = E[ ∑ ci 

k

i=1

Xi + d − θ]2 

= ∑
ci

2σ2
i

ni
+ [(∑ ci 

k
i=1 − 1)θ + d]2k

i=1                  (3.1) 

So, we have the following theorem. 

Theorem 3.1: The estimator ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is admissible for θ whenever 

0 ≤ 𝑐𝑖 ≤ 1, 𝑖 = 1, … , 𝑘 , and 0 ≤ ∑ 𝑐𝑖 < 1𝑘
𝑖=1  or 𝑐𝑖 =

𝑛𝑖/𝜎2
𝑖

∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

, i = 1, … , k, and d = 0. 

Proof: The notation δ(c1, …, ck,d) is used for ∑ 𝑐𝑖 
𝑘
𝑖=1 𝑋𝑖 + 𝑑. 

(i)The case 0 ≤ 𝑐𝑖 ≤ 1, 𝑖 = 1, … , 𝑘, and 0 ≤ ∑ 𝑐𝑖 < 1𝑘
𝑖=1  is considered first. If 𝑐𝑖 = 0, 𝑖 = 1, … , 𝑘, then δ(0, …, 

0,d) is admissible since it is the only estimator with zero risk at 𝜃 = 𝑑. For finding the Bayes estimator of 𝜃, consider 

the normal prior with mean 𝜇 and variance 𝜏 2.
 The posterior distribution is then normal with mean and variance given 

by 

∑
ni

σ2
i
Xi+

μ

τ 2  
 k

i=1

∑
ni

σ2
i

k
i=1 +

1

τ 2  

  and   
1

∑
ni

σ2
i

k
i=1 +

1

τ 2  

 

Respectively.it can be seen that the unique Bayes estimator is  

∑ (

ni
σ2

i

∑
ni

σ2
i

k
i=1 +

1

τ 2  

)k
i=1 Xi +

μ

τ 2  

∑
ni

σ2
i

k
i=1 +

1

τ 2  

                                (3.2) 

and that the associated Bayes risk is finite and hence admissible. It follows that δ(c1, …, ck,d) is admissible whenever 

0 ≤ 𝑐𝑖 ≤ 1,, 𝑖 = 1, … , 𝑘 , and 0 ≤ ∑ 𝑐𝑖 < 1𝑘
𝑖=1 . 

(ii) If 𝑐𝑖 =

𝑛𝑖
𝜎2

𝑖

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1

= 𝑐𝑖´ (say),  𝑖 = 1, … , 𝑘, and 𝑑 = 0, the risk of δ(c1´, …, ck ,́0) as seen from (3.1) is given by  

ρ(c₁´, … , ck´, 0) =
1

∑ ni/σ2
i

k
i=1

 

Note that if ∑ 𝑐𝑖 = 1 𝑘
𝑖=1  and = 0, then we have  

ρ(c1, … , ck, d) = ∑
ci

2σ2
i

ni

k
i=1                                   (3.3) 

It can be shown that the risk (3.3) is minimized under ∑ 𝑐𝑖 = 1 𝑘
𝑖=1 , when 𝑐𝑖 = 𝑐𝑖´ , and hence ∑ 𝑐𝑖  

𝑘
𝑖=1 𝑋𝑖  is 
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inadmissible when 𝑐𝑖 ≠ 𝑐𝑖´. To show that δ(c1´, …, ck ,́0) is admissible, the limiting Bayes method due to Blyth 

(1951)may be used. Suppose that δ(c1´, …, ck ,́0) is not admissible. Then, there is an estimator δ
*
 such that  

R(θ, δ∗) ≤ R(θ, ∑ ci 

k

i=1

Xi) 

    =
1

∑ ni/σ2
i

k
i=1

 

For all 𝜃, and with strict inequality for at least some 𝜃. Now, 𝑅(𝜃, δ) is a continuous function of 𝜃 for every δ so 

that there exists 𝜖 > 0   and 𝜃0 < 𝜃1 such that  

R(θ, δ∗) <  
1

∑ ni/σ2
i

k
i=1

−  ϵ 

For all 𝜃0 < 𝜃 < 𝜃1. Let 𝑟𝜏
∗ be the average risk of δ∗ with respect to the prior distribution 𝑁(0, 𝜏2), and let 𝑟𝜏 be 

the Bayes risk of the Bayes estimator (3.2) with respect to 𝑁(0, 𝜏2). Then it follows that  

rτ =
1

∑
ni

σ2
i

k
i=1 +

1
τ2

 

