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Abstract

We study a new two-parameter lifetime model called the exponentiated generalized standardized half-logistic distribu-
tion, which extends the half-logistic pioneered by Balakrishnan in the eighties. We provide explicit expressions for the
moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz curves, and order statistics. The
model parameters are estimated by the maximum likelihood method. A simulation study reveals that the estimators have
desirable properties such as small biases and variances even in moderate sample sizes. We prove empirically that the new
distribution provides a better fit to a real data set than other competitive models.
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1. Introduction

It is hardly necessary to emphasize that a probabilistic model is commonly employed for practical situations in which
a deterministic model is not feasible. We can verify that probabilistic models still awaken the fascination of applied
scholars and researchers. This interest materializes in the great amount of works that are dedicated to the proposal of
new distributions. The half-logistic (HL) distribution pioneered by Balakrishnan is the absolute value of a random
variable following the logistic distribution. It has a monotonically increasing hazard rate function (hrf) for all parameter
values, which is a property shared by relatively few distributions with support on the positive real line. Recently, theHL
distribution has been discussed by several authors. We shall refer to the following works: (Balakrishnan, N. & Wong,
K. H. T., 1991) obtained approximate maximum likelihood estimates (MLEs) for the location and scale parameters with
type-II right-censoring; (Balakrishnan, N. & Chan, P., 1992) presented the estimation for the scaled HL distribution
under type II censoring; (Panichkitkosolkul, W. & Saothayanun, 2012) investigated bootstrap confidence intervals for the
process capability index under this distribution. More recently, (Oliveira, J., 2016) introduced a new extension of the
HLmodel by considering the standardized half-logistic (SHL) distribution, which is an attractive model for statisticians
and applied researchers since it does not have parameters and its mathematical properties can be easily obtained. The
cumulative distribution function (cdf) and probability density function (pdf) (for t > 0) of the SHL distribution are given
by

G(t) =
1 − e−t

1 + e−t (1)

and

g(t) =
2e−t

(1 + e−t)2 , (2)

respectively.

Let T be a random variable having density (2). The HL distribution is defined by a linear transformation W = µ + σ T ,
where µ ∈ IR+ and σ > 0. Without loss of generality, we can work with the SHL model. The nth moment of T is

E(T n) = 2
∫ ∞

0

tn e−t

(1 + e−t)2 dt = 2n!(1 − 21−n)ζ(n),

where ζ(·) is the Riemann zeta function. For details on the Riemann zeta function, see the Wolfram website http:
//mathworld.wolfram.com/RiemannZetaFunction.html. In particular, the first two moments of T are E(T ) = log(4) and
E(T 2) = π2/3. In addition, the hrf of T is given by λ(t) = 1/(1 + e−t). The moment generating function (mgf) of T , say
MT (s) = E(e−sT ), is given by
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MT (s) = 2
∫ ∞

0
e−st e−t

(1 + et)2 dt = 2J1(1 + s, 1 − s),

where Jp(a, b) =
∫ p

0
ua−1

(1+u)a+b (a, b > 0) is the type II incomplete beta function. For more properties of the HL distri-
bution(Balakrishnan, N., et al., 1991; Balakrishnan, N. & Chan, P., 1992; Panichkitkosolkul, W. & Saothayanun., 2012;
Oliveira, J., et al., 2016; Cordeiro, G. M., et al., 2015). The addition of parameters to the SHL model may generate new
distributions with great adjustment capability and, for this reason, we propose a generalization of it. The recent litera-
ture has suggested several ways of extending well-known distributions, among them, the generator approach, to provide
more realistic statistical models in a great variety of applications. Some of the most important generators were recently
discussed by Mansoor, M., et al., (2016).

For a baseline continuous cdf G(x), (Cordeiro, G. M., et al., 2013) defined the exponentiated generalized (EG for short)
class of distributions by

F(x) = {1 − [1 −G(x)]a}b, (3)

where a > 0 and b > 0 are two extra parameters whose role is to govern skewness and generate distributions with hea-
vier/ligther tails. They are sought as a manner to furnish a more flexible distribution. Because of its tractable distribution
function (3), this class can be used quite effectively even if the data are censored. The EG class is suitable for modeling
continuous univariate data that can be in any interval of the real line. The pdf corresponding to (3) is given by

f (x) = a b [1 −G(x)]a−1 {1 − [1 −G(x)]a}b−1 g(x), (4)

where g(x) = dG(x)/dx is the baseline pdf, which is a special case of (4) when a = b = 1. Setting a = 1 gives the
exponentiated-G (“exp-G”) class. If b = 1, we obtain the Lehmann type II class. So, the family (4) generalizes both
Lehmann types I and II classes; that is, this method can be interpreted as a double construction of Lehmann alternatives.
Note that even if g(x) is a symmetric density, the density f (x) will not be symmetric.

The above properties and many others have been discussed and explored in recent works for the EG class. We refer to
the papers: (Cordeiro, G. M., et al., 2014; Lemonte, A. J., 2014; Elbatal, I. & Muhammed, H. Z., 2014;Moors, 1988;
Da Silva, et al., 2015; De Andrade, et al., 2015; Bourguignon, M., et al., 2015; Mansoor, M., et al., 2016; Arya, G.&
Elbata, I., 2015 ; Silva, A. O., et al., 2015), which used the EG class to extend the Burr III, Birnbaum-Saunders, inverse
Weibull, inverted exponential, generalized gamma, Gumbel, extended exponential, Fréchet, modified Weibull and Dagum
distributions, respectively.

The rest of the paper is organized as follows. In Section 2, we define the exponentiated generalized standard half-
logistic (EGSHL) distribution by inserting (1) in equation (3). In Section 3, we study the shapes of its pdf and hrf.
Its hrf can take non-monotonous forms, such as bathtub and inverted bathtub, which explain many real phenomenons.
A detailed study of the quantile function (qf) and some applications is addressed in Section 4. In Section 5, we obtain
a useful linear representation for the new density. Some properties of the exp-SHL model are given in Section 6.
Explicit expressions for the ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating
function and reliability of the EGSHL distribution are obtained in Section 7. Sections 8 and 9 are related to the probability
weighted moments (PWMs) and Rényi entropy, respectively. In addition, for each important equation associated with the
new model, we provide plots and numerical studies in order to illustrate its usefulness. The order statistics and their
moments are investigated in Section 10. We discuss maximum likelihood estimation of the model parameters in Section
11. In Section 12, we present a simulation study. An application to real data in Section 13 shows the usefulness of the
proposed distribution. Finally, concluding remarks are addressed in Section 14.

