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Abstract

Our purpose in this study includes introducing a new family of distributions as an alternative to beta-G (B-G) distribution
with flexible hazard rate and greater reliability which we call Truncated Weibull-G (TW-G) distribution. We shall discuss
several submodels of the family in detail. Then, its mathematical properties such as expansions, probability density func-
tion and cumulative distribution function, moments, moment generating function, order statistics, entropies, unimodality,
stochastic comparison with the B-G distribution and stress-strength reliability function are studied. Moreover, we study
shape of the density and hazard rate functions, and based on the maximum likelihood method, estimate parameters of the
model. Finally, we apply the model to a real data set and compare B-G distribution with our proposed model.
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1. Introduction

In the past decades, many authors have shown interest in obtaining new classes of probability distributions with higher
flexibility in applications. Exponentiated exponential family by Gupta and Kundu (2001), exponentiated Weibull family
by Nassar and Eissa (2003), exponentiated beta distribution by Nadarajah (2005a), exponentiated Pareto distribution by
Nadarajah (2005b) and generalized Gumbel distribution by Cooray (2010) are examples of such interests.

Eugene, Lee and Famoye (2002) proposed a family of beta-G distributions by

F(x) =
1

B(β, α)

∫ G(x)

0
tβ−1(1 − t)α−1dt, (1)

where β > 0, α > 0, G(x) is a distribution function and B(β, α) =
∫ 1

0 tα−1(1 − t)β−1dt is the beta function. Recently,
several new distributions have been introduced following the proposed work by Eugene et al. (2002), including the beta-
Gumble and beta-exponential distributions by Nadarajah and Kots (2004,2006), respectively, beta-Weibull distribution by
Lee, Famoye and Olumolade (2007), beta-generalized exponential distribution by Barreto-Souza, Santos and Cordeiro
(2010), beta-modified Weibull distribution by Silva, Ortega and Cordeiro (2010), beta-Weibull-geometric distribution by
Cordeiro, Silva and Ortega (2013), beta-generalized gamma distribution by Cordeiro et al. (2013), beta-lindley distribution
by MirMostafaee, Mahdizadeh and Nadarajah (2015) and beta-generalized Marshall-Olkin-G family by Handique and
Chakraborty (2016).

Weibull distribution plays an important role in Reliability Theory. In fact, Weibull distribution is the first candidate for
modeling cases with monotone hazard rates but it is not a good candidate for modeling cases with non-monotone hazard
rates. Thus, we can see several authors attempting to modify the Weibull distribution for applying in cases with non-
monotone hazard rates. The truncated Weibull distribution is one of such distributions with bathtub shaped hazard rate
function. The truncated Weibull distribution has been applied in several engineering fields, partly because it has more
flexible hazard rate than Weibull distribution.

As seen in Eq. (1), the baseline pdf is beta distribution defined on the interval [0, 1]. This fact motivated us to introduce a
new class of truncated Weibull-G distributions by inserting the truncated Weibull distribution with support [0, 1] into Eq.
(1), instead of the beta distribution. Truncated Weibull-G distribution compared to Beta-G distribution is more reliable
and has explicit forms for its cumulative distribution function (cdf) and hazard rate function (hrf).

Therefore, in Section 2, first propose the new truncated Weibull-G (TW-G) family of distributions. Density, hazard rate
and quantile functions of this model are discussed in this section. In Section 3, its several submodels are studied. Several
mathematical characteristics of the model such as cdf and pdf, moments and moment generating function, Renyi and
Shannon entropies, order statistics, unimodal property and stress-stregnth reliability function for TW-G distributions are
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considered in Section 4. In this section, the new family are stochastically compared with the more classic B-G distinction
and it is revealed that as a lifetime distribution it has larger reliability. We then describe shapes behavior of the pdf and
hrf in Section 5. Maximum likelihood estimates and the observed information matrix are considered in Section 6. In last
section, an application of several submodels to a real data are considered and they are compared to several corresponding
submodels of beta-G distribution, where it is illustrated that our proposed distribution has better reliability than the beta-G
distribution in (1).

2. The New Family

By replacing the truncated Weibull distribution with support [0, 1] with beta distribution in Eq. (1), we have

F(x) =
∫ G(x)

0

αβtβ−1 exp(−αtβ)
1 − exp(−α)

dt =
1 − exp(−αG(x)β)

1 − exp(−α)
. α > 0, β > 0 (2)

Henceforth, we indicate a random variable X with cdf (2) by X ∼TW-G(α, β), where α > 0 , β > 0 and it is called truncated
Weibull-G distribution. Clearly, density function corresponding to (2) is denoted by

f (x) =
αβG(x)β−1 exp(−αG(x)β)g(x)

1 − exp(−α)
, (3)

where g is pdf corresponding to G. Thus, the hrf of X becomes

h(x) =
αβG(x)β−1 exp(−αG(x)β)g(x)

exp(−αG(x)β) − exp(−α)
(4)

The quantile function (qf) of the TW-G distribution can be generated by inverting cdf (2), as

Q(u) = G−1
((

log
( 1
1 − u(1 − e−α)

) 1
α

) 1
β

)
, (5)

where G−1 is the quantile function of the parent distribution G, and u ∈ (0, 1). Recall that

log(1 − x) = −
∞∑
j=0

x j+1

j + 1
, |x| < 1, (6)

(1 − x)r =

∞∑
j=0

(
r
j

)
(−1) jx j, |x| < 1, (7)

and an equation which is defined by Gradshteyn and Ryzhik (2007), we have

( ∞∑
j=0

a jx j
)n
=

∞∑
j=0

dn, jx j, (8)

where n ∈ N = 1, 2, ..., dn, j = ( ja0)−1 ∑ j
m=1[m(n + 1) − j]amdn, j−m and dn,0 = an

