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Abstract

First, it is shown that a univariate bona fide density approximation can be obtained by assuming that the derivative of
the logarithm of the density function under consideration is expressible as a rational function or a polynomial. Then, the
density function of a bivariate continuous random vector is approximated by standardizing it and applying a polynomial
adjustment to the product of the density approximants of the marginal distributions. As well, it is explained that this
approach can easily be extended to the estimation of density functions. For illustrative purposes, the proposed method-
ology is applied to several datasets. Since this technique is solely based on sample moments, it readily lends itself to the
modeling of large datasets.

Keywords: log-density, density approximation, joint moments, bivariate density estimation

1. Introduction

We initially consider the problem of approximating the density function of a continuous random variable. Obtaining
an accurate density approximation can prove useful when the exact density function of a statistical quantity such as an
estimator or a test statistic may not be tractable or have a simple closed form. The flexible methodology that is proposed
relies on the moments of the target distribution and can even be utilized to approximate irregular or multimodal density
functions.

There exist several types of density estimates and approximants. However, many of these techniques will fail to pro-
vide adequate approximations, especially when the target density is not a smooth unimodal function. Silverman (1986)
provides a survey of the various available methodologies while (Reid, 1988) focuses on the saddlepoint approximation.
Moment-based techniques are described for instance in (Elderton & Johnson, 1969), (Solomon & Stephens, 1978) and
(Provost, 2005). Efromovich (1999) presents a unified account of nonparametric approaches to density estimation. Other
types of nonparametric density estimates that are based on the L1 norm are presented in (Devroye, 1985) while both para-
metric and nonparametric approaches are discussed in (Eggermont, 2001). The multivariate case is extensively treated in
(Scott, 2015).

The bivariate density estimation methodology that is introduced in this paper relies on a univariate density approximation
technique that produces differentiated log-density approximants (DLDA’s) whereby the derivative of the logarithm of a
density function is assumed to be expressible as a rational function. This approach only necessitates the moments of
a distribution up to some particular order; accordingly, when used in conjunction with sample moments, it enables one
to process large amounts of data that often arrive in streams without having to access previously collected observations.
Upon solving a system of linear equations, the coefficients of the rational function can easily be determined, the density
approximant being then obtained by solving a differential equation. This density estimation technique is then applied to
each of the marginal distributions of a standardized bivariate sample; the product of the resulting density estimates serves
as a base density that is adjusted by means of a bivariate polynomial whose coefficients are determined from the joint
sample moments of the standardized dataset being modeled as well as those associated with the base density function.
The resulting expressions assume relatively simple functional representations that can lend themselves to algebraic ma-
nipulations; this is not the case for kernel density estimates, which incidentally may not be as accurate, as is suggested by
a numerical example (Example 3.1) involving a sample of simulated values.

This paper is organized as follows. First, the technique being utilized for obtaining univariate DLDA’s is developed in
Section 2, including the special case where the derivative of the logarithm of the target density function is assumed to
be a polynomial. The bivariate case is then considered in Section 3 where DLDA’s are utilized to obtain approximants
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or estimates of the marginal density functions whose product is adjusted by a bivariate polynomial. To illustrate the
applicability of the new methodology, several numerical examples are presented in Section 4.

2. Differentiated Log-Density Approximation

This section summarizes the results obtained in (Provost & Ha, 2015) wherein a novel technique for approximating
continuous univariate density functions is introduced. This approach will be utilized in the next section to approximate
the density functions associated with each of the marginal distributions of a standardized bivariate random vector.

We now explain how differentiated log-density approximants are determined. Let fX(x) be a continuous density function
defined on the interval (α, β) ≡ S . It is assumed that the derivative of logarithm of fX(x) can be represented by a rational
function, that is,

d
dx

ln( fX(x)) =
f ′X(x)
fX(x)

= r(x), (1)

where

r(x) =
∑ν

i=0 ai xi∑δ
j=0 c j x j

=
Nν(x)
Dδ(x)

, (2)

Nν(x) and Dδ(x) being polynomials in x of orders ν and δ . Without any loss of generality, cδ, the coefficient of xδ in the
denominator of r(x), is set equal to one. After determining the ai’s and c j’s, by solving a linear system involving a certain
number of moments of the target distribution, fX(x) is approximated as

fν,δ(x) = κ e
∫ x
α

r(y) dy,

where κ is the normalizing constant, which is such that the integral of fν,δ(x) from α to β numerically integrates to one,
and e

∫ x
α

r(y) dy is the solution of the differential equation specified by (6).

