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Abstract

The dependence structure between 756 prices for futures on crude oil and natural gas traded on NYMEX is analyzed
using a combination of novel time-series and copula tools. We model the log-returns on each commodity individually
by Generalized Autoregressive Score models and account for dependence between them by fitting various copulas to
corresponding error terms. Our basic assumption is that the dependence structure may vary over time, but the ratio
between the joint distribution of error terms and the product of marginal distributions (e.g., Sibuya’s dependence function)
remains the same, being time-invariant. By performing conventional goodness-of-fit tests, we select the best copula, being
member of the currently introduced class of Sibuya-type copulas.
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1. Energy Markets and their Modeling

The evidence of joint movements in energy markets prices can be possibly explained by the simultaneous impact of
increasing economic and political activities in different geographic regions. Traditionally, in a first step of statistical
analysis, several single equation time-series models are applied to account for autocorrelation and volatility clustering in
marginals. The model variability is huge and depend on many circumstances.

Usually, the return series are modeled by state-space time series (in most of the cases GARCH-type) with suitable marginal
distributions for error-terms or by factor models. Following the standard theory, the error terms are assumed to be indepen-
dent and identically distributed. The empirical analysis shows that this theoretical belief is frequently violated in practice,
especially during pre- and post-crisis periods. For example, Alexander (2005) studied dependence between prices for fu-
tures on crude oil and natural gas. She concluded that when prices of these commodities are fitted by time-series models,
the distribution for the error terms are found to be asymmetric, i.e., the dependence can not be modeled correctly by the
bivariate Normal distribution.

In the univariate case non-normality is associated to the skewness and leptokurtosis phenomena, or the fat-tail problem. In
the multivariate case, the fat-tail problem can be assigned not only to the marginal distributions but also to the probability
of large co-movements of the individual returns. In other words, the tail dependence phenomena is a modern statistical
standard to describe the amount of extreme dependence, see Jaschke (2014).

Recently, in a second step, professionals select an appropriate copula family and fit it to filtered log-return series in order
to gauge their dynamic interdependence. Since the copula is a function of marginal distributions (applied to error terms),
an adequate modeling of individual time series is crucial for estimating the dependence structure between underlying
log-returns. For example, the copula approach for modeling energy markets was addressed in Gregoire et al. (2008)
who analyzed prices of crude oil and natural gas based on one-month-ahead futures contracts traded on the New York
Mercantile Exchange (NYMEX) form July 1, 2003 to July 19, 2006. The authors modeled the log-returns individually
as time series, selecting appropriate GARCH-type model for marginal series, and selected the ”best” copula to depict the
existing dependence between error terms.

As a standard, the researches apply the following copulas in their works: Gaussian copula (without tail dependence),
Frank and Student’s t-copulas (exhibiting both upper and lower tail dependence), Gumbel and Pareto copulas (having
upper tail dependence), Clayton (displaying lower tail dependence), BB1 copula family and few other modifications, see
Joe (2015).

An implicit assumption in many studies is that the dependence structure between the prices of crude oil and natural gas
is constant (static) in time, i.e., the corresponding copula C(u, v) joining marginal log-returns should be time-invariant,
meaning that

Ct(u, v) = C(u, v) for (u, v) ∈ [0, 1] and all t = 1, 2, ..., T.
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It is well known that the absolutely continuous copula satisfying the last relation is the Clayton’s one, see Oakes (2005).
It exhibits lower tail dependence (but not upper one). Thus, the Clayton copula can not be used to describe the extreme
dependence between markets, for example. Nevertheless (and curiously) there can be found ”contributions” whose authors
indicate the Clayton copula as the ”best choice” for modeling extreme market movements.

Another common misunderstanding can be found in many papers and business reports indicating as a ”best” fit Gaussian
and/or t-copulas. The Gaussian and t-copulas are popular in applications due to their convenience for computation (being
members of the elliptical copula family). The Gaussian copula has no tail dependence, while the t-copula allows different
degrees of symmetric upper or lower tail dependence which is determined by the estimated degrees of freedom (d f )
parameter. A smaller d f implies higher tail dependence. As the d f goes to infinity, the Student’s t-copula converges to
the Gaussian copula. The problem is that the static Gaussian and t-copulas are not time invariant and thus, they are not
appropriate to describe the existing dynamic dependence between individual log-returns.