Hence 

1

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1

− 𝑟𝜏
∗

1

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1

−𝑟𝜏

=

1

√2𝜋𝜏
∫ [

1

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1

−𝑅(𝜃,δ∗)]𝑒
−𝜃2

2𝜏2 𝑑𝜃
+∞

−∞

1

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1

−
1

∑
𝑛𝑖

𝜎2
𝑖

𝑘
𝑖=1 +

1

𝜏2

  

≥
𝜏(∑

𝑛𝑖
𝜎2

𝑖

𝑘
𝑖=1 )(∑

𝑛𝑖
𝜎2

𝑖

𝑘
𝑖=1 +

1

𝜏2)𝜖

√2𝜋
 ∫ 𝑒

−𝜃2

2𝜏2 𝑑𝜃
𝜃1

𝜃0
. 

The integrand converges monotonically to 1 as 𝜏 → ∞ and hence by the Lebesgue monotone convergence theorem, the 

integral converges to 𝜃1−𝜃0 and hence the ratio converges to ∞. Thus, there exists 𝜏0 < ∞ such that 𝑟𝜏0
∗ < 𝑟𝜏0

, 

which contradicts the fact that 𝑟𝜏0
 is the Bayes risk for 𝑁(0, 𝜏0

2). It follows that δ(c1´, …, ck ,́0) is admissible. 

4. The Inadmissibility Results under Loss (1.1) 

To see what can be said about the other values of 𝑐𝑖᾿s, 𝑖 = 1, … , 𝑘, we shall now prove an inadmissibility result for 

linear estimators ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑, which is quite general and in particular does not require the assumption of normality. 

Theorem 4.1: The estimator ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is inadmissible under squared error loss whenever one of the following 

conditions hold. 

(i) 𝑐𝑖 > 1, for some 𝑖 = 1,2, … , 𝑘 

(ii) 𝑐𝑖 ≤ 1, 𝑐𝑖+𝑐𝑗 > 1, for some 𝑖, 𝑗 = 1,2, … , 𝑘 

(iii) 𝑐𝑖 < 0, ∑ 𝑐𝑗 ≤ 1𝑗≠𝑖 , for some 𝑖 = 1,2, … , 𝑘 

(iv) 𝑐𝑖 ≤ 1, ∑ 𝑐𝑗 < 0𝑗≠𝑖 , for some 𝑖 = 1,2, … , 𝑘 

(v) ∑ 𝑐𝑖  𝑘
𝑖=1 ≤ 0. 

Proof : (i) If 𝑐𝑖 > 1, for some 𝑖 = 1,2, … , 𝑘, then it follows from (3.1) that  

𝜌(𝑐1, … , 𝑐𝑘, 𝑑) ≥  
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

>
𝜎2

𝑖

𝑛𝑖

= 𝜌(0, … ,0,1,0, … ,0) 

So that ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by 𝑋𝑖 and hence is inadmissible. 

(ii) If 𝑐𝑖 ≤ 1, 𝑐𝑖+𝑐𝑗 > 1, for some 𝑖, 𝑗 = 1,2, … , 𝑘, then 𝑐𝑗
2 > (1 − 𝑐𝑖)2 and hence 
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𝜌(𝑐1, … , 𝑐𝑘 , 𝑑) ≥  
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

+
𝑐𝑗

2𝜎2
𝑗

𝑛𝑗

 

>
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖
+

(1−𝑐𝑖)2𝜎2
𝑗

𝑛𝑗
. 

But the function 𝑔(𝑐𝑖) =
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖
+

(1−𝑐𝑖)2𝜎2
𝑗

𝑛𝑗
 is minimized when 𝑐𝑖 =

𝜎2
𝑗/𝑛𝑗

𝜎2
𝑖/𝑛𝑖 +𝜎2

𝑗/𝑛𝑗
= 𝑐𝑚𝑖𝑛 (say), also  

𝑔(𝑐𝑚𝑖𝑛) =
𝜎2

𝑖𝜎2
𝑗/𝑛𝑖𝑛𝑗

𝜎2
𝑖/𝑛𝑖 +𝜎2

𝑗/𝑛𝑗
= 𝑅(𝜃, 𝑐𝑚𝑖𝑛𝑋𝑖 + (1 − 𝑐𝑚𝑖𝑛)𝑋𝑗). 