In light of Equations (1) to (2), one has

f ′ν,δ(x)
δ∑

j=0

c j x j = fν,δ(x)
ν∑

i=0

ai xi, (3)

from which the polynomial coefficients can be obtained as follows: Multiplying both sides of Equation (3) by xh and
integrating over the interval (α, β) yields∫ β

α

f ′ν,δ(x)
δ∑

j=0

c jx j+hdx =
∫ β

α

fν,δ(x)
ν∑

i=0

aixi+hdx, h = 0, 1, . . . , ν + δ.

On interchanging the sum and the integral on each side of this equation and proceeding by parts for integrating the
left-hand side, one has

fν,δ(x)
δ∑

j=0

c jx j+h |βα −
δ∑

j=0

c j( j + h)
∫ β

α

x j+h−1 f ′ν,δ(x)dx =
ν∑

i=0

ai

∫ β

α

xi+h fν,δ(x) dx, h = 0, 1, . . . , ν + δ.

Note that the first term on the left-hand side, that is, fν,δ(x)
∑δ

j=0 c jx j+h |βα, will be zero whenever fν,δ(α) = fν,δ(β) = 0 ,
which is the case for most densities of interest. Thus, omitting this term and letting µh, h = 0, 1, . . . , ν + δ, denote the hth

moment of the approximated density function fν,δ(x), one obtains ν + δ + 1 linear equations having the following form:

−
δ∑

j=0

c j( j + h) µ( j + h − 1) =
ν∑

i=0

ai µ(i + h), h = 0, 1, . . . , ν + δ, (4)

with µ(0) ≡ 1. In order to determine the unknown coefficients of r(x) as specified by Equation (2), one needs to solve the
linear system resulting from Equation (4). On replacing the unknown µ(h) by µX(h), for h = 0, 1, . . . , ν + δ, where µX(h)
denotes the hth moment of the distribution being approximated, one obviously obtains the following linear system:

−
δ∑

j=0

c j( j + h) µX( j + h − 1) =
ν∑

i=0

ai µX(i + h), h = 0, 1, . . . , ν + δ. (5)
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Once the solution of this linear system is obtained, one still has to solve the differential equation

f ′ν,δ(x) = r(x) fν,δ(x), (6)

where r(x) =
∑ν

i=0 aixi/
∑δ

j=0 c jx j, which can easily be achieved by making use of symbolic computation packages such
as Mathematica or Maple.

Remark 1 The degree δ is set to be the number of times the density function (or its components in the case of mixtures)
intersects the abscissa plus the number of points at which the density function is not differentiable, the roots of Dδ(x)
corresponding to the intersection points and the points of non-differentiability as the case may be. For instance, in the
case of a triangular distribution, one would let δ = 3, and for the mixture of density functions described in Example 2.1,
δ was set equal to 4.

For a given δ, let the integrated squared difference (or error) between the approximate density function fν,δ(x) and the
exact density function fX(x) over the support of the distribution be denoted by

ISD(ν) =
∫

S

(
fν,δ(x) − fX(x)

)2
dx. (7)

Remark 2 In order to quantify the discrepancy between the approximate density fν,δ(x) and the target density fX(x) and to
determine the optimal order of the numerator of r(x), we seek the value ν0 such that ISD(ν0) reaches a set tolerance level
or ISD(ν) only decreases marginally beyond ν0.

The following algorithm summarizes the DLDA procedure for approximating a univariate continuous density function
fX(x).

Algorithm Differentiated log-density approximation methodology

1. Let ν = 0 be the initial order of Nν(x) as specified in Equation (2) and δ, the order of Dδ(x), be selected as per
Remark 1. (It should be noted that, in most cases of interest, ν is greater than or equal to two.)

2. Evaluate the moments of the random variable X, that is, µX(i) for i = 0, 1, . . . , r, where r = 2ν + δ if δ ≤ ν and
r = 2δ + ν − 1 if δ > ν. (These moments replace those associated with the approximated distribution appearing in
Equation (4).)

3. Determine the coefficients of the rational function by solving the linear system (5).

4. Find the solution of the differential equation specified by (6) by making use of a symbolic computation package and
normalize the resulting function to obtain a bona fide density function fν,δ(x).