0. Thus, qf Q in (5) can be expanded as
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follows:

Q(u) = G−1
((

log
(
1 − u(1 − e−α)

) −1
α

) 1
β

)
,

= G−1
(( 1
α

) 1
β
(
− log

(
1 − u(1 − e−α)

)) 1
β

)
,

= G−1
[( 1
α

) 1
β
(
1 −

[
1 + log

[
1 − u(1 − e−α)

]]) 1
β

]
,

= G−1
[( 1
α

) 1
β
∞∑
j=0

( 1
β

j

)
(−1) j

(
1 + log

[
1 − u(1 − e−α)

]) j]
,

= G−1
[( 1
α

) 1
β
∞∑
j=0

( 1
β

j

)
(−1) j

j∑
k=0

(
j
k

)(
log

[
1 − u(1 − e−α)

]) j]
,

= G−1
[( 1
α

) 1
β
∞∑
j=0

j∑
k=0

( 1
β

j

)(
j
k

)
(−1) j

(
log

[
1 − u(1 − e−α)

]) j]
,

= G−1
[( 1
α

) 1
β
∞∑
j=0

j∑
k=0

( 1
β

j

)(
j
k

)
(−1) j

(
− u

∞∑
l=0

ul(1 − e−α)l+1

l + 1

) j]
,

= G−1
[( 1
α

) 1
β
∞∑

j,l=0

j∑
k=0

( 1
β

j

)(
j
k

)
ul+ jd j,l

]
, (9)

where d j,l = (l(1 − e−α))−1 ∑l
m=1[m( j + 1) − l] (1−e−α)m+1

m+1 d j,l−m for l > 0 and d j,0 = 1. By substituting proper values for u in
(9), we can obtain quantiles of interest. As a special case, the median of X is given by

Median(X) = QG

((
log

( 1
1 − 1

2 (1 − e−α)

) 1
α

) 1
β

)
.

Hence, for simulating random variable X from uniform random variable U on the unit interval (0,1), we have

X = QG

((
log

( 1
1 − U(1 − e−α)

) 1
α

) 1
β

)
.

3. Special Submodels

In the present section, we introduce six interesting submodels of the TW-G distribution.

i) TW-Uniform distribution(TW-U):

Let the parent distribution G be a uniform distribution on the interval (0, δ), δ > 0, i.e., G(x, δ) = x
δ
, x ∈ (0, δ). Then, We

have g(x, δ) = 1
δ

and, consequently, the cdf and pdf of a TW-U are given by

FTW−U(x, α, β, δ) =
1 − exp(−α( x

δ
)β)

1 − exp(−α)
0 < x < δ.

fTW−U(x, α, β, δ) =
αβ( x

δ
)β−1 exp(−α( x

δ
)β)( 1

δ
)

1 − exp(−α)
0 < x < δ,

ii) TW-Weibull distribution(TW-W):

Let the parent distribution G be a Weibull distribution, i.e., G(x, λ, γ) = 1 − exp(−λxγ) forλ, γ > 0 . Then, we have
g(x, λ, γ) = λγxγ−1 exp(−λxγ), and, consequently, the cdf and pdf of a TW-W are given by

FTWW (x, α, β, λ, γ) =
1 − exp(−α(1 − exp(−λxγ))β)

1 − exp(−α)
x > 0,

fTWW (x) =
αβ(1 − exp(−λxγ))β−1 exp(−α(1 − exp(−λxγ))β)λγxγ−1 exp(−λxγ)

1 − exp(−α)
x > 0.
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iii) TW-Logisticl distribution(TW-L):

Let the parent distribution G be a logistic distribution, i.e., G(x, η) = (1 + exp(−ηx))−1 for η > 0. Then, we have
g(x, η) = η exp(−ηx)(1 + exp(−ηx))−2, and, consequently, the cdf and pdf of a TW-L are given by

FTWL(x, α, β, η) =
1 − exp(−α(1 + exp−ηx)−β)

1 − exp(−α)
x > 0,

fTWL(x) =
αβ(1 + exp(−ηx))1−β exp(−α(1 + exp(−ηx))−β)η exp(−ξx)(1 + exp(−ηx))−2

1 − exp(−α)
x > 0.

iv) TW-Log Logisticl distribution(TW-LL):

Let the parent distribution G be a log logistic distribution, i.e., G(x, s, c) = 1 − (1 + ( x
s )c)−1 with parameters s > 0 and

c > 0. Then, we have g(x, s, c) = cs−cxc−1(1 + ( x
s )c)−2, and, consequently, the cdf and pdf of a TW-LL are given by

FTWLL(x, α, β, s, c) =
1 − exp(−α(1 − (1 + ( x

s )c)−1)β)
1 − exp(−α)

x > 0,

fTWLL(x) =
αβ(1 − (1 + ( x

s )c)−1)β−1 exp(−α(1 − (1 + ( x
s )c)−1)β)cs−cxc−1(1 + ( x

s )c)−2

1 − exp(−α)
x > 0.

v) TW-Burr XII distribution(TW-BXII):

Let the parent distribution G be a Burr XII distribution, i.e., G(x, s, c, k) = 1 − (1 + ( x
s )c)−k; s, c, k > 0. Then, we have

g(x, s, c, k) = cks−cxc−1(1 + ( x
s )c)−k−1, and, consequently, the cdf and pdf of a TW-BXII are given by