If one googles ”Dependence modeling in energy markets with copulas”, around 120 related works after 2010 will be listed.
Many authors conclude that the overall relationship has increased over time, implying growing tail dependency. Owing to
these features, the usual static dependence measures (lower and upper tail indexes) should be considered inadequate after
2008 crisis, indicating a preference to local their versions. We will list and comment several recent contributions:

• Reboredo (2011) used copula based GARCH model to study the dependence structure between the crude oil bench-
mark prices in 12 international crude oil markets. It was found that in times of market stress, crude oil prices in
each market tend to exhibit comovements with the same intensity. Moreover, crude oil and natural gas log-returns
exhibit non-linear dependence;

• Alouia et al. (2013) analyzed daily closing prices for the Brent crude oil index and MSCI (Morgan Stanley Capital
International) stock market indexes of the six Central East European transition economies (Bulgaria, Czech Repub-
lic, Hungary, Poland, Romania and Slovenia) over the period from December 1, 2005 to August 20, 2012, totalizing
1753 observations. The authors investigated the dependence structure between oil and stock market returns through
time applying the time-varying copula approach, see, e.g., Cherubini et al. (2012). The conclusion is that bias
toward evidence of tail dependence is generated when time-varying parameters in the dependence distribution is
not allowed;

• Jaschke et al. (2012) studied the dependence of extreme events in energy markets. In a deep discussion the authors
established that the formal consideration of tail dependence indexes may falsely lead to evidence of asymmetric
relation between the returns and suggested to use local version based on tail-copula approach, see Schmidt and
Stadtmüller (2006). The empirical investigation focused on the dependence between crude oil and natural gas
prices based on one-month-ahead futures contracts traded at NYMEX between July 2, 2007 and July 2, 2010;

• Beckmann et al. (2016) analyzed oil prices and exchange rates against the dollar and both experienced long swings
over recent decades. The authors focused on the evolution of the relationship between oil prices and dollar exchange
rates of 12 oil-exporting and oil-importing countries based on a copula approach. Daily data for two 5 year periods
between September 2003 and 2013 were used, taking the crash of Lehman Brothers during 2008 as the dividing
point. The growing tail dependence shows that extreme events are more likely to occur simultaneously for both
series;

• Pan (2014) investigated the tail dependence structure between energy market and stock markets returns in the BRIC
(Brazil, Russia, India and China) countries over the period from 12 January 2000 to 28 December 2012. The data set
included the Bovespa index (Brazil), the RTSI index (Russia), the BSE 30 Sensitivity index (India) and the Shanghai
Composite index (China) returns. Pan (2014) showed that the tail dependence increased rather substantially in the
financial crisis of 2008. Moreover, the lower tail dependence for all the paired returns is larger than the upper one.
Finally, the tail dependence is found to be the strongest for Russia and the weakest for China;

• The vine copula model is another powerful tool to analyze the dependence structure in a multivariate setting, consult
Kurowicka and Joe (2011). It allows one to define the structure of relationship between the variables by using expert
knowledge, concordance of data, or both. Moreover, it can describe the association between the variables through
graphical model, or through what is called pair-copulas. We would mention the applied paper by Kiatmanarochy
and Sriboonchittaz (2014) who used the GARCH model and the D-vine copula model to analyze the relationship
between the crude oil prices of three different continents: Light crude futures of the NYMEX for North America,
Brent crude futures of the Intercontinental Exchange (ICE) for Europe, and Oman crude futures of the Dubai
Mercantile Exchange (DME) for Asia. The daily closing prices during the period from 26 December 2008 to 28
June 2013 were used to conduct the analysis.
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The chance to depict the existing dynamic dependence between commodities in different geographic regions would in-
crease if one starts with a general model as a base. Our choice is the so-called Generalized Autoregressive Score (GAS)
models (also known as Dynamic Conditional Score models), recently introduced by Creal et al. (2013) which incorporate
many known time-series models as particular cases. We outline main facts about GAS models in Section 2.1.

As we have seen, the time invariance is not a common copula property and depends on the additional appropriate utility
criteria applied by the investigator. For example, all copulas corresponding to distributions possessing bivariate lack of
memory property are ”time-invariant” in the non-aging world (when the distribution of a random vector coincides with
the distribution of its residual lifetime vector), see Kulkarni (2006).