5. Evaluate ISD(ν) as defined in Equation (7).

6. Repeat Steps 2-5 with larger values of ν until ISD(ν) is deemed to be sufficiently small as per Remark 2.

Example 2.1 Suppose that fX(x) is the univariate density function of a mixture of two equally weighted beta distributions
with parameters (2, 20) and (3, 2). In this example, we set ν = 4 and δ = 4. The plots of the exact and approximate
density functions are shown in Figure 1. In this case, after rounding to three decimals, the coefficients are a0 = 0.031,
a1 = −0.709, a2 = 3.070, a3 = −3.210, a4 = 0.147, c0 = 0, c1 = −0.040, c2 = 0.407, c3 = −1.367, c4 = 1 and the density
approximant is

f4,4(x) = x0.770(1 − x)0.997(0.040 − 0.367x + x2)0.621e−0.147+1.551 arctan(2.337−12.731 x)/0.036.

2.1 Polynomial Log-density Approximants

As a particular case, one may assume that the differentiated log-density function is a polynomial of order n, that is,

d
dx

ln( fX(x)) =
n∑

i=0

aixi,

in which case c0 = 1 and the other ci’s are equal to zero in Equation (2). This gives rise to the following linear system:
µX(0) . . . µX(n)
µX(1) . . . µX(n + 1)
...

...
µX(n) . . . µX(2n)



a0
a1
...

an

 =


0
−µX(1)

...
−nµX(n − 1)

 , (8)
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Figure 1. Exact (solid line) and approximated (dashed line) density functions in connection with Example 2.1.

which, in matrix form, can be expressed as Ma = τ where a is the vector of unknown coefficients. We now show that M
is a positive definite matrix. Suppose that z is an arbitrary non-null vector ofℜn. Then,

zT Mz =
n∑

i=0

n∑
j=0

ziz j

∫ β

α

xi+ j fX(x) dx

=

∫ β

α

( n∑
i=0

zixi
)( n∑

j=0

z jx j
)

fX(x) dx

=

∫ β

α

( n∑
i=0

zixi
)2

fX(x) dx > 0.

Thus, the linear system specified by Equation (8) has the unique solution M−1τ. The resulting density approximant, which
shall be referred to as a Polynomial Log-density Approximant (PLDA), will then have the following representation:

fXn (x) = κ e
∑n

i=0 ai xi+1/(i+1) (9)

where κ the normalizing constant, is determined by numerical integration.

Remark 3 The DLDA (PLDA) methodology can be applied in the context of density estimation by replacing the exact
moments of the target distribution by the sample moments associated with a given dataset. In this case, the degree of Nν(x)
is determined in terms of the sum of the squared differences between empirical distribution function and the estimated
CDF obtained from fν,δ(x), that is, SSD(ν) =

∑n
i=1(ECDF(xi)− Fν,δ(xi))2. One could select the degree ν for which SSD(ν)

reaches a minimum value or beyond which SSD(·) does not decrease significantly. A suitable degree for Dδ(x) can be
determined by following the guidelines provided in Remark 1 on the basis of a preliminary density estimate such as a
histogram.

3. Bivariate Density Estimation

In this section, the DLDA methodology, as described in the previous section, is initially utilized to approximate each of
the marginal density functions of a standardized bivariate random vector (X, Y)′. A bivariate polynomial adjustment is
then applied to the product of the marginal density approximants to produce a bivariate density approximation. As well,
it is explained that the proposed bivariate density approximation methodology can be utilized in the context of density
estimation by substituting joint sample moments of given orders to the corresponding exact joint moments of a target
distribution.

When X and Y are independent random variables, their joint density function can be expressed as the product of the
marginal density functions, that is, fX,Y (x, y) = fX(x) fY (y). However, in general the variables forming a random vector
are not independently distributed even after standardizing it, and some adjustment to the product of the approximate or
estimated marginal density functions is needed. We are proposing to apply a bivariate polynomial adjustment to the
standardized vectors, which yields a density of the form specified in Equation (10). The density approximant/estimate
corresponding to the original bivariate distribution/data is then obtained by applying the inverse transformation.