FTWBXII(x, α, β, s, c, k) =
1 − exp(−α(1 − (1 + ( x

s )c)−k)β)
1 − exp(−α)

x > 0,

fTWBXII(x) =
αβ(1 − (1 + ( x

s )c)−k)β−1 exp(−α(1 − (1 + ( x
s )c)−k)β)cks−cxc−1(1 + ( x

s )c)−k−1

1 − exp(−α)
x > 0.

vi) TW-Normall distribution(TW-N):

Let the parent distribution G be a Normal distribution, i.e., G(x, µ, σ) = Φ[ (x−µ)
σ

]; µ ∈ R, σ2 > 0. Then, we have

g(x, µ, σ) = ϕ[
(x−µ)
σ ]
σ

and, consequently, the cdf and pdf of a TW-N are given by

FTWN(x, α, β, µ, σ) =
1 − exp(−α(Φ[ (x−µ)

σ
])
β
)

1 − exp(−α)
x > 0,

fTWN(x) =
αβ(Φ[ (x−µ)

σ
])
β−1

exp(−α(Φ[ (x−µ)
σ

])
β
) ϕ[

(x−µ)
σ ]
σ

1 − exp(−α)
x > 0.

4. Mathematical Properties

Here, we present several mathematical properties of the our new proposed distribution.

4.1 Expansion of the cdf and pdf of TW-G

Here, we express expansion of cdf (2) by applying the power series expansion for the exponential function as follows,

F(x) =
1

1 − exp (−α)

[ ∞∑
i=1

(−1)iαi

i!
G(x)iβ

]
. (10)

Since,

G(x)iβ =

∞∑
j=0

(
iβ
j

)
(−1) j(1 −G(x)) j,
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and

[1 −G(x)] j =

j∑
k=0

(
j
k

)
(−1)kG(x)k,

where, (
iβ
j

)
=

(iβ)(iβ − 1)...(iβ − j + 1)
j!

,

we obtain

F(x) =
1

1 − exp (−α)

[ ∞∑
i=1

(−1)iαi

i!

∞∑
j=0

(
iβ
j

) j∑
k=0

(
j
k

)
(−1) j+kG(x)k

]
,

=

∞∑
k=0

[ ∞∑
i=1

∞∑
j=k

(−1)iαi

i!(1 − exp (−α))

(
iβ
j

)(
j
k

)
(−1) j+k

]
G(x)k.

Therefore, we can write F(x) as

F(x) =
∞∑

k=0

bkF∗k (x), (11)

where

bk =

∞∑
i=1

∞∑
j=k

(−1)i+ j+kαi

i!(1 − exp (−α))

(
iβ
j

)(
j
k

)
,

and F∗k (x) = G(x)k (for k > 0) is the exponentiated-G (exp-G) cdf with power parameter k and F∗0(x) = 1. By simple
differentiation of Eq. (11), we can write

f (x) =
∞∑

k=0

bk+1 f ∗k+1(x), (12)

where f ∗k+1(x) = (k + 1)g(x)G(x)k is the exp-G density function with parameter(k+1). Now, since (12) is a mixture of exp-
G densities, thus, we can derive certain mathematical attributes of the TW-G model from the exp-G distribution existing
in the literature for exp-G distributions such as ordinary and incomplete moments and moment generating function (mgf)
which have been considered by Mudholkar, Srivastava and Freimer (1995), Gupta and Kundu (1999), Nadarajah and Kots
(2006) and others.

4.2 Moments

The nth moment of X can be obtioned from (12) as

E(Xn) =
∞∑

k=0

bk+1E(Yk
n), (13)

where Yk is a random variable with exp-G density function f ∗k+1(x). Nadarajah and Kots (2006) obtained ordinary moments
of some well-known exp-G models. such as exp-Gamma, exp-Weibull, exp-Gumbel and exp-Frechet distributions. These
can be used to produce E(Xn) in (13). We can also obtain the ordinary moment E(Xn) using qf G−1(u) as

E(Xn) =
∞∑

k=0

(k + 1)bk+1ξn(k), (14)

where

ξn(k) =
∫ ∞

−∞
xnG(x)kg(x)dx =

∫ 1

0

[
G−1(u)

]n
ukdu. (15)

Hence, the ordinary moments of TW-G distributions can be obtained from Eqs. (14) and (15). Cordeiro and Nadarajah
(2011) determined ξn(k) for some well-known distributions. We also, compute, here, ξn(k) for three cases as examples.
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Example. 1. For the TW-W distribution by integral equation∫ 1

0
xα−1 logn(x)dx = (−1)nα−n−1n! α > 0, (16)

we have

ξn(k) =
1

λ
n
γ

∞∑
j=0

j∑
q=0

k∑
l=0

(
k
l

) ( n
γ
)( j)(−1) j+l+q

( j − q)!(l + 1)q+1 , (17)

where x(k) = x(x + 1)...(x + k − 1).

Example. 2. For the TW-L distribution by

∂n

∂tn

[ ∫ 1

0
e(t+k) log x−t log(1−x)dx

]
t=0
=

∫ 1

0
xk

(
log(

x
1 − x

)
)n
,

we have

ξn(k) =
1
ηn

∂n

∂tn

(
B(t + k + 1, 1 − t)

)
t=0
, (18)

where B(α, β) =
∫ 1

0 xα−1(1 − x)β−1dx.

Example. 3. For the TW-LL distribution we have

ξn(k) = sn
∞∑
j=0

( n
c )( j)

j!( n
c + j + k + 1)

. (19)

Due to the important role of incomplete moments in measuring indices of income inequality such as Lorenz and Bonferroni
curves and the associated Gini index, we need to determine the nth incomplete moments as follows.

mn(y) =
∑
k≥0

(k + 1)bk+1Hn,k(G(y)), (20)

where

Hn,k(x) =
∫ x

0

[
G−1(u)

]n
ukdu. (21)

We can compute (21) for most baselina G distributions as shown in the following examples.