Thus, ∑ 𝑐𝑖  𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by 𝑐𝑚𝑖𝑛𝑋𝑖 + (1 − 𝑐𝑚𝑖𝑛)𝑋𝑗 and hence is inadmissible. 

(iii) If 𝑐𝑖 < 0, ∑ 𝑐𝑗𝑗≠𝑖 ≤ 1, for some 𝑖 = 1,2, … , 𝑘, then (∑ 𝑐𝑖  
𝑘
𝑖=1 − 1)2 >  (∑ 𝑐𝑗𝑗≠𝑖 − 1)2 and hence  

𝜌(𝑐1, … , 𝑐𝑘 , 𝑑) >  ∑
𝑐𝑗

2𝜎2
𝑗

𝑛𝑗

 + [(∑ 𝑐𝑖  

𝑘

𝑖=1

− 1) 𝜃 + 𝑑]

2

𝑗≠𝑖

 

= ∑
𝑐𝑗

2𝜎2
𝑗

𝑛𝑗

 + (∑ 𝑐𝑖  

𝑘

𝑖=1

− 1)

2

[𝜃 +
𝑑

∑ 𝑐𝑖  
𝑘
𝑖=1 − 1

]

2

𝑗≠𝑖

 

> ∑
𝑐𝑗

2𝜎2
𝑗

𝑛𝑗

 + (∑  𝑐𝑗 − 1 

𝑗≠𝑖

)2

𝑗≠𝑖

[𝜃 +
𝑑

∑ 𝑐𝑖  
𝑘
𝑖=1 − 1

]

2

 

= ∑
𝑐𝑗

2𝜎2
𝑗

𝑛𝑗

 + [(∑  𝑐𝑗 − 1 

𝑗≠𝑖

) 𝜃 +
(∑  𝑐𝑗 − 1)𝑑 𝑗≠𝑖

∑  𝑐𝑖 − 1 𝑗≠𝑖

]

2

𝑗≠𝑖

 

= 𝜌 (𝑐1, … , 𝑐𝑖−1, 0, 𝑐𝑖+1, … , 𝑐𝑘 ,
(∑  𝑐𝑗−1)𝑑 𝑗≠𝑖

∑  𝑐𝑖−1 𝑗≠𝑖
). 

Thus in this case, ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by the estimator 

∑  𝑐𝑗  𝑋𝑗 +𝑗≠𝑖

(∑  𝑐𝑗−1)𝑑 𝑗≠𝑖

∑  𝑐𝑖−1 𝑗≠𝑖
. 

(iv) If 𝑐𝑖 ≤ 1, ∑ 𝑐𝑗𝑗≠𝑖 < 0, for some 𝑖 = 1,2, … , 𝑘, then ( ∑ 𝑐𝑖  
𝑘
𝑖=1 − 1)2 > (𝑐𝑖 − 1)2 and hence 

𝜌(𝑐1, … , 𝑐𝑘 , 𝑑) ≥  
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

+ [(∑ 𝑐𝑖  

𝑘

𝑖=1

− 1) 𝜃 + 𝑑]

2

 

=
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

+ (∑ 𝑐𝑖  

𝑘

𝑖=1

− 1)2 [𝜃 +
𝑑

∑ 𝑐𝑖  𝑘
𝑖=1 − 1

]

2

 

>
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

+ (𝑐𝑖 − 1)2 [𝜃 +
𝑑

∑ 𝑐𝑖  
𝑘
𝑖=1 − 1

]

2

 

=
𝑐𝑖

2𝜎2
𝑖

𝑛𝑖

+ [(𝑐𝑖 − 1)𝜃 +
(𝑐𝑖 − 1)𝑑

∑ 𝑐𝑖  𝑘
𝑖=1 − 1

]

2
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=  𝜌 (0, … ,0, 𝑐𝑖 , 0, … ,0,
(𝑐𝑖−1)𝑑

∑ 𝑐𝑖 𝑘
𝑖=1 −1

). 

Thus, ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by 𝑐𝑖  𝑋𝑖 +

(𝑐𝑖−1)𝑑

∑ 𝑐𝑖 𝑘
𝑖=1 −1

. 