Now, letting (wi, zi), i = 1, . . . , n, constitute a dataset with sample mean (w̄, z̄), an estimate of the covariance matrix V is
required in order to standardize these n observation vectors. Let this estimate be the m.l.e. of V , that is, V̂ = {vi j}, where
v11 = 1/n

[∑n
i=1(wi − w̄)2], v12 = v21 = 1/n

[∑n
i=1(wi − w̄)(zi − z̄)

]
and v22 = 1/n

[∑n
i=1(zi − z̄)2]. The standardized data is
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then obtained as (
xi

yi

)
= V̂−1/2

(
wi − w̄
zi − z̄

)
,

V̂−1/2 denoting the inverse of the symmetric square root of V̂ . The xi’s and the yi’s are then uncorrelated (however, in
general, they are not independently distributed), and we let

fν1,δ1,ν2,δ2,p(x, y) = fν1,δ1(x) fν2,δ2(y) πp(x, y), (10)

where fν1,δ1 (x) and fν2,δ2 (y) denote the estimated marginal density functions for the standardized vector (X, Y)′ and πp(x, y)
is a bivariate polynomial adjustment of order p in each variable. Note that whenever δi = 0, i = 1, 2, the subscript δi is
omitted on both sides of Equation (10) and that the subscript p is omitted when there is no polynomial adjustment.

The degrees ν1, δ1 and ν2, δ2 associated with the density estimates of X and Y are obtained in accordance with the
guidelines provided in Remark 3. Due to the presence of a polynomial adjustment, smoother estimates (of lesser degrees)
of the marginal density functions could be utilized.

Obtaining the Coefficients of the Polynomial Adjustment

The coefficients of the polynomial adjustment πp(x, y) =
∑p

i=0
∑p

j=0 di, j xi y j can be determined as follows. For simplicity,
we denote the estimated density function fν1,δ1,ν2,δ2,p(x, y) by fp(x, y), and fν1,δ1(x) fν2,δ2(y) by ψ(x, y) so that

fp(x, y) = ψ(x, y) πp(x, y).

Let the (k, ℓ)th joint moment associated with the exact density function f (x, y) be denoted by µ(k, ℓ) =
∫
R2

∫
xk yℓ f (x, y) dx dy

and the (k, ℓ)th joint moment associated with the initial density ψ(x, y), by m(k, ℓ) =
∫
R2

∫
xk yℓ ψ(x, y) dx dy.

In order to obtain a computable representation of the approximant fp(x, y), one needs to determine the coefficients di, j of
the polynomial adjustment. To this end, the joint moments of the exact density f (x, y) are equated to those associated
with fp(x, y), which yields

µ(k, ℓ) =
∫ ∞

−∞

∫ ∞

−∞
xkyℓ fp(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xkyℓ ψ(x, y) πp(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
xkyℓ ψ(x, y)

p∑
i=0

p∑
j=0

di, j xiy j dx dy

=

p∑
i=0

p∑
j=0

∫ ∞

−∞

∫ ∞

−∞
di, j xk+iyℓ+ j ψ(x, y) dx dy,

for k = 0, . . . , p and ℓ = 0, . . . , p, which yields the following (p + 1)2 linear equations:

µ(k, ℓ) =
p∑

i=0

p∑
j=0

di, j m(k + i, ℓ + j), k = 0, 1, 2, . . . , p and ℓ = 0, 1, 2, . . . , p.

Thus, the di, j’s can be obtained by solving the linear system Md = µ where d and µ are vectors of dimensions (p + 1)2

whose (i(p + 1) + ( j + 1))th components, di, j and µ(i, j), appear in the same order for i = 0, 1, . . . , p and j = 0, 1, . . . , p.
Note that increasing p should theoretically result in greater accuracy. The generalization to three or more variables is
straightforward.

The selection of the optimal degree p associated with πp(x, y) is then made in terms of the following sum of squared
differences:

SSD(p) =
n∑

i=1

(ECDF(wi, zi) −Gp(wi, zi))2,
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(a) Scatterplot of the original data (b) Histogram of the original data
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Figure 2. Dataset, SSD’s, estimates of the marginal densities and base density function (Example 3.1)
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(a) Exact (b) Bivariate KDE (c) Final PDF estimate g5,3,7(w, z)

Figure 3. Exact and estimated density functions (Example 3.1)

where ECDF(w, z) denotes the empirical CDF associated with the dataset and Gp(wi, zi) =
∫ wi

−∞

∫ zi

−∞ gp(w, z) dz dw is the
CDF determined from the final density estimate gν1,δ1,ν2,δ2,p(w, z) ≡ gp(w, z), which is obtained by applying the inverse of
the standardizing transformation to fp(x, y). Note that the base density function, that is, ψ(x, y) will be denoted by ϕ(w, z)
after applying this inverse transformation and that the degree of each estimated marginal density function is determined
from the SSD function applied to the corresponding component of the original dataset.

