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Abstract

Logistic regression model is the most common model used for the analysis of binary data. However, the problem of
atypical observations in the data has an unduly effect on the parameter estimates. Many researchers have developed robust
statistical model to solve this problem of outliers. Gelman (2004) proposed GRLR, a robust model by trimming the
probability of success in LR. The trimming values in this model were fixed and the user is required to specify this value
well in advance. In particular this study developed SsRLR model by allowing the data itself to select the alpha value.
We proposed a Restricted LR model to substitute the LR in presence of outliers. We proved that the SsRLR model is the
more robust to the presence of leverage points in the data. Parameter estimations is done using a full Bayesian approach
implemented in WinBUGS 14 software.
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1. Introduction

Many dependent variables of interest in the social sciences are usually not a continuous variables. In most cases, the out-
comes are categorical with two levels, namely, yes/no, success/failure, 0/1. Such variables are called binary responses or
dichotomous. Binary logistic regression is a helpful way of explaining the relationship between one or more independent
variables and a binary response. By assuming a binary variable y with π = Pr(y = 1) the probability of success, the
classical LR model is defined as:

LR : π = logit−1(XTβ) (1)

where X is a vector of p independent variables and β is a p dimensional vector of regression coefficients for the predictor
variables.

Robustness is a subject highly developed in the fields of estimation of the position and scale of simple and multiple
regression. Attention has been paid to the robust logistic regression, which is an area where outliers may also appear.
Pregibon (1981) started by developing an analytical measure to assist in the detection of outliers and leverage points and
quantify their effect on diverse aspects of the maximum likelihood fit. Thereafter, a good number of robust estimation
procedures in the context of logistic regression have been examined. Gelman (2004) proposed a GRLR using a trimming
approach. The approach used a trimming value α, 0.01 chance of random error in both direction of the interval [0,1].
Gelman’s Robust Logistic Regression model is defined as:

GRLR : π = 0.01 + 0.98logit−1(XTβ) (2)

where 0.01 and 0.98 are fixed. That model requires the statistician to specify these values beforehand. SsRLR solves this
problem in the GRLR model by relaxing this restriction and letting these probabilities to be self selected by the data at
hand so that only a prior distribution, say Uniform [a, b] with a and b belonging to [0,1] is given.

2. Methods

2.1 Robust Logistic Regression

Robust signifies remaining resistant against some irregular deviations. In statistics, models are a simple estimation of
reality. The models that underlie numerous statistical process are very optimistic and in real data, big errors happen with
unpredictable large frequency. An observation that lies an abnormal distant from the mass of data is set as an outlier.
Robustness means insensitivity against some divergence from the right model. Robust process was initiated in the works
of Tukey (1960) and further, formal models of robustness have been expanded in 1970’s.
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In regression models, the purpose of robust methods is to detect the outliers and extremely influential data points, leverage
points, and to end by describing the goodness of fit for the data. One of the first result works related to Least Square, as
a robust estimator, was carried out by Edgeworth (1887), who enhanced the proposal of Boscovich (1757) (Koenker &
Bassett. 1985). This estimator is the least absolute deviation (LAD).

Logistic regression is concerned with explaining the probability of a specific response in terms of a number of regressors
using a sample of relevant data. Pregibon (1981) affirmed that the estimated LR correlation may be extremely influenced
by outliers. Dealing with outliers necessitates the use of robust logistic regression models to overcome their influence on
the LR model. Researches in this direction have been conducted by Hubert (1973), Pregibon (1981), Rousseeuw et Al.
(1987), Yohai (1987), Copas (1988) and Rousseeuw (2003).

Trimming is an extensive approach to robustifying of statistical process. It permits one to detect outliers and eliminate
them from the data exploited in the estimation procedure. Trimming has been expanded highly by different authors in least
squares regression, multivariate analysis and other areas (Rousseeuw (1984), Rousseeuw & Van Driessen (1999), where
additional mentions can be obtained). It appears attractive to apply trimming also in logistic regression to find outliers
and to control their influences.