2. The New Distribution

Let X be a random variable with support on the positive real line having the EGSHL (a, b) distribution, say X ∼
EGSHL (a, b). The cdf of X, for x > 0, is defined by inserting (1) in equation (3)

F(x) = F(x; a, b) =
[(1 + e−x)a − 2a e−ax]b

(1 + e−x)ab , (5)

where a > 0 and b > 0. Equation (5) has a simple closed-form, which is an important aspect to generate EGSHL
variables by using the inversion method. The density of X becomes

f (x) = f (x; a, b) =
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1 . (6)
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For brevity of notation, we shall drop the explicit reference to the parameters a and b unless otherwise stated. For
a = b = 1, equation (6) reduces to the SHL density. The EGSHL model also includes the Lehmann type I and type
II transformations of the SHL distribution, denoted by ESHLI and ESHLII. For example, the exponentiated SHL
distribution, say ESHLI, follows when a = 1. Some plots of the pdf (6) are displayed in Figures 2 and 2. These plots
reveal that the pdf of X is quite flexible and can take symmetric and asymmetric forms, among others. In summary, they
reinforce the importance of the proposed model.
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Figure 1. Plots of the EGSHL density function for some parameter values
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Figure 2. Plots of the EGSHL density function for some parameter values

The sf and hrf of X are given by

S (x) =
(1 + e−x)ab − [(1 + e−x)a − 2a e−ax]b

(1 + e−x)ab

and

τ(x) =
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x){(1 + e−x)ab − [(1 + e−x)a − 2a e−ax]b} , (7)

respectively.

Some plots of (7) are displayed in Figure 2. Besides monotone forms, the hrf of X can take bathtub and inverted bathtub
shapes. This non-monotone form is particularly important because of its great practical applicability. The time of human
life is just one of many phenomena that the bathtub shape hrf is applicable (Lee, E. T., 1992).

3. Shapes

Some plots of log{ f (x)} using the Wolfram Mathematica software for selected parameter values are displayed in Figure 3.
We can investigate the shapes of the pdf and hrf of X from their first and second derivatives.

The first derivative of log{ f (x)} is given by

d log{ f (x)}
dx

= − a + (1 + ab) e−x η−1(x) − a (1 − b) e−x v2(x) v−1
1 (x),

where η(x) = 1 + e−x, v1(x) = − 2a e−a x + ηa(x) and v2(x) = 2a ex(1−a) − ηa−1(x). Thus, the critical values of f (x) are the
roots of the equation:

− a + (1 + ab) e−x η−1(x) = a (1 − b) e−x v2(x) v−1
1 (x).
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Figure 3. Plots of the EGSHL hazard function for some parameter values
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Figure 4. Plots of log{ f (x)}.

The value x0, which solves the equation above can be a maximum, minimum or inflection point. To check this, we evaluate
the sign of the second derivative of log{ f (x)} at x = x0. We have

d2 log{ f (x)}
dx2 =

(1 + ab) e−x [e−x − η(x)]
η2(x)

+ a (1 − b) e−2x v−2
1 (x)

{
a 22a e2x(1−a) + η−2(x)

[
1 − a + a η2a(x) − ex η(x)

]
− 2a e−a x ηa−2(x)

[
1 − a + ex η(x)(1 + a − a ex η(x))

]}
.

It is often difficult to obtain an analytical solution for the critical points of this function. Therefore, it is common to obtain
numerical solutions with high accuracy through optimization routines in most mathematical and statistical platforms.
Some plots of the first derivative of log{ f (x)} for selected parameter values are displayed in Figure 3.
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Figure 5. Plots of the first derivative of log{ f (x)}.

Similarly, we provide the first and second derivatives of log{h(x)}. The critical values of log{h(x)} are the roots of the
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equation:

d log{h(x)}
dx

= − a (1 − b) e−x v2(x) +
e−x + (4 − a) η(x)

η(x)
+

a b e−x ηa b−1(x) + a b e−x v2(x) vb−1
1 (x)

ηa b(x) − vb
1(x)

.

The second derivative of log{h(x)} is given by

d2 log{h(x)}
dx2 =

e−2 x − e− x η(x)
η2(x)

+ a e− x v−2
1 (x)

{
(1 − b)

[
a e− x v2

2(x) + v1(x) v3(x)
]

− b
[
ηa b−1(x) + v2(x) vb−1

1 (x)
]2 − b

[
ηa b(x) − vb

1(x)
]

× [
ηa b−1(x) − (1 − a b) e− x ηa b−2(x) + a (1 − b) e− x v2

2(x) vb−2
1 (x) + vb−1

1 (x) v3(x)
]}
,

where v3(x) = 2a a ex(1−a) + (1 − a) e−x ηa−2(x) − ηa−1(x).

Some plots of the first derivative of log{h(x)} for selected parameter values are displayed in Figure 3.
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4. Quantile Function

In previous sections, we provide some important functions that characterize the random variable X ∼ EGSHL (a, b). By
inverting (5), we obtain the qf of X as

Q(u) = − log
[

(1 − u1/b)1/a

2 − (1 − u1/b)1/a

]
, (8)

where u ∈ (0, 1). The proposed distribution is easily simulated from a uniform random variable U by X = Q(U). Next,
we use (8) to generate 100 EGSHL(1.5, 1.2) occurrences. Figure 4 displays the histogram and empirical cdf for the
simulated data and also the exact pdf and cdf of X. These plots reinforce the adequacy model for practical applications.
For similar studies, see (Jafari, A. A., et al., 2014; Jafari, A. A. & Mahmoudi, E., 2015), among others.
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Figure 7. Plots of the EGSHL(1.5, 1.2) pdf, histogram, exact and empirical cdfs for simulated data with n = 100

As mentioned earlier, the qf practical uses are numerous. For example, Q(1/2) determines the median of the model. Table
4 gives the results of a small simulation study using the R software. The goal is to compare the empirical medians (EMed)
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generated for different parameter values and random samples of size n = 10, 20, 40, 100, with their corresponding
theoretical medians (Med) obtained by Q(1/2). As expected, the difference between EMed and Med decreases when n
increases.