The following example which makes use of a simulated dataset, enables one to gauge the accuracy of the density estimate
obtained by making use of the proposed technique.

Example 3.1 Let X1 and X2 be bivariate normal random variables where

X1 ∼ N2

((
−1.1
−0.1

)
,

(
0.33 0.03
0.03 0.33

))
and X2 ∼ N2

((
0.2
1.2

)
,

(
0.4 0.04
0.04 0.4

))
,

whose density functions are denoted by gX1
(w, z) and gX2

(w, z), respectively and let X denote the random vector resulting
from an equally weighted mixture of their respective density functions, that is, gX (w, z) = 0.5gX1

(w, z) + 0.5gX2
(w, z).

Three thousand bivariate data points were generated from this mixture.

The scatterplot and a 3D histogram of the data are displayed in panels (a) and (b) of Figure 2. As per Remark 2, the SSD
plots of the estimated marginal density functions shown in panels (c) and (e) indicate that ν1 = 5 and ν2 = 3 are suitable
polynomial degrees. The corresponding univariate density functions are plotted in panels (d) and (f). The transformed
base density estimate g5,3(x, y) obtained from the product of the estimated marginal densities which were determined by
applying the PLDA methodology and the SSD(p) values are respectively plotted in panels (g) and (h) of Figure 2.

The bivariate exact density gX(w, z), the kernel density estimate and the final joint density estimate g5,3,7(w, z) wherein
p = 7 is selected as the optimal degree for the polynomial adjustment based on the SSD(p) values are included in Figure
3. It is observed that the plots of the estimated density based on the proposed methodology and the kernel density estimate
obtained by applying Silverman’s rule of thumb are in very close agreement with that of the exact density function, the
SSD(7) value obtained from the final density estimate g5,3,7(w, z) being 0.0249 while it is 0.1147 for the kernel density
estimate. The ISD values of the estimated density function and the kernel density estimate which were determined by
making use of the bivariate counterpart of Equation (7) are respectively 0.0006 and 0.0011.

4. Illustrative Numerical Examples

Four applications of the proposed bivariate density estimation methodology, which involve actual datasets are presented
in this section. In the first three instances, the derivative of the log-density estimate is assumed to be a polynomial whereas
it is taken to be a rational function in the fourth one.

Example 4.1 The dataset being modeled in this example was extracted from ‘CommViolPredUnnormalizedData’ which
is included in the UC Irvine Machine Learning Repository dataset. It contains 2315 observation vectors related to com-
munities and crime. It combines socio-economic data from the ’90 Census, law enforcement data from the 1990 Law
Enforcement Management and Admin Stats survey, and crime data from the 1995 FBI UCR, see (Redmond, 1990). We
selected ‘pctWFarmSelf’: the percentage of households with a farm or self employment income as the W variable and
‘perCapInc’: per capita income in 1989 as the Z variable.
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Figure 4. Dataset, SSD’s and estimates of the marginal density functions (Example 4.1)

(a) Bivariate KDE (b) Transformed base PDF ϕ(w, z) (c) Final PDF estimate g4,3,7(w, z)

Figure 5. Density estimates (Example 4.1)

The histogram of the data is displayed in panel (a) of Figure 4. The SSD plots of the estimated marginal density functions
of the standardized data shown in panels (b) and (d) of Figure 4 indicate that ν1 = 4 and ν2 = 3 are suitable degrees. The
corresponding density functions are plotted in panels (c) and (e). (The SSD’s for ν1 = 6 and ν2 = 4 are not shown as they
were comparatively too large.)

The bivariate kernel density estimate, the transformed (by means of the inverse of the standardizing transformation) base
density estimate ϕ(w, z) obtained from the product of the estimated marginal densities based on the PLDA methodology
and the final joint density estimate g4,3,7(w, z) wherein p = 7 is selected as the optimum degree for the polynomial
adjustment, as indicated by the SSD(p) values plotted in panel (f) of Figure 4, are included in Figure 5.