On the other hand, the outlier can disturb statistical models and results in an expected model differ significantly from
the exact one. Outliers in LR may occur in the Y-space called misclassification-type error (Copas, 1988), the X-space
considered as leverage points or in both spaces. Outlying cases in this study are only based on the covariate corruptions.
The robust LR model in this study is based on that approach of trimming probability whose estimation procedure is related
to Bayesian inference using Gibbs sampler and Metropolis-Hastings Algorithm.

2.2 Proposed SsRLR Model

In this work, we improve the model of Andrew Gelman (2004) by developing a self-selecting robust logistic regression.
Suppose y = (y1, y2, . . . , yn) are n independent observations where yi are binary responses data defined as:

yi =

{
1 if success
0 otherwise

Binary regression models assume that yi ∼ Ber (πi) with πi = Pr(yi = 1) the probability of success for each observation.
From that, the robust model we are developing is as follows:

πi = α + (1 − 2α)logit−1(XTβ) (3)

where X is a vector of p independent variables and β is a p dimensional vector of regression coefficients for the predictor
variables.

As opposed to other studies where the value of α is set beforehand by the statistician, we allow this to be determined
from the data itself. In particular since we are working in the Bayesian paradigm, we give this value α a uniform prior
distribution.

2.3 Estimation using Bayesian Approach

Bayesian approach in estimation is used to minimize risk estimation and to obtain the optimal estimates. To proceed, we
follow the usual pattern for all Bayesian analyses by writing down the likelihood function of the data, forming a prior
distribution over all unknown parameters and using Bayes theorem to find the posterior distribution over all parameters.

Likelihood function

In particular, once the probability of success depending on the covariates is obtained, the likelihood function is:

L(β, α|X, y) =
n∏

i=1

[(πi)yi (1 − πi)1−yi ] (4)

where πi represents the probability of success and yi the binary responses data. In our model we have:

πi = α + (1 − 2α)
eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip
(5)

Hence the likelihood function of the binary responses data of n independent observations is:

L(β, α, σ|X, y) =
n∏

i=1

AiBi (6)
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where:

Ai =

[
α + (1 − 2α)

eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

]yi

Bi =

[
1 −

(
α + (1 − 2α)

eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)]1−yi

.

2.3.1 Prior Distributions

In this analysis, a non informative normal prior was assigned to the regression coefficients β, The parameter under study
α is given a uniform prior distribution U[a,b].

2.3.2 Posterior Distributions

To derive the posterior distribution, we multiply the prior distribution over all parameters by the likelihood function. Thus
we have:

Ppost(θ|X, y) = L(β j, α, σ|X, y)Ppri(β j)Ppri(α) (7)

where

Ppri(β j) =
p∏

j=0

1
√

2πσ j
exp

−1
2

(
β j

σ j

)2 (8)

Ppri(α) =
1

b − a
, a ≤ α ≤ b (9)

are β and α prior distributions respectively.

Most often, Bayes estimators of θ cannot be computed explicitly and we have to look for Monte Carlo simulation method,
using Gibbs sampler algorithm where the computing of Bayes estimators does not pose great difficulty. For each model,
we ran 10,000 Markov chain Monte Carlo (MCMC) iterations, with the initial 1,000 discarded to cater for the burn-in
period and thereafter keeping every tenth sample value. MCMC convergence of all models parameters were accessed by
checking trace plots and auto correlation plots of the MCMC output.

2.4 Gibbs Sampler Algorithm

Consider the basic case: f(x,y). Assume f((x|y)) and f(y|x) available. We can then generate what one will call Gibbs
sequence as follows: starting from a value x0, y0 is generated with π(.|x0), then x1 with π(.|y0), and y1 with π(.|x1) and so
on.

After M iterations of this scheme, it comes a sequence (x0, y0, x1, y1, . . . , xM , yM). For M large enough, xM is a realization
of X.