As an alternative and complement to the existing methods, we suggest to use Sibuya-type copulas which incorporate many
known copula families. Sibuya-class of copulas generate and represent multivariate distributions preserving the Sibuya’s
dependence function (being the ratio of joint distribution to the product of marginal distributions, e.g., Sibuya (1960))
with respect to the residual lifetime vector. In fact, the dependence structure may vary over time, but Sibuya’s dependence
function remains in equilibrium, which is a reasonable utility criteria. The class of Sibuya-type copulas is introduced by
Pinto and Kolev (2015) and a short description is presented in Section 2.2.

In Section 3 we apply GAS methodology and Sibuya-type copulas to analyze energy markets log-returns for the data used
by Gregoire et al. (2008). It happens that the best fit is achieved with the copula of the extended Gumbels’s law (see
Example 3) connecting the corresponding error terms. We finish the article with a short discussion.

2. Methodology

We will introduce briefly two basic tools to be used in our proposal: Generalized Autoregressive Score (GAS) models and
Sibuya-class of copulas.

2.1 GAS Models

In many settings of empirical interest, time variation in a selection of parameters of a model is important for capturing the
dynamic behavior. Creal at al. (2013) introduce a new, general framework for building observation driven approach, where
parameters are defined as a function of lagged dependent values, exogenous variables, and past observations. Consult for
recent developments http://gasmodel.com

Let Rt denote the dependent variable of interest (log returns, say), ft the time-varying parameter vector, xt a vector of
exogenous variables (covariates), all at time t = 1, ..., n. Define Rt = {R1, ...,Rt}, Ft = { f1, ..., ft} and Xt = {x1, ..., xt}.
The available information at time t consists of past observations Rt−1, the time-varying parameters in Ft−1 and Xt. It is
assumed that Rt is generated by the observation density p(Rt−1,Ft−1,Xt; θ), where θ is a vector of static parameters.

The updating approach for the time-varying parameter ft is given by the Generalized Autoregressive Score model with
orders m and q, to be abbreviated GAS (m, q), as follows

ft = ω(θ) +
m−1∑
i=0

Ai(θ)st−i +

q∑
j=1

B j(θ) ft−i, (1)

where ω(θ) is a vector of unknown parameters. Coefficient matrices Ai(θ) and B j(θ) in (1) have appropriate dimensions,
while st is a scaled (link) function, which may be treated as ”innovation” depending on set {Rt−1,Ft−1; θ}.
The score vector st in (1) is specified by

st = S (t,Rt−1,Ft−1; θ) ∇t = S t−1 ∇t, (2)

where S t−1 is the time dependent scaling matrix (approximated by the inverse of Fisher information matrix usually) and

∇t =
∂ p(Rt−1,Ft−1,Xt; θ)

∂ ft−1
. (3)

The score terms st in (1) can be interpreted as Gauss-Newton updating step for every new observation Rt that becomes
available through time. In addition, the parameter ft is amended in the direction of steepest increase of the log-density at
time t.

The main advantage of score st defined by (2) and (3) is the possibility of its particular driving mechanism selection.
There are several intuitive choices for the scaling matrix S t−1. For example,

• When S t−1 is the identity matrix, i.e., S t−1 = I, the recursion (1) captures models such as the autoregressive
conditional multinomial model;

45



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 3; 2017

• Another natural choice is to set S t−1 equal to the (pseudo)-inverse information matrix based on p(Rt−1,Ft−1,Xt; θ),
e.g.,

S t−1 = I−1
t−1 = Et−1[∇t ∇′t ]−1.

We mention two basic properties of GAS (m, q) of bivariate continuous distributions only:

• The expectation of the score is zero, i.e., Et−1[∇t] = 0. As a result, st is a martingale difference sequence;

• If ft is stationary, its unconditional expectation is E[ ft] = ω(I − B1(1))−1.

Specific choices for scaling the score vector st transform the GAS model into well-known observation driven models, see
complete list in Creal et al. (2013). Two examples are given below.

Example 1 (GARCH model). Consider the basic model

Rt = σt−1εt, with disturbance εt ∼ N(0, 1),

where σt−1 is a time-varying standard deviation. One can check that the GAS(1,1) model with S t−1 = I−1
t−1 for ft = σ2

t
reduces to

ft = ω + A0(R2
t − ft−1) + B1 ft−1,

being the standard GARCH(1,1) model.

Example 2 (Linear Gaussian state-space model). Let Rt be generated by

Rt | ft ∼ p(Rt | ft, θ), with ft = Λ(αt), t = 1, ..., n,

where ft is the time-varying parameter vector, Λ(.) is the link function, and the scalar αt has a linear dynamic specification

αt = δ + γαt−1 + ηt−1, where α1 ∼ N(a1, P1), ηt−1 ∼ N(0, σ2
η).