Example 4.2 In this example, we consider the dataset ‘Concrete’ also included in the UC Irvine Machine Learning Repos-
itory dataset, which contains 1030 observation vectors related to concrete compressive strength in civil engineering. More
information about this dataset is available in (Yeh, 1998). We selected ‘Cement’: kg in a m3 mixture as the W variable
and concrete compressive strength as the Z variable.

In Figure 6, the scatterplot and a histogram of the ‘Concrete’ data are displayed in panels (a) and (b). The SSD plots of
the estimated marginal density functions that are shown in panels (c) and (e) of Figure 6 indicate that ν1 = 4 and ν2 = 3
are suitable degrees while the corresponding univariate estimated density functions are plotted in panels (d) and (f). Large
SSD values were omitted.

The bivariate kernel density estimate, the transformed base density estimate ϕ(w, z) obtained from the product of the
estimated marginal densities based on the PLDA methodology and the final joint density estimate g4,3,6(w, z) wherein
p = 6 is selected as the optimum degree for the polynomial adjustment based on the SSD(p) values plotted in panel (c)
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Figure 6. The dataset, SSD(ν1), SSD(ν2) and estimates of the marginal density functions (Example 4.2)
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Figure 7. SSD(p) and bivariate density estimates (Example 4.2)
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Figure 8. Dataset, estimates of the marginal density functions and bivariate KDE (Example 4.3)
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Figure 9. Transformed base PDF and final PDF estimate (Example 4.3)

are all included in Figure 7. We observe that the proposed density estimate which has an SSD of 0.0886 reflects the most
salient features of the histogram more accurately than the kernel density estimate for which the SSD is 0.1369.

Example 4.3 The dataset being considered, which is called ‘Covertype’, contains 581, 012 observations. It was extracted
from the UC Irvine Machine Learning Repository dataset. This data was analyzed in (Blackard and Denis, 2000) in
connection with forest cover studies. We selected horizontal distance in meters to nearest roadway as the W variable and
horizontal distance in meters to nearest wildfire ignition points as the Z variable. Figure 8 displays a three-dimensional
histogram of the data as well as f5(x) and f6(y), the estimated marginal density functions, and the corresponding histogram
plots. The bivariate kernel density estimate is shown in panel (d).

The transformed base density estimate ϕ(w, z) and the final joint density estimate g5,6,7(w, z) wherein p = 7 is the selected
degree of the polynomial adjustment are both included in Figure 9. We observe that the proposed density estimate is
consistent with the histogram of the observations.

Example 4.4 Finally, the bivariate dataset being considered and referred to as the ‘Flood’ data was collected in the
Madawaska Basin, Quebec, from 1990-1995. It includes 77 observations. The first component of the data is the peak
value and the second one is the volume. In this case, the DLDA methodology is applied and it is appropriate to let
δ1 = δ2 = 2.

The scatterplot and a histogram of the data are displayed in panels (a) and (b) of Figure 10. The SSD plots of the estimated
marginal density functions that are shown in panels (c) and (e) of Figure 10 indicate that ν1 = 5 and ν2 = 5 are suitable
degrees. The corresponding density functions are plotted in panels (d) and (f).

The bivariate kernel density estimate, the transformed density estimate ϕ(w, z), that is, the transformed product of the
estimated marginal densities, and the final joint density estimate g5,2,5,2,6(w, z) wherein p = 6 is selected as the optimal
degree for the polynomial adjustment based on the SSD(p) values plotted in panel (c) are all included in Figure 11. The
SSD associated with the proposed density estimate, that is, 0.0265 is about a third of that corresponding to the kernel
density estimate, which is 0.0782.

5. Concluding Remarks

A technique is developed whereby the derivative of the logarithm of a univariate continuous density function is approxi-
mated by a rational function, which enables one to obtain bona fide density approximants for each of the marginals of a
standardized continuous bivariate density function. Then, a bivariate density approximant is determined by adjusting the
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Figure 10. Dataset, SSD’s and estimates of the marginal density functions (Example 4.4)
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Figure 11. SSD and density estimates (Example 4.4)
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product of the marginal density approximants (taken as base density function) by means of a bivariate polynomial whose
coefficients are determined from the joint moments associated with the standardized target and base density functions. The
methodology is then extended to be applicable in the context of density estimation on the basis of a set of observations by
making use of their joint sample moments. This approach, which is well suited for modeling massive datasets, can readily
be applied in multivariate settings. The Mathematica code utilized to carry out the calculations and to produce the graphs
is available from the authors upon request.
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