Table 1. Theoretical and empirical medians (for n = 10, 20, 40, 100) of X for some parameter values

a b Med EMed (n = 10) EMed (n = 20) EMed (n = 40) EMed (n = 100)
1.5 3.3 1.6220 1.0295 1.2260 1.5061 1.6586
1.5 1.5 1.0579 0.5052 0.6796 0.9446 1.0940
3.3 1.5 0.5325 0.2436 0.3328 0.4720 0.5518

Finally, we use the qf of X to determine the Bowley skewness (Kenney, J. F. & Keeping, E. S., 1962) (B) and Moors kur-
tosis (Moors, J. J. A., 1988) (M). The Bowley skewness is based on quartiles B = [Q(3/4)−2Q(1/2)+Q(1/4)]/[Q(3/4)−
Q(1/4)], whereas the Moors kurtosis is based on octiles M = [Q(7/8) − Q(5/8) − Q(3/8) + Q(1/8)]/[Q(6/8) − Q(2/8)].
These measures are fairly considered in the literature. Here, we refer to the following works: (Cordeiro, G. M. & Lemonte,
A. J, 2014; Silva, A. O., et al., 2015; De Andrade, 2015; Mansoor, M., et al., 2016), among others. The effects of the
additional shape parameters a and b on the skewness and kurtosis of the EGSHL model can be based on these measures.
In Figures 4 and 4, we present 3D plots of B and M measures for several parameters values. These plots, obtained using
the Wolfram Mathematica software, reveal that changes in these parameters have a considerable impact on the skewness
and kurtosis of the EGSHL model, thus showing its greater flexibility.

(a) a ∈ (0.2, 8) and b ∈ (0.5, 2) (b) a ∈ (0.5, 2) and b ∈ (0.5, 2) (c) a ∈ (0.2, 0.5) and b ∈ (0.2, 0.5)

(d) a ∈ (0.01, 0.09) and b ∈ (0.01, 0.09) (e) a ∈ (0.1, 0.9) and b ∈ (0.1, 0.9) (f) a ∈ (6, 1.5) and b ∈ (1.5, 6)

Figure 8. Plots of the Bowley skewness of X.

5. Linear Representation

We provide useful linear representations for equations (3) and (4) based on the exponentiated class of distributions.
Mathematical properties of the exponentiated distributions have been published by many authors in the 90s. See, for
example, (Gupta, R. D. & Kundu, D., 2001) for exponentiated exponential, (Nadarajah, S., et al., 2014) for exponentiated
Lindley, (Sarhan, A. M. & Kundu, D., 2009) for exponentiated linear failure rate and, more recently, (Lemonte, A. J.,
2013) for the exponentiated Nadarajah-Haghighi and (Oliveira, J., et al., 2016) for the exponentiated SHL models.

For an arbitrary baseline cdf G(x), a random variable Ya has the exp-G class with power parameter a > 0, say Ya ∼exp-
G(a), if its cdf and pdf are given by Ha(x) = G(x)a and ha(x) = a g(x) G(x)a−1, respectively. For a comprehensive
discussion about the exponentiated class, see a recent paper by Tahir, M. H. and Nadarajah, S. (2015).

Here, we consider the generalized binomial expansion

(1 − z)b =

∞∑
k=0

(−1)k
(
b
k

)
zk, (9)
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(a) a ∈ (0.2, 8) and b ∈ (0.5, 2) (b) a ∈ (0.5, 2) and b ∈ (0.5, 2) (c) a ∈ (0.2, 0.5) and b ∈ (0.2, 0.5)

(d) a ∈ (1.1, 2) and b ∈ (0.2, 2) (e) a ∈ (0.1, 3) and b ∈ (0.5, 1.5) (f) a ∈ (0.1, 30) and b ∈ (0.5, 1.5)
Figure 9. Plots of the Moors kurtosis of X.

which holds for any real non-integer b and |z| < 1.

Using (9) twice in equation (4), the EG density function can be expressed as

f (x) =
∞∑
j=0

w j+1 h j+1(x), (10)

where w j+1 =
∑∞

m=1(−1) j+m+1
(

b
m

) (
m a
j+1

)
and h j+1(x) = ( j + 1) g(x) G(x) j is the exp-G pdf with power parameter j + 1.

Equation (10) reveals that the EG density is a linear combination of exp-G densities. We can derive some structural
properties of the EG class from those exp-G properties. The cdf F(x) comes from (10) by simple integration, namely

F(x) =
∞∑
j=0

w j+1 H j+1(x), (11)

where H j+1(x) = G(x) j+1 is the exp-G cdf with power parameter j + 1.

Equations (10) and (11) were obtained by Cordeiro, G. M. and Lemonte, A. J. (2014). They hold for any baseline
distribution G. It is not difficult to show numerically that

∑∞
j=0 w j+1 = 1. Moreover, for most practical purposes, we can

set the upper limits equal to 20.

We can adopt (10) for the EGSHL distribution and obtain its mathematical properties from those of the exp-SHL
distribution. Let Y j+1 be a random variable having the exp-SHL density with power parameter j + 1 ( j ≥ 0) given by

h j+1(x) =
2 ( j + 1) e−x (1 − e−x) j

(1 + e−x) j+2 . (12)

Clearly, several mathematical properties of X can be determined from the linear representation (10) and those of the
exp-SHL distribution given by Oliveira, J. et al. (2016) and report in the next section.

6. Properties of the Exp-SHL Distribution

Henceforth, let Y j+1 ∼exp-SHL( j + 1) have the density function (12). We use throughout an equation for a power series
raised to an integer j = 1, 2, . . .  ∞∑

i=0

ai xi

 j

=

∞∑
i=0

c j,i xi,

30



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 3; 2017

where a0 , 0, c j,0 = a j
0 and the coefficients c j,i (for i ≥ 1) are determined recursively by

c j,i =
1

ia0

i∑
m=0

[m( j + 1) − i] am c j,i−m. (13)

The nth moment of Y j+1 derived by expanding the binomial terms is given by

E(Yn
j+1) = 2( j + 1)

∫ ∞

0
xn e−x (1 − e−x) j

(1 + e−x) j+2 dx = ( j + 1)
∞∑

i=0

cn,i

( j + 1 + i + n)
, (14)

where the quantities cn,i’s are obtained from equation (13) by taking ai = [1 + (−1)i]/(i + 1) (for i ≥ 0).

For empirical purposes, the shape of many distributions can be usefully described by the incomplete moments. They form
natural building blocks for measuring inequality: for example, the Lorenz and Bonferroni curves depend upon the first
incomplete moment of an income distribution. The nth incomplete moment of Y j+1 is given by

m j+1(n; z) =
∫ z

0
xn h j+1(x) dx = 2( j + 1)

∫ z

0
xn (1 − e−x) j

(1 + e−x) j+2 dx = ( j + 1)
∞∑

i=0

cn,i tanh(z/2) j+1+i+n

( j + 1 + i + n)
, (15)

where tanh(·) is the hyperbolic tangent function.