The static parameter vector θ incorporates additional fixed and unknown coefficients. In the above state-space model δ is
a constant and γ is the autoregressive coefficient.

Alternative frameworks for observation driven models within the exponential family of distributions have been suggested
in the literature, including the generalized linear autoregressive models, the generalized autoregressive moving average
models and the vector multiplicative error models. In contrast to these proposals, GAS models are able to exploit the
complete density structure specified by p(Rt−1,Ft−1,Xt; θ), rather than only means and higher moments.

Thus, GAS models can postulate different dynamics for volatilities from fat-tailed distributions, depending on the under-
lying observation density p(Rt−1,Ft−1,Xt; θ). Extensions of GAS model to asymmetric, long memory, and other more
complex dynamics can be considered as well. Therefore, GAS models allow the formulation of a wide range of new
models and gives rise to a number of useful observation driven models that have not been investigated before.

2.2 Sibuya-type Copulas

Let S X1,X2 (x1, x2) = P(X1 > x1, X2 > x2) be the joint survival function of non-negative continuous random vector (X1, X2).
Define the hazard rate components by ri(x1, x2) = − ∂

∂xi
[ln S X1,X2 (x1, x2)], i = 1, 2.

The Sibuya-type copulas represent a class L(x; a) of bivariate continuous distributions specified by relation

r1(x1, x2) + r2(x1, x2) = a0 + a1x1 + a2x2, (x1, x2) ∈ [0,∞)2,

where a0, a1, a2 ≥ 0, see Pinto and Kolev (2016).

The class L(x; a) can be characterized as follows.

Theorem 1 (Pinto and Kolev, 2016). If the first partial derivatives of S X1,X2 (x1, x2) exist then r1(x1, x2) + r2(x1, x2) =
a0 + a1x1 + a2x2 is fulfilled if and only if the corresponding joint survival function can be represented by

S X1,X2 (x1, x2) =

S X1 (x1 − x2) exp
{
−a0x2 − a1x1x2 − a2−a1

2 x2
2

}
, if x1 ≥ x2,

S X2 (x2 − x1) exp
{
−a0x1 − a2x1x2 − a1−a2

2 x2
1

}
, if x2 ≥ x1,

(4)

where S Xi (xi) are the marginal survival functions, i = 1, 2.
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The joint survival function S X1,X2 (x1, x2) given by (4) defines a new aging notion. It is valid only for certain marginal
distributions satisfying ∂2

∂x1 x2
S X1,X2 (x1, x2) ≥ 0. This inequality implies restrictions for the marginal densities fXi (xi), which

determine the parameter spaceA of the L(x; a) class as follows

A = {a0 ∈ [max( fX1 (0), fX2 (0)), fX1 (0) + fX2 (0)]; a1, a2 ≥ 0, a1 + a2 > 0}.

If a0 = fX1 (0) + fX2 (0) the bivariate distribution is absolutely continuous and if a0 < fX1 (0) + fX2 (0) the corresponding
distribution has a singular component along the line x1 = x2 = x ≥ 0.

Particular cases of the class L(x; a) are:

• All distributions possessing bivariate lack of memory property (in particular, Marshall-Olkin’s bivariate exponential
distribution, being positive quadrant dependent), e.g., Kulkarni (2006): when a1 = a2 = 0;

• Gumbel’s (1960) bivariate exponential type I distribution

S X1,X2 (x1, x2) = exp {−x1 − x2 − θx1x2} , θ ∈ [0, 1], (5)

exhibiting negative quadrant dependence: when a0 = 2 and a1 = a2 = θ. The survival copula corresponding to (5)
is given by

CG(u, v) = uv exp{−θ ln u ln v}, u, v ∈ [0, 1]; (6)

• Some members of the Generalized Marshall-Olkin distributions introduced by Li and Pellerei (2011) via stochastic
representation

(X1, X2) = [min(T1,T3),min(T2,T3)],

where Ti’s are independent random variables. Put a0 = λ3 > 0, a1 = 2λ1, a2 = 2λ2 in (4) to get S X1,X2 (x1, x2) =
exp{−λ1x2

1 − λ2x2
2 − λ3 max(x1, x2)}.