(v) If ∑ 𝑐𝑖  
𝑘
𝑖=1 ≤ 0, then( ∑ 𝑐𝑖  

𝑘
𝑖=1 − 1)2 > 1 and hence  

ρ(c1, … , ck, d) ≥ [(∑ ci 
k
i=1 − 1)θ + d]

2
  

=  (∑ 𝑐𝑖  

𝑘

𝑖=1

− 1)2 [𝜃 +
𝑑

∑ 𝑐𝑖  
𝑘
𝑖=1 − 1

]

2

 

> [𝜃 +
𝑑

∑ 𝑐𝑖  𝑘
𝑖=1 − 1

]

2

 

= 𝜌 (0, … ,0,
−𝑑

∑ 𝑐𝑖 𝑘
𝑖=1 −1

). 

Thus, ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by the constant estimator 𝛿 =

−𝑑

∑ 𝑐𝑖 𝑘
𝑖=1 −1

. 

5. The Admissibility Results Under Loss (1.2) 

Consider the question of admissibility of the estimators of the from ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 under the loss (1.2). Since the 

parameter 𝑏 does not have any influences on our results so without loss of generality we can take 𝑏 = 1. The risk 

function of the estimator ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 with respect to the loss (1.2) is easily computed as  

𝛾(𝑐1, … , 𝑐𝑘 , 𝑑) = 𝐸 [𝑒𝑎(∑ 𝑐𝑖 𝑘
𝑖=1 𝑋𝑖+𝑑−𝜃) − 𝑎 (∑ 𝑐𝑖  

𝑘

𝑖=1

𝑋𝑖 + 𝑑 − 𝜃) − 1] 

= 𝑒
𝑎2

2
(∑

𝑐𝑖
2𝜎2

𝑖
𝑛𝑖

𝑘
𝑖=1 )+𝑎(∑ 𝑐𝑖 𝑘

𝑖=1 −1)𝜃+𝑎𝑑
 

−𝑎(∑ 𝑐𝑖  
𝑘
𝑖=1 − 1)𝜃 − 𝑎𝑑 − 1.                                 (5.1) 

So, we have the following theorem. 

Theorem 5.1: The estimator ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑  is admissible for 𝜃  whenever 0 ≤ 𝑐𝑖 < 1 , 𝑖 = 1, … , 𝑘  and 0 ≤

∑ 𝑐𝑖 < 1 𝑘
𝑖=1 , or 𝑐𝑖 =

𝑛𝑖/𝜎𝑖
2 

∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

, 𝑖 = 1, … , 𝑘 and 𝑑 =
−𝑎

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

. 

Proof :  

(i) The case 0 ≤ 𝑐𝑖 < 1 , 𝑖 = 1, … , 𝑘  and 0 ≤ ∑ 𝑐𝑖 < 1 𝑘
𝑖=1 , is considered first. If 𝑐𝑖 = 0 , 𝑖 = 1, … , 𝑘 , then 

𝛿(0, … , 0, 𝑑) is admissible since it is the only estimator with zero risk at 𝜃 = 𝑑. 

Now consider the Bayes estimator when the prior distribution on 𝜃 is normal with mean 𝜇 and variance 𝜏2. Then, 

using (3.2) in Zellner (1986), it follows that the unique Bayes estimator is  

∑ ( 
ni/σi

2 

∑ ni/σi
2+1/τ2k

i=1

)k
i=1 Xi −

1 

∑ ni/σi
2+1/τ2k

i=1

(
a

2
−

μ

τ2).                      (5.2) 

and that the associated Bayes risk is finite and hence admissible. It follows that ∑ 𝑐𝑖  𝑘
𝑖=1 𝑋𝑖 + 𝑑 is admissible whenever 

0 ≤ 𝑐𝑖 < 1, 𝑖 = 1, … , 𝑘 and 0 < ∑ 𝑐𝑖 < 1 𝑘
𝑖=1 .  

(ii) If 𝑐𝑖 =
𝑛𝑖/𝜎𝑖

2 

∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

 (the same 𝑐𝑖
′) and 𝑑 =

−𝑎

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

= 𝑑′(say ), then the risk of 𝛿(𝑐1
′ , … , 𝑐𝑘

′ , 𝑑′) as is seen from 
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(5.1) is given by  

γ(c1
′ , … , ck

′ , d′) =
a

2 ∑ ni/σi
2k

i=1

. 