In the Bayesian framework, the Gibbs algorithm (Geman. 1984) will allow to obtain a realization of the parameter θ =
(θ1, . . . , θm) following the posterior distribution π(θ|x) as soon as one is capable of expressing the conditional distributions:
π(θi|θ j; x), j , i. Thus, Gibbs sampling consists of:

Starting from an initial vector θ(0) = (θ(0)
1 , . . . , θ

(0)
m ). At the (p + 1)th step, with the vector θ(p) = (θ(p)

1 , . . . , θ
(p)
m ), simulating

θ
(p+1)
1 = π(θ1|θ(p)

2 , θ
(p)
2 , . . . , θ

(p)
m ; x)

θ
(p+1)
2 = π(θ2|θ(p+1)

1 , θ
(p)
3 , . . . θ

(p)
m ; x)

. . .

θ
(p+1)
m = π(θm|θ(p+1)

1 , θ
(p)
2 , . . . , θ

(p)
m−1; x)

(10)

Successive iterations of this algorithm successively generate the states of a Markov chain {θp, p > 0} for values ℵ⊗m. The
transition probability from θ

′
to θ is expressed as:

K(θ
′
, θ) = K1(θ

′
, θ) × K2(θ

′
, θ) (11)

where:
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K1(θ
′
, θ) = π(θ1|θ

′

2, . . . , θ
′

m) × π(θ2|θ1, θ
′

3, . . . , θ
′

m)
K2(θ

′
, θ) = π(θ3|θ1, θ2, θ

′

4, . . . , θ
′

m) × . . . × π(θm|θ1, . . . , θm−1).
(12)

This shows that the chain admits an invariant measure which is the posterior. For a sufficiently large number of iterations,
the vector θ thus obtained may be considered as a realization of the posterior.

2.5 Model Diagnostics

The models goodness of fit were compared using the Deviance Information Criterion (DIC) as suggested by Spiegelhalter
(2002). The best fitting model is one with the smallest DIC. The DIC value is given by DIC = D(θ) + pD, where D is the
posterior mean of the deviance that measures the goodness of fit, and pD gives the effective number of parameters in the
model which penalizes for complexity of the model. However, several authors have stated that a difference in DIC of 3
between two models can not be distinguished while a difference between 3 and 7 can be weakly differentiated.

For further model assessment, we associated the Bayesian Information Criterion (BIC). In statistic, the Bayesian infor-
mation criterion or Schwarz criterion is a criterion for model selection among a finite set of models and the model with
the lowest BIC is preferred (Schwarz. 1978). It is based, in part, on the likelihood function and it is closely related to the
Akaike information criterion (AIC). BIC value is given by BIC = Dhat + 2p ∗ log(n) where Dhat = −2logL(θ∗|y) with
L(θ∗|y), the likelihood of each model, p the number of parameters and n the sample size.

3. Simulation Study

We carried out a simulation study to investigate the robustness of the three models namely: the Self-Selecting Robust
Logistic Regression (SsRLR) model, Gelman’s Robust Logistic Regression (GRLR) model and the ordinary Logistic Re-
gression (LR) model. Following the simulation study carried out by Croux & Haesbroeck. (2003), LR model is generated
with two independent normally distributed covariates. The additive noise εi is selected from a logistic distribution defined
as:

logit(πi) = β0 + β1Xi1 + β2Xi2 + (εi ≥ 0) (13)

The true parameter values are β = (0, 2, 2) with sample size n = 200. The study was based under a variety of situation.
First, data without contamination was taken with two independent normally distributed covariates with zero mean and
unit variance. Second, to examine the robust properties of all models, we introduced outliers by contaminating the data
similarly to the idea proposed by Victori (2002). We generated the outliers in R software by corrupting the covariates.
This consists of randomly choosing a certain t proportion (3%, 5%, 7%) from both covariates and replace them with a
sample Xi chosen from N(t, 10, 2). The response variable for each proportion was then generated from the new corrupted
covariates. Finally the generated binary response data was contaminated under different percentages of leverage points.
Thereafter, the three logistic models were applied to these data generated. In order to better handle those outliers, our
robust model proposed to the contaminated binary data response itself to select the value of the probability α. After getting
that significant alpha value for the robust model, we compared the goodness of fit of the three logistic regression models.