Example. 4. For the TW-W distribution by (8) we have

Hn,k(G(y)) =
1

λ
n
γ

∞∑
j,l=0

j∑
q=0

( n
γ

j

)(
j
q

)
(−1) j+q [G(y)]k+q+l+1

k + q + l + 1
dq,l,

where dq,l = l−1 ∑l
m=0[m(q + 1) − l] dq,l−m

m+1 and G is Weibull distribution.

Example. 5. For the TW-L distribution we have

Hn,k(G(y)) =
1
ηn

∂n

∂tn

(
BG(y)(t + k + 1, 1 − t)

)
t=0
,

where Bx(α, β) =
∫ x

0 tα−1(1 − t)β−1dt and G is logistic distribution.

Example. 6. For the TW-LL distribution, where G is log logistic distribution by (16) we have

Hn,k(G(y)) =
∞∑
j=0

sn( n
c )( j)[G(y)]k+ j+ n

c+1

j!(k + j + n
c + 1)

.

In what follows, the probability weighted moments (PWMs) of a TW-G (α, β) random variable X is obtained. In particular,
when the inverse of a distribution does not have a closed form or maximum likelihood estimates are unavailable or
difficult to compute, PWMs moments can be used to estimate the parameters .They may also be used as starting values
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for maximum likelihood estimates. The PWMs are expectations of multiplication of two certain functions of a random
variable X defined as

τn,r = E[XnF(X)r] =
∫ ∞

−∞
xnF(x)r f (x)dx.

Thus, by using (8),(11) and (12), we have

τn,r =

∫ ∞

−∞
xnF(x)r f (x)dx =

∫ ∞

−∞
xn

( ∞∑
t=0

btG(x)t
)r
∞∑

k=0

bk+1(k + 1)g(x)G(x)kdx,

=

∞∑
t,k=0

bk+1(k + 1)dr,tξn(k + t), (22)

where dr,t = (tb0)−1 ∑t
m=1[m(t + 1) − t]bmdr,t−m and dr,0 = br

0. Hence, we can derive closed-form expressions for (22) by
determing ξn(k + t) for different parent distributions. Indeed, we have calculated ξn(k) for TW-W, TW-L and TW-LL in
Examples 1, 2 and 3.

4.3 Moment Generating Function

Let MX(t) = E(etX) be the moment generating function (mgf) of X. Then, by (12), we have

MX(t) =
∞∑

k=0

bk+1E(etYk ). (23)

Hence, we can obtain MX(t) from MYk (t). The mgf of X can also be determined by qf G−1(u) as

MX(t) =
∞∑

k=0

(k + 1)bk+1ρ(t, k), (24)

where

ρ(t, k) =
∫ ∞

−∞
etxG(x)kg(x)dx =

∫ 1

0
etG−1(u)ukdu. (25)

We can obtain the mgfs of the special cases (i) to (vi) from Eqs. (24) and (25). By using integral equation∫ 1

0
xα−1 logσ(

1
x

)dx = α−σ−1Γ(σ + 1) α > 0;σ > −1, (26)

and (16), the integral (25) for the TW-W, TW-L and TW-LL distributions are given by

ρ(t, k) =
∞∑
j=o

k∑
l=0

(
k
l

)
t j(−1)l

j!λ
j
γ (l + 1)

j
γ+1
Γ(

j
γ
+ 1),

ρ(t, k) =
∞∑
j=0

( t
η
)( j)

j!( j + k + t
η
+ 1)

and

ρ(t, k) =
∞∑
j=0

∞∑
l=0

(ts) j( j
c )(l)

j!l!(l + k + j
c + 1)

,

respectively.

4.4 Renyi and Shannon Entropies

An entropy is a measure of uncertainty of a random variable X. It is an important tool in Science and Engineering. There
are several different entropy and information indices from which Renyi and Shannon entropies are most popular. The
Renyi entropy for a random variable X with pdf f (.) is defined as

IF(δ) =
1

1 − δ log
∫ ∞

−∞
f (x)δdx, (27)

7
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for δ > 0 and δ , 1. Shannon entropy is the expectation of
{ − log[ f (X)]

}
where f is a density function of a random

variable X, which is a special case of Renyi entropy when δ ↑ 1. Now we shall compute the Renyi and Shannon entropies
for a TW-G random variable X. Since

f (x)δ = (
αβ

1 − e−α
)δe−δαG(x)βG(x)δ(β−1)g(x)δ,

= (
αβ

1 − e−α
)δg(x)δ

∞∑
i=0

(−1)i(δα)i

i!
(G(x))iβ(G(x))δ(β−1),

= (
αβ

1 − e−α
)δg(x)δ

∞∑
i=0

(−1)i(δα)i

i!
(G(x))iβ+δ(β−1),

= (
αβ

1 − e−α
)δg(x)δ

∞∑
i=0

(−1)i(δα)i

i!

∞∑
j=0

(−1) j
(
iβ + δ(β − 1)

j

)
(1 −G(x)) j,

= (
αβ

1 − e−α
)δg(x)δ

∞∑
i=0

(−1)i(δα)i

i!

∞∑
j=0

(−1) j
(
iβ + δ(β − 1)

j

) j∑
k=0

(
j
k

)
(−1)kG(x)k,

= (
αβ

1 − e−α
)δg(x)δ

∞∑
i=0

(−1)i(δα)i

i!