The mgf of Y j+1, say M j+1(s) = E(esY j+1 ), can be expressed as

M j+1(s) = ( j + 1)!Γ(1 − s) 2F̃1[ j + 1,−s; j + 2 − s;−1], (16)

where 2F̃1 is the regularized hypergeometric function defined by

2F̃1[a, b; c; z] =
∞∑

k=0

(a)k (b)k

Γ(c + k)
zk

k!
, |z| < 1,

(a)k = a(a− 1) . . . (a− k+ 1) (for k > 1) is the falling factorial, (a)0 = 1, and Γ(a) =
∫ ∞

0 xa−1 e−xdx is the gamma function.
For |z| < 1 and arbitrary parameters a, b and c, the above infinite sum is convergent. For more, see (Oliveira, J., et al.,
2016).

7. Properties of the EGSHL Distribution

In this section, we obtain explicit expressions for some quantities of the EGSHL distribution. The formulae derived can
be handled in most symbolic computation platforms such as Mathematica and Maple more efficiently than computing
them directly by numerical integration of the density function (6). The infinity limits can be substituted by a large positive
integer such as 20 or 30 for most practical purposes.

7.1 Moments

The statistical relevance for calculating moments, especially in applied research, is widely know in the literature. Next,
we provide two ways to compute the nth moment of X with density (6). The first formula follows as

µ′n = E(Xn) =
∫ ∞

0
xn a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1 dx. (17)

Although we do not have a closed-form for this integral, it is very simple to evaluate it computationally. For illustrative
purposes, we provide a small numerical study by computing E(Xn) and the variance of X from (17) numerically. We
consider several parameters values and n = 1, 2, 3, 4, 5 and the results are given in Table 7.1 with five decimal digits. All
computations are performed using Wolfram Mathematica platform. Plots of the moments for some parameter values are
display in Figure 7.1.

Based on the values in Table 7.1 and the plots in Figure 7.1, we conclude that the additional parameters a and b have large
impact on the moments of X. Theses values and plots reveals that, in general, for fixed a parameter value, the moments
and the variance increases when b increase. The inverse happens when we set values for b and the parameter a increases.

Alternatively, the nth moment of X can be obtained from equations (10) and (14) as

µ′n =
∞∑

j, i=0

( j + 1) w j+1 cn,i

( j + 1 + i + n)
, (18)

where the quantities cn,i are defined in (14).
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Table 2. First five moments and variance of X for several a and b values

a b E(X) E(X2) E(X3) E(X4) E(X5) E(X6) Var(X)
1 1.38629 3.28987 10.8185 45.4576 233.309 1419.19 1.36807
2 2.00000 5.54518 19.7392 86.5481 454.576 2799.70 1.54518

1 3 2.38629 7.28987 27.4540 124.414 666.049 4146.65 1.59549
4 2.66667 8.72690 34.3189 159.759 869.290 5463.90 1.61577
5 2.88629 9.95653 40.5444 1.93052 1065.45 6754.52 1.62586
1 0.77259 1.03456 1.89782 4.36705 12.0417 38.6822 0.43766
2 1.12149 1.74814 3.45960 8.29363 23.3966 76.1291 0.49040

2 3 1.34151 2.29938 4.80462 11.8926 34.1919 112.506 0.49989
4 1.50061 2.75176 5.99586 15.2347 44.5172 147.941 0.49993
5 1.62474 3.13723 7.07113 18.3678 54.4388 182.532 0.49745
1 0.54518 0.52394 0.69195 1.14285 2.24819 5.11402 0.22672
2 0.79560 0.88925 1.26465 2.17282 4.36906 10.0624 0.25627

3 3 0.95453 1.17288 1.75929 3.11793 6.38539 14.8667 0.26175
4 1.06985 1.40625 2.19804 3.99600 8.31344 19.5434 0.26167
5 1.15990 1.60536 2.59437 4.81925 10.1654 24.1058 0.25999
1 0.42369 0.32098 0.33603 0.44048 0.68689 1.23528 0.14147
2 0.62075 0.54682 0.61577 0.83882 1.33604 2.43152 0.16149

4 3 0.74656 0.72307 0.85829 1.20520 1.95400 3.59362 0.16572
4 0.83814 0.86856 1.07395 1.54616 2.54548 4.72537 0.16608
5 0.90980 0.99296 1.26911 1.86623 3.11402 5.82982 0.16522
1 0.34738 0.21827 0.19059 0.20891 0.27257 0.40988 0.09760
2 0.51045 0.37296 0.35006 0.39844 0.53067 0.80725 0.11240

5 3 0.61507 0.49422 0.48878 0.57318 0.77674 1.19363 0.11591
4 0.69146 0.59461 0.61244 0.73610 1.01256 1.57020 0.11649
5 0.75134 0.68063 0.72456 0.88925 1.23945 1.93788 0.11612

(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 1 (e) n = 2 (f) n = 3

Figure 10. Plots of the moments of X for some parameter values

7.2 Incomplete Moments and Their Applications

The nth incomplete moment of X, say m(n; y) =
∫ y

0 xn f (x) dx, can be determined from (10) and (15) as

m(n; y) =
∞∑

j,i=0

( j + 1) w j+1 cn,i tanh(z/2) j+1+i+n

( j + 1 + i + n)
. (19)
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Generally, there has been a great interest in obtaining the first incomplete moment of a distribution. The mean residual
function follows from (19) with n = 1 as µ′1 − m(1; y) − y. Further, we can obtain mean deviations from the mean and the
median given by δ1 = E(|X − µ′1|) = 2µ′1 F(µ′1) − 2m(1; µ′1) and δ2 = E(|X − M|) = µ′1 − 2m(1; M), where the mean µ′1 and
the median M follow from (18) and (8), respectively.

Equation (19) with n = 1 is also useful to derive the Bonferroni and Lorenz curves defined (for a given probability π) by
B(π) = m(1; q)/(π µ′1) and L(π) = m(1; q)/µ′1, respectively, where q = Q(π) follows from (8).

7.3 Generating Function

The mgf of X, say M(s) = E(esX), can be obtained from (10) and (16) (for s , 0, 1, 2, . . .) as

M(s) =
∞∑
j=0

( j + 1) w j+1 Γ(1 − s) 2F̃1[ j + 1,−s; j + 2 − s;−1].