Note that if ∑ 𝑐𝑖  
𝑘
𝑖=1 = 1, then we have  

γ(c1, … , ck, d) = e
a2

2
(∑

ci
2σ2

i
ni

k
i=1 )+ad

− ad − 1.                     (5.3) 

It can be shown that the risk (5.3) is minimized when 𝑐𝑖 = 𝑐𝑖
′ and = 𝑑′, and hence in this case 𝛿(𝑐1, … , 𝑐𝑘 , 𝑑) is 

inadmissible when 𝑐𝑖 ≠ 𝑐𝑖
′ and 𝑑 ≠ 𝑑′. To show that 𝛿(𝑐1

′ , … , 𝑐𝑘
′ , 𝑑′) is admissible, again the limiting Bayes method 

may be used. Suppose that 𝛿(𝑐1
′ , … , 𝑐𝑘

′ , 𝑑′) is not admissible, then there exists an estimator 𝛿∗ such that  

𝑅(𝜃, 𝛿∗) ≤  𝑅(𝜃, ∑ 𝑐𝑖
′ 

𝑘

𝑖=1

𝑋𝑖 + 𝑑′) 

=
𝑎2

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

 

for all 𝜃, and with strict inequality for at least some 𝜃. By the continuity of 𝑅(𝜃, 𝛿), there exists 𝜖 > 0 and 𝜃0 < 𝜃1 

such that 

𝑅(𝜃, 𝛿∗) <  
𝑎2

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

−  𝜖 

for all 𝜃0 < 𝜃 < 𝜃1. Let 𝑟𝜏
∗ be the average risk of 𝛿∗ with respect to the prior distribution 𝑁(0, 𝜏2). Then it can be 

shown that  

𝑟𝜏 =
𝑎2

2(∑ 𝑛𝑖/𝜎𝑖
2  + 1/𝜏2)𝑘

𝑖=1

 

Hence  

 
𝑎2

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

− 𝑟𝜏
∗

 
𝑎2

2 ∑ 𝑛𝑖/𝜎𝑖
2𝑘

𝑖=1

− 𝑟𝜏

=    

1

√2𝜋𝜏
∫ [

𝑎2

∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

− 𝑅(𝜃, δ∗)] 𝑒
−𝜃2

2𝜏2 𝑑𝜃
+∞

−∞

𝑎2

2 ∑ 𝑛𝑖/𝜎2
𝑖

𝑘
𝑖=1

−
𝑎2

2(∑ 𝑛𝑖/𝜎𝑖
2  + 1/𝜏2)𝑘

𝑖=1

 

>   
2𝜏(∑ 𝑛𝑖/𝜎2

𝑖
𝑘
𝑖=1 )(∑ 𝑛𝑖/𝜎2

𝑖
𝑘
𝑖=1 +1/𝜏2)𝜖

√2𝜋𝑎2  ∫ 𝑒
−𝜃2

2𝜏2 𝑑𝜃
𝜃1

𝜃0
. 

The integrand converges monotonically to 1 as 𝜏 → ∞ and hence by the Lebesgue monotone convergence theorem, the 

integral converges to 𝜃1−𝜃0 and hence the ratio converges to ∞. Thus, there exists 𝜏0 < ∞ such that 𝑟𝜏0
∗ < 𝑟𝜏0

, 

which contradicts the fact that 𝑟𝜏0
 is the Bayes risk for 𝑁(0, 𝜏0

2). It follows that ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is admissible when 

𝑐𝑖 = 𝑐𝑖
′ for = 1, … , 𝑘, and 𝑑 = 𝑑′. 

6. The Inadmissibility Results Under Loss (1.2) 

We shall now prove an inadmissibility result for linear estimators under the loss (1.2). 

Theorem 6.1: The linear estimator ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is inadmissible under LINEX loss whenever one of the following 

conditions hold  

(i) 𝑐𝑖 > 1 for some 𝑖 = 1, … , 𝑘  

(ii) 𝑐𝑖 ≤ 1, 𝑐𝑖 + 𝑐𝑗 > 1, for some 𝑖, 𝑗 = 1,2, … , 𝑘 

(iii) 𝑐𝑖 < 0 for some 𝑖 = 1, … , 𝑘. 