It happens that the class L(x; a) can be also characterized by ”non-aging Sibuya dependence function”

ΩX1,X2 (x1, x2) =
S X1,X2 (x1, x2)

S X1 (x1)S X2 (x2)
, x1, x2 ≥ 0,

being time-invariant with respect to the residual life time vector

(X1t, X2t) = [(X1 − x1, X2 − x2) | X1 > t, X2 > t],

i.e., ΩX1,X2 (x1, x2) = ΩX1t ,X2t (x1, x2) for all t > 0.

The class L(x; a) is huge. It contains bivariate distributions that can be symmetric or asymmetric, being absolutely
continuous or having a singular component, displaying positive or negative quadrant dependence. Hence, the Sibuya-
copula class corresponding to (4) is broad. We will give only an example of a new bivariate distribution extending the
Gumbel’s distribution (5).

Example 3 (Extended Gumbel’s law). Let S Xi (x) = exp{−λix} for x ≥ 0, λi > 0, i.e., fXi (x) = λi exp{−λix} and
fXi (0) = λi, i = 1, 2.

The parameter spaceA in this case is

A = {max(λ1, λ2) ≤ a0 ≤ λ1 + λ2, a1 + a2 > 0 and 0 ≤ ai ≤ λi(a0 − λi), i = 1, 2}.

The bivariate survival function is absolutely continuous if a0 = λ1 + λ2 and one can deduce that ai = θiλ1λ2 for θi ∈ (0, 1],
i = 1, 2. Substitute these values in (4) to get

S X1,X2 (x1, x2) =


exp
{
−
[
λ1x1 + λ2x2 + λ1λ2x2(θ1x1 +

θ2−θ1
2 x2)

]}
, if x1 ≥ x2,

exp
{
−
[
λ1x1 + λ2x2 + λ1λ2x1(θ2x2 +

θ1−θ2
2 x1)

]}
, if x2 ≥ x1,

(7)

to be named Extended Continuous Gumbel’s distribution with parameters λ1, λ2, θ1 and θ2. We will abbreviate it EG(λ1,
λ2, θ1, θ2). When θ1 = θ2 = θ and λ1 = λ2 = 1 in (7) we obtain the Gumbels law (5).
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The survival copula generating EG(λ1 = 1, λ2 = 1, θ1, θ2) is given by

CEG(u, v) =

uv exp{−θ1 ln u ln v} exp{−0.5(θ2 − θ1)(ln v)2}, if 0 < u < v ≤ 1,
uv exp{−θ2 ln u ln v} exp{−0.5(θ1 − θ2)(ln u)2}, if 1 ≥ u ≥ v > 0.

(8)

Substituting θ1 = θ2 = θ one will obtain Gumbel’s survival copula (6).

We will use copulas (6) and (8) in data analysis presented in Section 3.

3. Data Analysis

We perform our analysis on the log-returns of crude oil (Ot) and natural gas (Gt) prices based on one-month-ahead futures
contracts traded on NYMEX from July 1, 2003 to July 19, 2006 (n = 756 observations in total), examined by Gregoire
et al. (2008) as well. To detect the presence of autocorrelation and heteroscedasticity in both series, one should perform
standard Box-Pierce and Ljung-Box tests on Ot, Gt and their squared values. To account for dependence between Ot and
Gt, we estimated the empirical correlation coefficient (ρn = 0.508) and empirical Kendall’s tau (τn = 0.349), indicating a
possible dependence between marginal series.

Gregoire et al. (2008) have found that the variation of Gt is best fitted by GARCH(1,6) model, with error term EG being
skewed t-distribution with four parameters. With respect to Ot, let us consider the random variable EO, with realizations
given by (Ot − µ̂)/σ̂, where µ̂ and σ̂ are, respectively, the empirical mean and standard deviation of Ot. Gregoire et al.
(2008) concluded that EO can be accurately modeled by a Student distribution with d f parameter equal to 13.745.

In a second step, assuming a possible inter-relation, the authors fit various families of copulas to EO and EG. In order to
select the best copula C(EO, EG), a range of goodness-of-fit tests are performed involving Cramer-von Mises test statistic

Mn = n
n∑

t=1

[CΘn(ut, vt) −Cn(ut, vt)]2, (9)

where CΘn(ut, vt) is the fitted copula with parameter vector Θ and Cn(ut, vt) is the empirical copula, n = 756. The best
choice in Gregoire et al. (2008) is the t-copula with parameters ρ = 0.522 and d f = 22 (with a computed P-value of 3%).
With a P-value of 1.4%, the Normal copula with parameter ρ = 0.522 would be viable alternative.