7.4 Reliability

Here, we derive the reliability, say R, when X1 ∼ EGSHL(a1, b1) and X2 ∼ EGSHL(a2, b2) are two independent
random variables. Let f1(x) denote the pdf of X1 and F2(x) denote the cdf of X2. The reliability can be expressed as
R = P(X1 > X2) =

∫ ∞
0 f1(x) F2(x) dx and using equations (10) and (11) gives

R =
∞∑

j,k=0

I j,k

∫ ∞

0
h j+1(x) Hk+1(x) dx,

where I j,k =
∑∞

m,n=1(−1) j+k+m+n+2
(

b1
m

) (
m a1
j+1

) (
b2
n

) (
na2
k+1

)
.

Thus, the reliability of X reduces to

R =
∞∑

j,k=0

I j,k

∫ ∞

0

2 ( j + 1) e−x (1 − e−x) j+k+1

(1 + e−x) j+k+3 dx

and then

R =
∞∑

j,k=0

( j + 1)I j,k

( j + k + 2)
. (20)

Table 7.4 gives some values of R for different parameter values. Clearly, for a1 = a2 and b1 = b2, we obtain R = P(X1 >
X2) = 1/2. All computations are done using Wolfram Mathematica software by taking the upper limits equal to 30 in (20).

Table 3. The reliability of X for (a1 = 2, a2 = 2) and some values of b1 and b2

b2 2 3 4 5 6
b1

2 0.50000 0.40000 0.33333 0.28571 0.25000
3 0.60000 0.50000 0.42857 0.37500 0.33333
4 0.66667 0.57143 0.50000 0.44444 0.40000
5 0.71429 0.62500 0.55556 0.50000 0.45455
6 0.75000 0.66667 0.60000 0.54545 0.50000

8. Probability Weighted Moments

The PWMs are used to derive estimators of the parameters and quantiles of generalized distributions. The moment method
of estimation is formulated by equating the population and sample PWMs. These moments have low variances and no
severe biases, and they compare favorably with estimators obtained by maximum likelihood. The (s, r)th PWM of X is
defined by δs,r = E[Xs F(x)r]. Clearly, the ordinary moments follow as δs,0 = E(Xs). Next, we derive simple expressions
for the PWMs of X defined by

δs,r =

∫ ∞

0
xs F(x)r f (x) dx. (21)
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Inserting (5) and (6) in equation (21), the PWMs of X can be expressed in a simple form

δs,r =

∫ ∞

0
xs a b 2a e−ax [(1 + e−x)a − 2a e−ax]b(r+1)−1

(1 + e−x)ab(r+1)+1 dx. (22)

Table 8 gives from (22) the values of δs,r for X ∼ EGSHL (2, 3) and some values of s and r. All computations are
performed using Wolfram Mathematica software. Based on the values in Table 8, we conclude that, for fixed r, the PWMs
increase when s increases. The opposite happens when we fix the parameter s and r increases.

Table 4. The PWMs of X for some values of s and r

r 1 2 3 4 5 6 7
s
1 0.86311 0.65040 0.52742 0.44636 0.38851 0.34493 0.31083
2 1.73709 1.43084 1.23227 1.09076 0.98370 0.89926 0.83057
3 4.02758 3.53658 3.18774 2.92247 2.71156 2.53844 2.39258
4 10.6632 9.79486 9.13100 8.59828 8.15643 7.78109 7.45605

We now present a simpler expression for the PWMs of X. Under simple algebraic manipulation, we can write δs,r as

δs,r =
1

(r + 1)

∫ ∞

0
xs f [x; a, (r + 1)b] dx. (23)

where f [x; a, (r + 1)b] is the EGSHL density with parameters a and (r + 1)b. Equation (23) revels that the PWMs of X
can be expressed in terms of the ordinary moments of Xr ∼ EGSHL [a, (r + 1)b].

9. Rényi Entropy

Given a certain random phenomenon under study, it is important to quantify the uncertainty associated with the random
variable of interest. One of the most popular measures used to quantify the variability of X is the Rényi entropy. See, for
example, Da Silva et al (2013) for the gamma extended Fréchet model (Alshangiti, 2014), for the Marshall-Olkin extended
modified Weibull distribution and (Castellares, F. & Santos, M. A. C., 2015) for an extended logistic distribution.

The Rényi entropy of X with density (6), say IR(ρ), is given by

IR(ρ) =
1

(1 − ρ) log
(∫ ∞

0
f (x)ρdx

)
,

where ρ > 0 and ρ , 1.

By inserting (6) in this equation, we obtain

IR(ρ) =
1

(1 − ρ) log
(∫ ∞

0

[
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1

]ρ
dx

)
. (24)

Equation (24) can be easily implemented computationally and the values of IR(ρ) are obtained in a few seconds. Table
9 gives some values of IR(ρ) for different parameter values. All computations use the Wolfram Mathematica software.
Based on the figures in Table 9, we note that, independently of a and b, IR(ρ) decreases when ρ increases. For fixed ρ, the
Rényi entropy is larger for a < b.

Table 5. Rényi entropy of X for some values of ρ, a and b

a b ρ = 2 ρ = 4 ρ = 6 ρ = 8 ρ = 10
2 3 0.80620 0.68292 0.62861 0.59677 0.57546
2 2 0.76897 0.64952 0.59687 0.56595 0.54522
3 2 0.44012 0.32050 0.26770 0.23670 0.21590

Although, equation (24) is easily manageable computationally, we provide an expression in closed-form to compute IR(ρ).
Using (9) twice in equation (4), we can write

f (x)ρ = (ab)ρ
∞∑

k, ℓ=0

(−1)k+ℓ
(
ρ(b − 1)

k

)(
ak + ρ(a − 1)

ℓ

)
g(x)ρG(x)ℓ. (25)
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Substituting (1) and (2) in equation (25), we have

IR(ρ) =
1

(1 − ρ) log

1
2
√
π (a b)ρ Γ(1 + ρ)

∞∑
k, ℓ=0

(−1)k+ℓ 2ℓ
(
ρ(b − 1)

k

)(
ak + ρ(a − 1)

ℓ

)
K(ℓ, ρ)

 ,
where

K(ℓ, ρ) = ℓ Γ
(

1 + ℓ
2

)
3F̃2

[
1
2
− ℓ, 1 − ℓ, 1 + ℓ

2
;

3
2
,

3 + ℓ
2
+ ρ; 1

]
+ Γ

(
1
2

)
3F̃2

[
1
2
− ℓ, −ℓ, 1

2
;

1
2
, 1 + ρ +

ℓ

2
; 1

]
can be evaluated from the regularized hypergeometric function defined by

3F̃2[a, b, c; d, e; z] =
∞∑

k=0

(a)k (b)k (c)k

Γ(d + k) Γ(e + k)
zk

k!
, |z| < 1.