∞∑
k=0

∞∑
j=k

(−1) j+k
(
iβ + δ(β − 1)

j

)(
j
k

)
G(x)k,

=

∞∑
k=0

[ ∞∑
i=0

∞∑
j=k

(
αβ

1 − e−α
)δ

(−1) j+k+i(δα)i

i!

(
iβ + δ(β − 1)

j

)(
j
k

)]
G(x)kg(x)δ,

(28)

according to Eq. (28), we have

IF(δ) =
1

1 − δ log
[ ∞∑

k=0

S kDδ(k)
]
, (29)

where

Dδ(k) =
∫ ∞

−∞
g(x)δG(x)kdx =

∫ 1

0

[
g
(
G−1(u)

)]δ−1
ukdu, (30)

and

S k =

∞∑
i=0

∞∑
j=k

(
αβ

1 − e−α
)δ

(−1) j+k+i(δα)i

i!

(
iβ + δ(β − 1)

j

)(
j
k

)
.

Practically, it is sufficient to obtain the integral equation (30). Now, for the TW-W, TW-L and TW-LL distributions, the
integral equation (30) turns out to be

Dδ(k) = λ
δ−1
γ γδ−1Γ

( (γ − 1)(δ − 1)
γ

+ 1
) k∑

p=0

(−1)p(δ + p)−
(γ−1)(δ−1)

γ −1
(
k
p

)
,

where γ ≥ δ−1
δ

,

Dδ(k) = ηδ−1B(k + δ, δ)

and
Dδ(k) = (

c
s

)δ−1B
( (c − 1)(δ − 1)

c
+ k + 1, (δ − 1)(1 +

1
c

) + 1
)
,

respectively.

Thus, for the Shannon entropy we have

E(− log f (X)) = − log(αβ) + log(1 − e−α) + αE(Gβ(X)) − (β − 1)E(log G(X)) − E(log g(X)). (31)

Based on Eq. (6), we can write

E(Gβ(X)) =
∞∑

k=0

bk+1(k + 1)
∫ ∞

−∞
g(x)Gβ+k(x)dx =

∞∑
k=0

bk+1(k + 1)
β + k + 1

,

8
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E(log G(X)) =
∞∑

k=0

bk+1(k + 1)
∫ ∞

−∞

(
log G(x)

)
Gk(x)g(x)dx = −

∞∑
k=0

bk+1

(k + 1)

and

E(log g(X)) =
∞∑

k=0

bk+1(k + 1)
∫ ∞

−∞

(
log g(x)

)
Gk(x)g(x)dx =

∞∑
k=0

bk+1(k + 1)Wk

where

Wk =

∫ 1

0
log

(
g
(
G−1(u)

))
ukdu. (32)

The closed-form expressions for (32) can be obtained for deriving the Shannon entropy as shown in the following exam-
ples. For the TW-W distribution, using (6) and integral equation∫ 1

0
log log

1
x

xµ−1dx = −1
µ

(C + log µ), [µ > 0,C = 0.577215...]

we obtain

Wk =
log(λ

1
γ γ)

k + 1
+
γ − 1
γ

k∑
l=0

(−1)l+1

l + 1
[C + log(l + 1)

](k
l

)
+

k∑
p=0

(−1)p+1

(p + 1)2

(
k
p

)
.

For the TW-L distribution we have

Wk =
log η
k + 1

+

k∑
l=0

(−1)l+1

(l + 1)2

(
k
l

)
− 1

(k + 1)2 .

Finally, for the TW-LL distribution we have

Wk =
log( c

s )
(k + 1)

− c − 1
c(k + 1)2 + (

c + 1
c

)
k∑

l=0

(−1)l+1

(l + 1)2

(
k
l

)
.

4.5 Order Statistics

Order statistics are important tools especially in non-parametric statistics and inference. Here, we shall consider order
statistics properties of the class of TW-G distributions. Suppose that X1, X2, ..., Xn is a random sample from the TW-G
distribution and Xi:n is the corresponding ith order statistic. Then, we can express the pdf of Xi:n as:

fi:n(x) =
n!

(i − 1)!(n − i)!
f (x)F(x)i−1(1 − F(x))(n−i),

=
n!

(i − 1)!(n − i)!

n−i∑
j=0

(−1) j
(
n − i

j

)
f (x)F(x) j+i−1,

=
n!

(i − 1)!(n − i)!

n−i∑
j=0

(−1) j
(
n − i

j

)[ ∞∑
r=0

br+1(r + 1)g(x)G(x)r
][ ∞∑

k=0

bkG(x)k
]i+ j−1

, (33)

and since by (8) [ ∞∑
k=0

bkG(x)k
]i+ j−1

=

∞∑
k=0

di+ j−1,kG(x)k,

where di+ j−1,k = (kb0)−1 ∑k
m=1[m(i + j − 1) − k]bmdi+ j−1,k−m and di+ j−1,0 = bi+ j−1

0 , we obtain

fi:n(x) =
n!

(i − 1)!(n − i)!

n−i∑
j=0

(−1) j
(
n − i

j

)[ ∞∑
r=0

br+1(r + 1)g(x)G(x)r
][ ∞∑

k=0

d j+i−1,kG(x)k
]
,

=

n−i∑
j=0

∞∑
k,r=0

n!
(i − 1)!(n − i)!

(−1) j
(
n − i

j

)
br+1(r + 1)
r + k + 1

d j+i−1,khr+k−1(x),

=

∞∑
k,r=0

mk,rhr+k−1(x), (34)

9
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where hr+k−1(x) is the exp-G density function with power parameter r + k − 1 and

mk,r =
n!br+1(r + 1)

(i − 1)!(r + k + 1)

n−i∑
j=0

(−1) j

j!(n − i − j)!
d j+i−1,k.