Proof: (i) If 𝑐𝑖 > 1 for some 𝑖 = 1, … , 𝑘, then  
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γ(c1, … , ck, d) = e
a2

2
(∑

ci
2σ2

i
ni

k
i=1 )+a(∑ ci k

i=1 −1)θ+ad
− a (∑ ci 

k

i=1

− 1) θ − ad − 1 

≥
a2

2
(∑

cj
2σ2

j

nj

k
j=1 ) (since ex ≥ 1 + x) 

≥     
𝑎2𝑐𝑖

2𝜎2
𝑖

2𝑛𝑖

 

>         
𝑎2𝜎2

𝑖

2𝑛𝑖

 

= 𝛾 (0, … ,0,1,0, … ,0,
−𝑎𝜎2

𝑖

2𝑛𝑖
). 

So that ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by 𝑋𝑖 −

𝑎𝜎2
𝑖

2𝑛𝑖
. 

(ii) If 𝑐𝑖 ≤ 1, 𝑐𝑖 + 𝑐𝑗 > 1, for some 𝑖, 𝑗 = 1,2, … , 𝑘, then 𝑐𝑗
2 > (1 − 𝑐𝑖)2 and hence  

γ(c1, … , ck, d) ≥
a2ci

2σi
2

2ni
+

a2cj
2σj

2

2nj
  

>
𝑎2𝑐𝑖

2𝜎𝑖
2

2𝑛𝑖
+ 

𝑎2(1−𝑐𝑖)2𝜎𝑗
2

2𝑛𝑗
. 

But the function 𝑔(𝑐𝑖) =
𝑎2𝑐𝑖

2𝜎𝑖
2

2𝑛𝑖
+ 

𝑎2(1−𝑐𝑖)2𝜎𝑗
2

2𝑛𝑗
 is minimized at 𝑐𝑖 =

𝜎𝑗
2/𝑛𝑗

𝜎𝑖
2/𝑛𝑖+𝜎𝑗

2/𝑛𝑗
 (the same 𝑐𝑚𝑖𝑛), and  

𝑔(𝑐𝑚𝑖𝑛) =
𝑎2𝜎𝑖

2𝜎𝑗
2/𝑛𝑖𝑛𝑗

2(𝜎𝑖
2/𝑛𝑖+𝜎𝑗

2/𝑛𝑗)
= 𝑅(𝜃, 𝑐𝑚𝑖𝑛𝑋𝑖 + (1 − 𝑐𝑚𝑖𝑛)𝑋𝑗 + 𝑑0)  

Where 

𝑑0 =
−𝑎2𝜎𝑖

2𝜎𝑗
2/𝑛𝑖𝑛𝑗

2(𝜎𝑖
2/𝑛𝑖+𝜎𝑗

2/𝑛𝑗)
. 

Thus in this case, ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by 𝑐𝑚𝑖𝑛𝑋𝑖 + (1 − 𝑐𝑚𝑖𝑛)𝑋𝑗 + 𝑑0). 

(iii) If 𝑐𝑖 < 0 for some 𝑖 = 1, … , 𝑘, then it will be shown that ∑ 𝑐𝑖  
𝑘
𝑖=1 𝑋𝑖 + 𝑑 is dominated by ∑ 𝑐𝑗

∗
𝑗≠𝑖 𝑋𝑗 + 𝑑∗ where 

𝑐𝑗
∗ =

𝑐𝑗

1−𝑐𝑖
 for 𝑗 ≠ 𝑖 and 𝑑∗ =

𝑑

1−𝑐𝑖
+

𝑎𝑐𝑖

2(1−𝑐𝑖)3
∑

𝑐𝑗
2𝜎𝑗

2

𝑛𝑗
𝑗≠𝑖 . since 𝑒

𝑎2𝑐𝑖
2𝜎𝑖

2

2𝑛𝑖 > 1, we have from (5.1) 

γ(c1, … , ck, d) − γ(c1
∗, … , ci−1

∗ , 0, ci+1
∗ , … , ck

∗ , d∗) 

> e
a2

2
∑

cj
2σj

2

nj
j≠i +a(∑ cj−1)θ+adk

j=1
 

− e
a2

2
∑

cj
∗2

σj
2

nj
+a(∑ cj

∗−1)θ+ad∗
j≠ij≠i

 

−aciθ − a ∑ (cj − cj
∗)θ − a(d − d∗)j≠i  . 