10. Order Statistics

The importance of order statistics and their applications is widely disseminated in the literature. As define by Balakrish-
nan, N. and Cohen, A. C. (2014), the main objective of the order statistics is the investigation of properties and applications
of ordered random variables, as well as functions of these variables. The density function fi:n(x) of the ith order statistic,
say Xi:n, based on a random sample X1, . . . , Xn, can be expressed as (for i = 1, . . . , n)

fi:n(x) =
1

B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

)
f (x) F(x)i+ j−1.

By inserting (5) and (6) in the above expression, the density function of the EGSHL order statistics follow as

fi:n(x) =
1

B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

)
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b(i+ j)−1

(1 + e−x)ab(i+ j)+1 . (26)

There are many practical applications in which we can employ the above equation. Perhaps, the most important of these
refers to the moments of Xi:n. The r-th moment of Xi:n comes from (26) as

E(Xr
i:n) =

1
B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

) ∫ ∞

0
xr a b 2a e−ax [(1 + e−x)a − 2a e−ax]b(i+ j)−1

(1 + e−x)ab(i+ j)+1 dx. (27)

The r-th moment of Xi:n can be easily obtained numerically using (27) through any symbolic computing platform. In Table
10, we present a small illustration, in which we calculate the first five moments of Xi:10 for a = b = 2 and some values of
r and i. All computations are performed using the Wolfram Mathematica platform. For a similar study, readers may see a
paper by Barreto-Souza, W. et al. (2010), who evaluated E(Xr

i:n) numerically for the Weibull-geometric distribution.

Table 6. The first five moments of Xi:10 for a = b = 2 and some values of r and i

r → 1 2 3 4 5
i ↓
1 0.30388 0.12086 0.05784 0.03183 0.01991
5 0.93164 0.92874 0.98474 1.10008 1.33621
9 1.81708 3.49876 7.13339 15.3918 35.1363
10 2.38815 6.16922 17.2845 52.6660 174.968

Finally, we provide a linear representation for fi:n(x). After a simple algebraic manipulation, we can write

fi:n(x) =
1

B(i, n − i + 1)

n−i∑
j=0

ξi, j f [x; a, (i + j)b], (28)

where ξi, j = [(−1) j/(i+ j)]
(

n−i
j

)
and f [x; a, (i+ j)b] is the EGSHL density with parameters a and (i+ j)b. Equation (28)

revels that the pdf of Xi:n is a linear combination of EGSHL densities. So, the moments, incomplete moments and other
quantities for the EGSHL order statistics can be determined from the above expression.
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11. Estimation and Inference

Several approaches for parameter estimation were proposed in the literature but the maximum likelihood method is the
most commonly employed. The maximum likelihood estimators (MLEs) enjoy desirable properties and can be used for
constructing confidence intervals and also in test statistics. The normal approximation for these estimators in large sample
distribution theory is easily handled either analytically or numerically. So, we consider the estimation of the unknown
parameters for the EGSHL distribution from complete samples only by maximum likelihood. Let x1, . . . , xn be observed
values from this distribution with parameters a and b.

The log-likelihood function for the vector of parameters θ = (a, b)⊤, say ℓ(θ), can be expressed as

ℓ(θ) = n log(ab2a) − a
n∑

i=1

xi + (b − 1)
n∑

i=1

log[(1 + e−xi )a − 2a e−axi ] − (ab + 1)
n∑

i=1

log(1 + e−xi ). (29)

Equation (29) can be maximized either directly by using the R (optim function), SAS (PROC NLMIXED) or Ox program
(sub-routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (29). The components
of the score function are:

∂ℓ(θ)
∂a
= −

n∑
i=1

xi − b
n∑

i=1

log(1 + e−xi ) + n a−1 [1 + a log(2)]

+ (b − 1)
n∑

i=1

2a xi e−axi − 2a log(2) e−axi + (1 + e−xi )a log(1 + e−xi )
(1 + e−xi )a − 2a e−axi

,

∂ℓ(θ)
∂b
=

n
b
− a

n∑
i=1

log(1 + e−xi ) +
n∑

i=1

log[(1 + e−xi )a − 2a e−axi ].

The negative elements of the observation matrix J(θ) are given by

∂2ℓ(θ)
∂a2 = −(b − 1)

n∑
i=1

2a+1 log(2) xi e−axi − 2a x2
i e−axi − 2a [log(2)]2 e−axi

(1 + e−xi )a − 2a e−axi

+ (b − 1)
n∑

i=1

(1 + e−xi )a[log(1 + e−xi )]2

(1 + e−xi )a − 2a e−axi

− (b − 1)
n∑

i=1

[2a xi e−axi − 2a [log(2)]2 e−axi + (1 + e−xi )a log(1 + e−xi )]2

[(1 + e−xi )a − 2a e−axi ]2

+ n a−1 {2 log(2) + a [log(2)]2} − n a−2 [1 + a log(2)] − n a−1 log(2) [1 + a log(2)],

∂2ℓ(θ)
∂b2 =

n
b2 ,

∂2ℓ(θ)
∂ab

=

n∑
i=1

log(1 + e−xi ) +
n∑

i=1

2a xi e−axi − 2a log(2) e−axi + (1 + e−xi )a log(1 + e−xi )
(1 + e−xi )a − 2a e−axi

.

For large n, the distribution of (θ̂−θ) can be approximated to a bivariate normal distribution with zero means and variance-
covariance matrix J(θ)−1. Some asymptotic properties of θ̂ can be based on this normal approximation.