Moments of order statistics are more popular in reliability and quality control testing. Here, we provide two formulas for
moments of order statistics of a TW-G distribution. The first one follows from moment of random variable Yr,k with the
exp-G density function hr+k−1(x) as

E(Xp
i:n) =

∫ ∞

−∞
xp fi:n(x)dx =

∞∑
k,r=0

mk,rE(Y p
r,k). (35)

We can present a second formula for E(Xp
i:n) based on the quantile function G as

E(Xp
i:n) =

∞∑
k,r=0

mk,r(r + k + 1)
∫ ∞

−∞
xpg(x)G(x)r+kdx =

∞∑
k,r=0

mk,r(r + k + 1)L(r, k), (36)

where L(r, k) =
∫ 1

0

[
G−1(u)

]puk+rdu. By similar calculations as those of ordinary moments, the integral L(r, k) for the
TW-W, TW-L and TW-LL distributions can be expressed as

L(r, k) =
1

λ
p
γ

k+r∑
l=0

(−1)l

(l + 1)
p
γ +1
Γ(

p
γ
+ 1)

(
k + r

l

)
,

L(r, k) =
1
ηp

∂p

∂tp

(
B(t + k + r + 1, 1 − t)

)
t=0

and

L(r, k) =
∞∑

l=0

sp( p
c )(l)

l!(l + k + r + p
c + 1)

,

respectively.

4.6 Unimodal Property

Loosely speaking, the concept of unimodality is usually considered as a distribution with a density f (x), which has one
pick. Investigation of unimodal distributions originally started by Khinchin (1938). The main interest of unimodality
is in optimization theory and mathematical programing. Also this property has become a useful tool in characterization
of distributions appearing in different areas of statistic. In this section, we consider unimodal property of TW-G(α, β)
distributions through their log-convex and log-concave properties. These will also enable as to investigate their hazard
rate behaviour.

Theorem 1 Suppose that g(x) is twice differentiable, then the pdf of a TW-G(α, β) distribution is log-convex if β ≤ 1 and
g(x) is non-increasing and log-convex.

Proof. Since g(x) is twice differentiable we have

d2 log ( f (x))
dx2 =

g
′
(x)

G(x)
[
(β − 1) − αβGβ(x)

] − (β − 1)
g2(x)
G2(x)

[
1 + αβGβ(x)

]
+

d2 log (g(x))
dx2 .

Thus, f (x) is log-convex when β ≤ 1 and g(x) is non-increasing and log-convex.

Theorem 2 Suppose that g(x) is twice differentiable, then pdf of a TW-G(α, β) distribution is log-concave when β ≥ 1
and either Gβ(x) ≤ β−1

αβ
and g(x) is non-increasing and log-concave or Gβ(x) ≥ β−1

αβ
and g(x) is non-decreasing and

log-concave.

Proof. The proof is similar to that of Theorem 1.

Now, since log concave and log convex densities are unimodal, then we have

Corollary 1 Suppose that g(x) is twice differentiable, then TW-G(α, β) distributions are unimodal if either β ≤ 1 and
g(x) is non-increasing and log-convex or β ≥ 1 and either Gβ(x) ≤ β−1

αβ
and g(x) is non-increasing and log-concave or

Gβ(x) ≥ β−1
αβ

and g(x) is non-decreasing and log-concave.

10
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Consequently, since a log-concave (log-convex) pdf has non-decreasing (non-increasing) hazard function, we have the
following.

Corollary 2 Suppose that g(x) is twice differentiable, then TW-G(α, β) distributions have non-increasing hazard functions
when β ≤ 1 and g(x) is non-increasing and log-convex and have non-decreasing hazard functions when β ≥ 1 and either
Gβ(x) ≤ β−1

αβ
and g(x) is non-increasing and log-concave or Gβ(x) ≥ β−1

αβ
and g(x) is non-decreasing and log-concave.

4.7 Stochastic Orders

One of the most fundamental measures of comparison of the behavior of random variables is stochastic ordering . Several
types of stochastic orderings with different implications and applications can be seen in Shaked and Shanthikumar (2007).
Here, we first recall definitions of the required stochastic orders: the likelihood ratio order (≤lr), the usual stochastic
order (≤st), the hazard rate order (≤hr), the reversed hazard rate order (≤rh) and the expectation order (≤E). Then, we shall
stochastically compare TW-G(α, β) and B-G(β, α) distributions. For instance, we shall reveal that, as lifetime distributions,
B-G distribution has smaller reliability than TW-G distribution. Let U and V be two random variables with pdfs fU and
fV , respectively. Then, we have

i) U ≤lr V if fV (x)/ fU(x) is an increasing function in x.

ii) U ≤st V if P(U ≥ x) ≤ P(V ≥ x) for all x.

iii) U ≤hr V if fU(x)/P(U ≥ x) ≤ fV (x)/P(V ≥ x) for all x.

iv) U ≤E V if E(U) ≤ E(V).

Theorem 3 Let U ∼ B-G(β, α) and V ∼ TW-G(α, β). Then, U ≤lr (≤hr,≤st and ≤E)V if α(1 − βG(x)β−1(1 −G(x))) ≥ 1.