Now, using the inequality 

ex − ey ≥ (x − y)ey for all x, y, 

and noting that 𝑐𝑗
2 − 𝑐𝑗

∗2
=

𝑐𝑖(𝑐𝑖−2)𝑐𝑗
2

(1−𝑐𝑖)2 ≥ 0, for all 𝑗 = 1, … , 𝑘, and 𝑗 ≠ 𝑖,it follows that  
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γ(c1, … , ck, d) − γ(c1
∗, … , ci−1

∗ , 0, ci+1
∗ , … , ck

∗ , d∗) 

>  [aciθ + a ∑ (cj − cj
∗)θ + a(d − d∗)j≠i ]  

×  e
a2

2
∑

cj
∗2

σj
2

nj
+a(∑ cj

∗)θ+ad∗−aj≠ij≠i θ
 

−aciθ − a ∑ (cj − cj
∗)θ − a(d − d∗)j≠i . 

But cj − cj
∗ =  −cicj

∗ for j ≠ i and −d∗ = −cid
∗ −

aci

2
∑

cj
∗2

σj
2

nj
j≠i , hence  

γ(c1, … , ck, d) − γ(c1
∗, … , ci−1

∗ , 0, ci+1
∗ , … , ck

∗ , d∗) 

>  [aciθ − aci(∑ cj
∗)θ − acid

∗ −
a2ci

2
∑

cj
∗2

σj
2

njj≠ij≠i
] 

×  e
a2

2
∑

cj
∗2

σj
2

nj
+a(∑ cj

∗)θ+ad∗−aj≠ij≠i θ
 

−aciθ + aci(∑ cj
∗)θ + acid

∗ +
a2ci

2
∑

cj
∗2

σj
2

njj≠ij≠i
 

= −ci [
a2

2
∑

cj
∗2

σj
2

nj

+ a(∑ cj
∗)θ + ad∗ − aθ

j≠ij≠i
] 

× [e
a2

2
∑

cj
∗2

σj
2

nj
+a(∑ cj

∗)θ+ad∗−aj≠ij≠i θ
− 1] ≥ 0. 

Since 𝑐𝑖 < 0 and (𝑒𝑦 − 1) ≥ 0, for all 𝑦. 

Remark (6.1): The BLRUE estimators given in (2.5) and (2.6) are admissible and minimax. 

Acknowledgement 

The grant of alzahra university is appreciated. 

References 

Blyth, C. R. (1951). On minimax statistical decision procedures and their admissibility. Ann. Math. Statist., 22, 22-42.  

https://doi.org/10.1214/aoms/1177729690 

Graybill, F.A., & Deal, R.B. (1959). Combination of unbiased stimators. Biometrics., 15, 543-550.  

https://doi.org/10.2307/2527652 

Lehmann, E, L., & Casella, G. (1998). Theory of point Estimation. Springer-Verlag, New York.  

Pal, N., & Sinha, B. K. (1996). Estimation of a common mean of several normal populations: a review. Far East j.math. 

Sci. Special volume. Part I, 97-110. 

Rojo, j. (1987). On the admissibility of 𝑐𝑋 ̅ + 𝑑 with respect to the LINEX loss function, common. Statist. Theory 

Meth., 16, 3745-3748. https://doi.org/10.1080/03610928708829603 

Sadooghi-Alvandi, S. M., & Nematollahi, N. (1989). A note on the admissibility of 𝑐𝑋 ̅ + 𝑑 relative to the LINEX loss 

function, commun. Statist. Theory Meth. 18, 1871-1873. https://doi.org/10.1080/03610928908830007 

Sanjari Farsipour, N. (1999). Risk unbiased equivariant estimation of a common normal mean vector under LINEX loss 

function. Iranian Journal of Science and Technology., 23, 1-6. 

Sanjari Farsipour, N., & Asgharzadeh, A. (2002). On the admissibility of estimators of the common mean of two normal 

populations under symmetric and asymmetric loss functions. South African Statist. J. 36, 39-54. 

Sinha, B. K., & Mouqadem, O. (1982). Estimation of the common mean of two univariate normal populations, commun. 

Statist. Theory Meth., 11, 1603-1614. https://doi.org/10.1080/03610928208828334 

Varian, H. R. (1975). A Bayesian approach to real estate assessment. “in studies in bayesian Econometrics and statistics 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 6, No. 4; 2017 

79 

in honor of Leonard j, Savage”. eds S. E. Fienberg and A. Zellner, 195-208. Amsterdam: North Holland. 

Zellner, A. (1986), Bayesian estimation and prediction using asymmetric loss function, Jour. Amer. statist. Assoc., 81, 

446-451. https://doi.org/10.1080/01621459.1986.10478289 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.1080/01621459.1986.10478289