12. Simulation Study

In this section, we verify if the parameter estimates are obtained with precision since the inferences and the decision
processes will depend directly on the quality of the estimates. In this context, one of the most used simulation methods to
evaluate the performance of estimators is by Monte Carlo simulation, see, for example, the following works: Lemonte, A.
J. (2013), Cordeiro, G. M. and Lemonte, A. J. (2014), Alshangiti, A. M., et al. (2014), Silva, A. O., et al. (2014), Jafari,
A. A., et al. (2014) and De Andrade, et al. (2015). We investigate the behavior of the MLEs for the parameters of the
EGSHL model by generating from (8) samples sizes n = 20, 40, 80, 120 with selected values for a and b and 10, 000
replications. The simulation process is performed in the R software using the simulated-annealing (SANN) maximization
method in the maxLik script. To ensure the reproducibility of the experiment, we use the seed for the random number
generator: set.seed (103). Initial kicks are taken as equal to half of the true values of the parameters in each scenario.
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Table 7. MLEs for several a and b parameter values (variances in parentheses)

n = 20 n = 40 n = 80 n = 120
a b â b̂ â b̂ â b̂ â b̂
1 1 1.1364 1.1665 1.0679 1.0780 1.0322 1.0362 1.0219 1.0244

(0.1291) (0.1816) (0.0533) (0.0608) (0.0234) (0.0244) (0.0152) (0.0156)
1 2 1.1079 2.4438 1.0542 2.2022 1.0257 2.0922 1.0176 2.0620

(0.0861) (1.1979) (0.0369) (0.3524) (0.0166) (0.1336) (0.0108) (0.0843)
1 3 1.0975 3.7774 1.0495 3.3564 1.0235 3.1610 1.0160 3.1078

(0.0714) (3.2781) (0.0315) (1.0175) (0.0142) (0.3703) (0.0093) (0.2316)
1 4 1.0901 5.1139 1.0471 4.5328 1.0224 4.2394 1.0152 4.1599

(0.0617) (6.0177) (0.0286) (2.1581) (0.0130) (0.7694) (0.0085) (0.4777)
1 5 1.0825 6.3945 1.0453 5.7225 1.0216 5.3249 1.0147 5.2169

(0.0535) (8.6183) (0.0267) (3.7875) (0.0122) (1.3586) (0.0080) (0.8401)
1 6 1.0739 7.5949 1.0435 6.9057 1.0211 6.4185 1.0144 6.2786

(0.0465) (10.8839) (0.0250) (5.6409) (0.0117) (2.1707) (0.0076) (1.3332)
2 1 2.2728 1.1665 2.1358 1.0780 2.0644 1.0362 2.0439 1.0244

(0.5161) (0.1815) (0.2130) (0.0608) (0.0938) (0.0244) (0.0606) (0.0156)
2 2 2.2158 2.4432 2.1083 2.2021 2.0515 2.0923 2.0351 2.0620

(0.3442) (1.1851) (0.1476) (0.3523) (0.0663) (0.1336) (0.0433) (0.0844)
2 3 2.1946 3.7732 2.0989 3.3562 2.0471 3.1610 2.0320 3.1078

(0.2844) (3.2076) (0.1259) (1.0163) (0.0569) (0.3700) (0.0372) (0.2317)
2 4 2.1784 5.0913 2.0940 4.5316 2.0447 4.2392 2.0304 4.1598

(0.2433) (5.6459) (0.1143) (2.1459) (0.0519) (0.7688) (0.0339) (0.4774)
2 5 2.1610 6.3515 2.0905 5.7206 2.0433 5.3254 2.0295 5.2170

(0.2085) (8.1286) (0.1066) (3.7591) (0.0488) (1.3598) (0.0319) (0.8398)
2 6 2.1413 7.5129 2.0873 6.9111 2.0423 6.4184 2.0289 6.2790

(0.1784) (10.0107) (0.1002) (5.7568) (0.0467) (2.1702) (0.0306) (1.3345)
3 1 3.4091 1.1665 3.2037 1.0780 3.0967 1.0362 3.0658 1.0244

(1.1614) (0.1816) (0.4793) (0.0608) (0.2110) (0.0244) (0.1364) (0.0156)
3 2 3.3236 2.4429 3.1626 2.2023 3.0773 2.0923 3.0527 2.0620

(0.7739) (1.1783) (0.3322) (0.3523) (0.1493) (0.1336) (0.0973) (0.0843)
3 3 3.2920 3.7749 3.1484 3.3562 3.0706 3.1609 3.0481 3.1078

(0.6405) (3.2347) (0.2832) (1.0168) (0.1280) (0.3701) (0.0836) (0.2318)
3 4 3.2681 5.0951 3.1411 4.5327 3.0670 4.2391 3.0457 4.1599

(0.5486) (5.6934) (0.2575) (2.1610) (0.1168) (0.7687) (0.0764) (0.4779)
3 5 3.2416 6.3449 3.1355 5.7184 3.0649 5.3253 3.0442 5.2170

(0.4708) (7.9364) (0.2393) (3.7228) (0.1099) (1.3602) (0.0719) (0.8397)
3 6 3.2104 7.4949 3.1293 6.8942 3.0634 6.4181 3.0432 6.2787

(0.4016) (9.7370) (0.2218) (5.4756) (0.1050) (2.1678) (0.0687) (1.3336)
4 1 4.5455 1.1665 4.2715 1.0780 4.1289 1.0362 4.0878 1.0244

(2.0640) (0.1815) (0.8520) (0.0607) (0.3753) (0.0244) (0.2424) (0.0156)
4 2 4.4313 2.4427 4.2168 2.2024 4.1031 2.0923 4.0702 2.0619

(1.3750) (1.1782) (0.5907) (0.3527) (0.2654) (0.1336) (0.1729) (0.0843)
4 3 4.3891 3.7720 4.1979 3.3560 4.0941 3.1609 4.0641 3.1077

(1.1352) (3.1640) (0.5032) (1.0154) (0.2275) (0.3701) (0.1486) (0.2316)
4 4 4.3588 5.1031 4.1880 4.5314 4.0895 4.2391 4.0609 4.1599

(0.9799) (5.7925) (0.4573) (2.1404) (0.2077) (0.7686) (0.1359) (0.4780)
4 5 4.3254 6.3667 4.1805 5.7169 4.0865 5.3253 4.0590 5.2171

(0.8448) (8.2116) (0.4245) (3.7004) (0.1953) (1.3602) (0.1278) (0.8398)
4 6 4.2843 7.5198 4.1724 6.8951 4.0846 6.4182 4.0577 6.2787

(0.7193) (9.9206) (0.3944) (5.4947) (0.1866) (2.1674) (0.1221) (1.3317)

The results of the simulations are presented in Tables 12 and 12, which contain the estimates and their estimated asymp-
totic variances in parentheses. These results reveal that the EGSHL estimates have desirable properties even for small to
moderate sample sizes. In general, the biases and variances decrease as the sample size increases, as expected.