Proof. Since
fV (x)
fU(x)

=
αβB(β, α) exp(−αG(x)β)
(1 − e−α)(1 −G(x))α−1 ,

it easily follows that

d
dx

( fV (x)
fU(x)

)
=
αβB(β, α)g(x) exp(−αG(x)β)(1 −G(x))α−2[ − αβG(x)β−1(1 −G(x)) + (α − 1)

]
(1 − e−α)(1 −G(x))2α−2 ,

which is non-negative, if α[1 − βG(x)β−1(1 − G(x))] ≥ 1. Therefore, by (i) U ≤lr V if α[1 − βG(x)β−1(1 − G(x))] ≥ 1.
Now, based on the results of Shaked and Shanthikumar (2007) that: U ≤lr V ⇒U ≤hr V ⇒U ≤st V⇒U ≤E V , we have
the results if α[1 − βG(x)β−1(1 −G(x))] ≥ 1.

4.8 Stress-strength Reliability Function

Let X1 ∼ TW − G(α1, β1, ξ) and X2 ∼ TW − G(α2, β2, ξ) be independent random variables with pdf,s and cdf,s f1,F1
and f2,F2, respectivly, and ξ be the vector of parameters of the parent distribution G. Then, the stress-strength reliability
function R = P(X1 > X2) is given by

R = P(X1 > X2) =
∫ ∞

0
FX2 (x) fX1 (x)dx. (37)

Thus, by Eqs. (11) and (12), we have

R =
∞∑

k,s=0

b(2)
k b(1)

s+1

∫ ∞

−∞
F∗k (x) f ∗s+1(x)dx =

∞∑
k,s=0

b(2)
k b(1)

s+1

∫ ∞

−∞
G(x)k+s(s + 1)g(x)dx,

=

∞∑
k,s=0

b(2)
k b(1)

s+1
s + 1

k + s + 1
, (38)

where b(1)
s+1 and b(2)

k are

b(1)
s+1 =

∞∑
i=1

∞∑
j=s+1

(−1)i+ j+s+1α1
i

i!(1 − exp (−α1))

(
iβ1

j

)(
j

s + 1

)
,

b2
k =

∞∑
i=1

∞∑
j=k

(−1)i+ j+kα2
i

i!(1 − exp (−α2))

(
iβ2

j

)(
j
k

)
,

Clearly, if α1 = α2, β1 = β2, Eq. (38) reduces to R = 1
2 .
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(a) (b)

(c) (d)

(e) (f)
Figure 1. Plots of the (a) TW-U (b) TW-W (c) TW-LL (d) TW-L (e) TW-BXII and (f) TW-N densities.

3. Shapes of the pdf and hrf

Figures 1 and 2 indicate possible shapes of the pdfs and hrfs, respectively, of TW-G distributions for its various parameter
values. As we observe, Figure 1 shows that the TW-G family distributions have various shapes such as symmetrical,
left and right skewed, bathtub and reversed-J. Figure 2, also shows that hazard rate of the new distributions have great
flexibility such as decreasing, increasing, bathtub, upside-down bathtub, J, reversed- J and S shapes. Hence, TW-G
distributions are useful for fitting to different data sets with various shapes. Infact, shapes of the pdfs and hr functions can
also be expressed analytically. The critical points of the NW-G density are the roots of the following equation:

g(x)
G(x)

(β − 1) − αβG(x)β−1g(x) +
g
′
(x)

g(x)
= 0, (39)

and critical points of h(x) are obtained from the equation:

(β − 1)
g(x)
G(x)

− αβGβ−1(x)g(x) +
g
′
(x)

g(x)
− αβG

β−1(x)g(x)e−αGβ(x)

e−αGβ(x) − e−α
= 0. (40)
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(a) (b)

(c) (d)

(e) (f)
Figure 2. Plots of the (a) TW-U (b) TW-W (c) TW-LL (d) TW-L (e) TW-BXII and (f) TW-N hazard rates.

By using most symbolic computation software platforms, we can examine Eqs. (39) and (40) to determine the local
maxima and minima and inflexion points.

4. Maximum Likelihood Estimation(MLE)

In this section, we discuss estimation of the parameters of TW-G model by the maximum likelihood method. Let x1, ..., xn

be n observations of a random sample from a TW-G distribution with parameters Θ = (α, β, ξ)T , where ξ is a K × 1
parameter vector in G(.). The log-likelihood function for parameters Θ = (α, β, ξ)T is given by

ℓn(Θ) = n logα + n log β +
n∑

i=1

log g(xi) + (β − 1)
n∑

i=1

log G(xi)

− α
n∑

i=1

Gβ(xi) − n log (1 − e−α). (41)

13
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The first derivatives of ℓn(Θ) with respect to the parameters α, β and ξ are:

∂ℓn(Θ)
∂α

=
n
α
−

n∑
i=1

Gβ(xi) −
ne−α

1 − e−α
= 0,

∂ℓn(Θ)
∂β

=
n
β
+

n∑
i=1

log G(xi) − αβ
n∑

i=1

g(xi)Gβ−1(xi) = 0,

∂ℓn(Θ)
∂ξ j

=

n∑
i=1

ġ(x)
g(xi)

+ (β − 1)
n∑

i=1

Ġ(xi)
G(xi)

− αβ
n∑

i=1

G(x)β−1Ġ(xi) = 0, j = 1, 2, ..., k, (42)

where ġ(x) = ∂g(xi)
∂ξ j

and Ġ(xi) =
∂G(xi)
∂ξ j

. Therefore, solutions of these equations yeild the MLE of Θ parameters, which
can be obtioned by a numerical method. For interval estimation and hypothesis testings on the parameters, we need the
information matrix I(θ) = E[− ∂2ℓn(Θ)