4. Results

For each simulated data set, we estimated and recorded the parameters β and α. In particular we focus on investigating
how much each model performs in presence of outliers in the binary response data. In assessing that performance, we
compute and compare their DIC and BIC.

4.1 Model Assessment and Comparison

The first finding involved the LR model. In fact, the generated outliers values between 5 and 10 caused the LR not
to run, giving ”Trap Message” and no output while the SsRLR model model takes care of the leverage points without
any problem. We got output and summary statistics by using a Restricted Logistic Regression (RLR) model where yi

∼Bern(π1) is defined as:

RLR : logit(π) = β0 + β1X1 + β2X2 (14)

π1= min(1,max(0.001,π))

It can be deduced that fitting ordinary logistic regression with outliers can get ”Trap Message” and no output without
using Minmax in WinBUGS. Figures show a visual representation of the distribution of the data set. And it is clearly
confirmed in the second histogram of the figure 1. the presence of outliers localized between 5 and 10 as earlier said.
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Figure 1. Histogram of X in both clean and contamination cases

Figure 2. Relationship between Response Variable and Endogenous Variable X With outliers
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Table 1-2 show the simulated results of all the fitted models for data with various percentages of leverage points. In
absence of outliers (0% of lev pt), it can be observed that, there is no significant difference between the restricted logistic
and the robust models based on the DIC value. But the SsRLR model seems to give better estimated values of the
parameters.

Table 1. Description of variables X and assumed values of parameters manipulated in simulation

Variables and Parameters Assumed values
n 200
x1 x1 ∼ N(n, 0, 1)
x2 x2 ∼ N(n, 0, 1)
β0 0
β1 2
β2 2
α α ∼ U(a, b) with a and b belonging

to [0,1]

The Restricted LR model was immediately affected by 3% of leverage points giving the highest DIC value. Gelman’s
model was influenced as well showing parameter estimates which were not stronger than the expected one, while the
SsRLR model let the data itself to select 2.664E-5 alpha value that improved the parameter estimated values.

It is interesting to observe that the 5% of leverage points do not have effect on the SsRLR model. This latter confirms its
robustness giving more better simulated result with the smallest DIC value.

The α values 5.014E-5 and 2.059E-3 respectively self selected in the presence of outliers (5% and 7% of lev pt) allowed
the data to minimize the influence of those latter in the parameter estimation.

Based on the criterion that a difference in DIC values from 3, 4 between two models provides a better fit, it can be clearly
concluded that the best fitting model is the Self Selecting Robust Logistic Regression (SsRLR) model with small DIC
value when there is presence of outliers in the binary response data.

Furthermore, based on the BIC, the SsRLR model with the lowest BIC value is the preferred best fitting model (Schwarz.
1978).

5. Discussion

This study uses Bayesian techniques to develop robust logistic regression model when outliers are present in binary
response data. The study develops robust logistic model to help improve parameter estimation fitting. In this study, the
approach used in the robust model is based on a trimming value alpha, α chance of random error in both direction of the
interval [0, 1].

From the existing contribution of Gelman (2004) that fixed α and (1 − 2α) in his model, we extended by self selecting
theses probability values depending on the data at hand and gave them a Uniform [a, b] prior distribution.

In this study, we clearly confirmed that these probability values could also be determined by the data itself. In other words,
depending on the binary data at hand, this latter could itself select αand (1 − 2α).

We found that the smaller the assigned values of a and b, the smaller the self selected α and the more efficient the estimates
obtained from simulation results will be, compared to the ones otained from both the GRLR and the LR models when the
data is either clean or contaminated.

Another finding is that the self selecting robust logistic regression model is better fitting model compared to the Restricted
LR model based on DIC value using Bayesian approach implemented in WinBUGS.

The SsRLR model provides a reliable fitting model based on the lowest BIC value compared to the RLR and GRLR
models.