The analysis in Gregoire et al. (2008) clearly shows that the Ot and Gt are not independent. Furthermore, Pareto and Frank
copulas are inappropriate to model the dependence structure (see third column of Table 1). As to the specific form of the
dependence between EO and EG, no definite conclusion can be drawn. In fact, in view of the extremely low P-values (not
exceeding 0.03) none of the six copula models considered by authors provides an adequate description of the dependence.

We begin our analysis applying the GAS methodology for time varying parameters of individual log-returns, Ot and Gt.
After a careful evaluation of more than 200 GAS models under test (using the available software in http://gasmodel.com)
we confirm the findings in Gregoire et al. (2008) with respect to the distribution of EG. In contrast, we conclude that
GARCH(1,1) model provides the best fit to Ot, with Ot = 2.131×10−2+EOt

√
ht and ht = 2.131×10−2+3.223×10−2Ot−1.

The error terms EO1 , EO2 , ... form a random sample from EO, being t-distributed with parameter d f = 11.095.

In a second step, to select the ”best” copula joining the corresponding error terms in individual O and G series, we use the
parametric bootstrap procedure described by Genest et al. (2009). Accounting for this dependence would lead to more
adequate prediction of both crude oil and natural gas prices. In addition to copula functions considered by Gregoire et al.
(2008) we included the EG copula (8). For each model considered, we generated 2500 bootstrap values of the Cramer-von
Mises test statistic (9) and calculated the proportion of these values that are larger than Mn. The test results together with
parameter estimates are summarized in Table 1.

Our analysis shows (see the second column in Table 1) that the null hypothesis cannot be rejected at 5% level for any of
the three candidates: Student’s t, Gumbel, and EG copulas. Using the highest P-value as a criterion to select the model
with the best fit to the data at hand, we conclude that the EG copula (8) describes best the dependence between error terms
of crude oil and natural gas log-returns.
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Table 1. Test results for the goodness-of-fit of different copula models

Copula and estimated parameters P-value 2008 P-value
Independence 0.000 0.0000
Pareto (θ̂ = 0.545) 0.000 0.0000
Frank (θ̂ = 2.001) 0.017 0.0095
Gaussian (ρ̂ = 0.552) 0.0140
t-copula (θ̂ = 0.552, d f = 9) 0.0300
Gaussian (ρ̂ = 0.613) 0.028
t-copula (θ̂ = 0.613, d f = 8) 0.051
Gumbel’s (6) copula (θ̂ = 0.772) 0.212
EG (8) copula (θ̂1 = 0.821 θ̂2 = 0.711) 0.431

Of course, Monte Carlo simulations should be performed to compare the observed prices (after July 2, 2006) with those
predicted by our models. The main steps to simulate a specific model (EG copula (8), for example) are as follows:

• Generate a pair (ut, vt) from the EG copula (8);

• Set EOt = F−1(ut) and EGt = G−1(vt), where F and G are t-distributed with parameters 13.745 and 11.095, corre-
spondingly;

• Compute Ot = 2.131 × 10−2 + EOt
√

ht and Gt by expression given in Gregoire et al. (2008);

• Repeat above steps to get an empirical predictive realization of O and G and compare with future observations.

4. Conclusions

The dependence among spatially or vertically linked markets has received much attention in the literature. Time-varying
attributes in price co-movements can result from many reasons such as government interventions, financial contagion,
disease outbreaks and altering consumer tastes. However, there is little available information about the data generating
process. It is desirable to start in such scenarios with a general model and then to select a member that agrees with the
patterns of the data. In this study we suggest to explore jointly the GAS models and Sibuya-type copulas as an alternative
to the existing approaches for modeling price transmission that has appeared in the literature. The analysis in Section 3
shows that the combination of both recent methodologies leads to better results.

We assume that the dependence structure between series may vary over time, but the ratio between the joint distribution
of error terms and the product of marginal distributions remains in equilibrium, being time-invariant. This is a restriction,
but this approach leads to a huge class of distributions. Of course, the time-varying (dynamic) copula approach could be
adapted in a second step, assigning a function of time for copula parameters. In this case, one should develop efficient
estimation procedures and goodness of fit tests, specially in higher dimensions. Consult Patton (2009) and Cherubini et
al. (2012) for further discussion.

Another important message in this paper is devoted to the practitioners who are ready to use static copulas in order to
model temporal dependence between individual series. This is possible, but one should check, at last empirically (via
Kendall’s tau, say), if the data exhibit roughly constant dependence in time.
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