∂Θ2 ], such that

∂2ℓn(Θ)
∂Θ2 =

I11 I12 I13
I12 I22 I23
I13 I23 I33

 ,
whose elements are

I11 =
∂2ℓn(Θ)
∂α2 = − n

α2 +
ne−α

(1 − e−α)2 ,

I12 =
∂2ℓn(Θ)
∂α∂β

=

n∑
i=0

g(xi)Gβ−1(xi),

I22 =
∂2ℓn(Θ)
∂β2 = − n

β2 − α
n∑

i=1

g(xi)Gβ−1(xi) − αβ(β − 1)
n∑

i=1

g2(xi)Gβ−2(xi),

I13 =
∂2ℓn(Θ)
∂α∂ξ j

=

n∑
i=1

Gβ−1(xi)Ġ(xi),

I23 =
∂2ℓn(Θ)
∂β∂ξ j

=

n∑
i=1

Ġ(xi)
G(xi)

− α
n∑

i=1

Gβ−1(xi)Ġ(xi) − αβ(β − 1)
n∑

i=1

g(xi)Gβ−2(xi)Ġ(xi),

I33 =
∂2ℓn(Θ)
∂ξ2j

=

n∑
i=1

g̈(xi)g(xi) − (ġ(xi))2

g2(xi)
+ (β − 1)

n∑
i=1

G̈(xi)G(xi) − (Ġ(xi))2

G2(xi)

− αβ(β − 1)
n∑

i=1

Gβ−2(xi)(Ġ(xi))2 − αβ
n∑

i=1

Gβ−1(xi)G̈(xi),

where g̈(xi) =
∂2g(xi)
∂ξ2j

and G̈(xi) =
∂2G(xi)
∂ξ2j

for j = 1, 2, ..., k. If MLE of Θ = (α, β, ξ) is Θ̂ = (α̂, β̂, ξ̂), then by assuming the

regularity conditions, (α̂ − α, β̂ − β, ξ̂ − ξ) converges in distribution to (k+2) multivariate normal distribution with zero
means and variance-covariance matrix I−1.

5. Application

In this section, we apply an data set corresponding to remission times of a random sample of 128 bladder cancer patients
(cf. Lee & Wang, 2003), to provide an application of six submodels of the TW-G distribution, i.e., TW-U, TW-W, TW-LL,
TW-L, TW-BXII and TW-N distributions. The data are given below:

0.08,2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22,
13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,
3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96,
36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49,
7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85,
8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,
21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Table 1 indicates the MLEs of the parameters, Akaike Information Criterion (AIC) as AIC = −2 log L + 2k, the Bayesian
information criterion (BIC) as BIC = −2 log L + k log(n),
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Table 1. MLEs of the parameters, AIC, BIC, HGIC and K-S (p-value) of the TW-U, TW-W, TW-L, TW-LL, TW-BXII
and TW-N models

Model MLEs of parameters AIC BIC HQIC K-S (p-value)
TW-U (α̂, β̂, δ̂) = (9.123, 1.047, 79.050) 854.86 863.41 858.33 0.070(0.555)
TW-W (α̂, β̂, λ̂, γ̂)=(3.740,1.602,4.051,16.306) 827.44 838.85 832.08 0.030(0.994)
TW-L (α̂, β̂, η̂)=(2.422,5.144,0.160) 873.32 881.87 876.79 0.101 (0.145)

TW-LL (α̂, β̂, ŝ, ĉ)=(0.011,0.585,2.173,9.251) 827.39 838.80 832.03 0.032 (0.999)
TW-BXII (α̂, β̂, ŝ, ĉ, , k̂)=(0.009,0.720,1.352,1.352,10.106) 829.29 843.55 835.09 0.030(0.998)

TW-N (α̂, β̂, µ̂, σ̂)=(4.247,5.097,0.09,15.367) 907.05 918.46 911.69 0.128 (0.031)

HannanCQuinn information criterion (HQIC) as HQIC = −2L + 2k log(log(n)), Kolmogorov CSmirnov (KCS) distance
between the empirical distribution and the fitted model (and its corresponding P-value in parentheses), where n is the
number of observations, k is number of parameters in the model and L is the maximized value of the likelihood function,
for all six special models of the TW-G distribution. Analysis of Table 1 indicates that TW-LL distribution has the lowest
AIC, BIC, HQIC and K-S values, and so it is the best model to fit to this data. We shall also arrive at the same results by
comparing p-values for all six models.

Table 2 illustrate AIC, BIC and HQIC for the three submodels of B-G distributions. Comparing Tables 1 and 2 indicate that
TW-W and TW-BXII distributions provide better fits in comparison with B-W and B-BXII distributions. The histogram
of the data and fitted TW-U, TW-W, TW-L, TW-BXII, TW-LL and TW-N distributions are plotted in Figure 3. As we
observe, the TW-U, TW-W, TW-LL and TW-BXII models yield better fits among other models . The empirical and fitted
survival functions of TW-LL distribution are shown in Figure 4.

Table 2. MLEs of the parameters, AIC, BIC, HGIC of the B-W, B-LL, B-BXII models

Model MLEs of parameters AIC BIC HQIC
B-W (β̂, α̂, λ̂, γ̂)=(0.907, 2.735, 0.469, 0.666) 829.36 838.85 832.08
B-LL (β̂, α̂, ŝ, ĉ)=(1.344,0.720,10.214,1.827) 827.39 838.80 832.03

B-BXII (β̂, α̂, ŝ, ĉ, k̂)=(0.268,0.796,9.653,1.678,5.667) 829.32 843.58 835.11

Figure 3. The histogram of remission times of bladder cancer data and the fitted pdfs of TW-U, TW-W, TW-L, TW-BXII,
TW-LL and TW-N.
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Figure 4. The empirical and fitted survival functions of TW-LL distribution.
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