We also found that the Restricted LR model has minimized the effect of the outliers present in the data and allowed
achievement of better results. Despite this, the Self Selecting Robust Logistic Regression model presented more reliable
results in comparison to the Restricted LR contrary to Gelman’s robust logistic regression model.

6. Conclusions

This work aims to extend the performance of logistic regression for binary data. Ordinary LR with arbitrary outliers was
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Table 2. Simulated results of all models for Data with Leverage Points (0% and 3%)

% of lev pt 0% 3%
Estimate SsRLR GRLR LR SsRLR GRLR RLR
β0 0.1074 0.1261 0.1072 0.02201 -0.05214 0.00607
σ0 0.2237 0.1944 0.223 0.0216 0.2401 0.2034

β1 2.371 2.201 2.363 2.035 1.714 1.875
σ1 0.3139 0.3702 0.3618 0.3101 0.2016 0.3185

β2 2.326 2.107 2.304 2.017 1.556 1.571
σ2 0.2987 0.3731 0.3704 0.3021 0.263 0.3083

α 1.004E-5 0.01 - 2.664E-5 0.01 -
σα 5.835E-6 - - 2.578E-5 - -

Dhat 136.124 135.211 139.987 146.573 147.123 152.890
pD 2.917 2.820 2.978 2.765 2.781 3.061

BIC 154.532 153.619 153.793 164.981 165.531 166.696
DIC 142.208 141.958 143.098 153.624 153.686 157.812

Table 3. Simulated results of all models for Data with Leverage Points (5% and 7%)

% of lev pt 5% 7%
Estimate SsRLR GRLR RLR SsRLR GRLR RLR
β0 0.06466 0.02474 0.06374 -0.1779 -0.1898 -0.1183
σ0 0.2315 0.2292 0.2123 0.2202 0.2271 0.2333

β1 2.194 1.859 2.069 2.344 2.198 2.217
σ1 0.3014 0.2943 0.4068 0.3097 0.3634 0.4015

β2 2.289 2.125 2.184 2.25 1.951 2.087
σ2 0.3722 0.3104 0.3841 0.3475 0.3842 0.3907

α 5.014E-5 0.01 - 0.002059 0.01 -
σα 2.888E-5 - - 0.001145 - -

Dhat 125.280 126.038 131.056 113.339 114.058 119.009
pD 2.849 2.898 2.845 2.801 2.943 3.077

BIC 143.688 144.446 144.862 131.747 132.466 132.815
DIC 132.199 132.376 136.645 119.395 119.524 124.164

shown to fail. We proposed a robust SsRLR model that dealt with such contamination. It was also observed that by fixing
the value of alpha, GRLR model was not that robust to the influential observations.

We proposed in that study a novel robust (LR) model to solve this issue. To proceed, we developed a self selecting robust
logistic model, then investigated the robustness of this latter. We proposed a clear way of specifying the trimming values
as required by the user, as opposed to fixing it.

One finding indicated across the simulation results that SsRLR model performs well in its specificity of letting the binary
data itself to select the alpha value necessary to better improve the quality of the parameter estimates. Based on the
smallest DIC and BIC value respectively, our SsRLR model was found the best fitting model under contaminated binary
data sets.

We found that as long as α value is smallest self selected by the data at hand, the robustness of the SsRLR model is more
improved. That is our contribution to Gelman’s robust logistic regression model.
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7. Recommendation

By carrying out this study, we showed the insufficiency contained in the Gelman’s model when it comes to dealing with
binary response data in presence of leverage points.

From there, we recommend the statistician to use the SsRLR model when modeling binary data in the case of covariate
corruption and to further investigate its robustness in future research.

We also recommend the future researchers to focus more on the robustness of the GRLR model by studying the behavior
of the trimmed probability alpha when the outliers occur in the Y-space called misclassification-type error or in both Y
-space and X-space. The next author can widen this work by discussing the problem of improper prior of α.
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Softwares Used in the Study.

R software, WinBUGS.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

140