37



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 3; 2017

Table 8. MLEs for several a and b parameter values (variances in parentheses)

n = 20 n = 40 n = 80 n = 120
a b â b̂ â b̂ â b̂ â b̂
5 1 5.6817 1.1665 5.3393 1.0780 5.1612 1.0362 5.1097 1.0244

(3.2234) (0.1815) (1.3307) (0.0607) (0.5864) (0.0244) (0.3787) (0.0156)
5 2 5.5387 2.4418 5.2707 2.2021 5.1287 2.0923 5.0877 2.0620

(2.1444) (1.1620) (0.9228) (0.3524) (0.4147) (0.1336) (0.2702) (0.0844)
5 3 5.4866 3.7734 5.2473 3.3561 5.1176 3.1609 5.0802 3.1078

(1.7733) (3.1906) (0.7866) (1.0163) (0.3555) (0.3702) (0.2323) (0.2317)
5 4 5.4483 5.1013 5.2350 4.5321 5.1117 4.2390 5.0762 4.1598

(1.5275) (5.7708) (0.7149) (2.1531) (0.3245) (0.7685) (0.2122) (0.4777)
5 5 5.4088 6.3755 5.2258 5.7183 5.1083 5.3253 5.0738 5.2172

(1.3238) (8.3123) (0.6646) (3.7192) (0.3051) (1.3594) (0.1996) (0.8400)
5 6 5.3610 7.5440 5.2161 6.8971 5.1057 6.4179 5.0721 6.2787

(1.1379) (10.1558) (0.6190) (5.5159) (0.2915) (2.1674) (0.1909) (1.3327)
6 1 6.8182 1.1665 6.4072 1.0780 6.1935 1.0362 6.1315 1.0244

(4.6354) (0.1815) (1.9166) (0.0607) (0.8443) (0.0244) (0.5458) (0.0156)
6 2 6.6464 2.4416 6.3250 2.2021 6.1544 2.0922 6.1052 2.0620

(3.0857) (1.1553) (1.3287) (0.3524) (0.5973) (0.1336) (0.3893) (0.0844)
6 3 6.5814 3.7674 6.2971 3.3564 6.1410 3.1609 6.0961 3.1077

(2.5331) (3.1065) (1.1329) (1.0158) (0.5120) (0.3702) (0.3342) (0.2316)
6 4 6.5345 5.0899 6.2817 4.5315 6.1340 4.2391 6.0914 4.1598

(2.1763) (5.5942) (1.0288) (2.1487) (0.4672) (0.7686) (0.3055) (0.4777)
6 5 6.4870 6.3639 6.2714 5.7206 6.1298 5.3254 6.0884 5.2170

(1.8878) (8.1698) (0.9581) (3.7620) (0.4393) (1.3597) (0.2875) (0.8395)
6 6 6.4294 7.5291 6.2615 6.9092 6.1268 6.4178 6.0865 6.2788

(1.6218) (9.9311) (0.8991) (5.7015) (0.4197) (2.1642) (0.2749) (1.3334)
7 1 7.9522 1.1663 7.4750 1.0780 7.2256 1.0362 7.1535 1.0244

(6.2724) (0.1811) (2.6087) (0.0608) (1.1489) (0.0244) (0.7424) (0.0156)
7 2 7.7540 2.4417 7.3791 2.2022 7.1803 2.0923 7.1228 2.0620

(4.1999) (1.1631) (1.8074) (0.3523) (0.8131) (0.1336) (0.5296) (0.0844)
7 3 7.6759 3.7623 7.3464 3.3563 7.1645 3.1610 7.1121 3.1078

(3.4208) (3.0301) (1.5413) (1.0165) (0.6967) (0.3701) (0.4551) (0.2318)
7 4 7.6208 5.0854 7.3288 4.5315 7.1564 4.2391 7.1066 4.1598

(2.9346) (5.5863) (1.3999) (2.1457) (0.6361) (0.7687) (0.4159) (0.4778)
7 5 7.5606 6.3387 7.3166 5.7200 7.1514 5.3252 7.1033 5.2171

(2.5330) (7.8692) (1.3043) (3.7473) (0.5979) (1.3601) (0.3912) (0.8395)
7 6 7.4924 7.4992 7.3040 6.9033 7.1480 6.4181 7.1008 6.2785

(2.1695) (9.6662) (1.2178) (5.6022) (0.5715) (2.1686) (0.3742) (1.3331)
8 1 9.0832 1.1657 8.5427 1.0780 8.2579 1.0362 8.1753 1.0244

(8.0944) (0.1800) (3.4079) (0.0608) (1.5003) (0.0244) (0.9699) (0.0156)
8 2 8.8614 2.4406 8.4332 2.2021 8.2060 2.0923 8.1402 2.0619

(5.4792) (1.1425) (2.3624) (0.3523) (1.0618) (0.1336) (0.6919) (0.0844)
8 3 8.7708 3.7586 8.3956 3.3560 8.1882 3.1610 8.1282 3.1077

(4.4672) (2.9786) (2.0137) (1.0162) (0.9102) (0.3703) (0.5945) (0.2316)
8 4 8.6995 5.0610 8.3757 4.5316 8.1788 4.2391 8.1219 4.1598

(3.7735) (5.2886) (1.8292) (2.1457) (0.8304) (0.7687) (0.5433) (o.4778)
8 5 8.6215 6.2896 8.3616 5.7194 8.1730 5.3253 8.1180 5.2170

(3.1863) (7.3155) (1.7022) (3.7422) (0.7809) (1.3598) (0.5109) (0.8396)
8 6 8.5478 7.4592 8.3467 6.9028 8.1691 6.4183 8.1151 6.2784

(2.7600) (9.3019) (1.5899) (5.6189) (0.7459) (2.1677) (0.4886) (1.3321)

13. Application to Real Data

In this section, we present an application to a real data set. The objective is to prove empirically that the EGSHL
distribution can be used in practical situations for real data modeling. We consider the set of data presented by Oliveira,
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J. et al. (2016) referring to the soil fertility influence and the characterization of the biologic fixation of N2 for the
Dimorphandra wilsonii rizz growth. The phosphorus concentration, in the leaves, for 128 plants are:

0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23, 0.24, 0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20,
0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12, 0.12, 0.10, 0.09, 0.17, 0.19, 0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19,
0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 0.19, 0.27, 0.16, 0.28, 0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12,
0.09, 0.14, 0.07, 0.09, 0.05, 0.06, 0.11, 0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 0.08, 0.22, 0.11, 0.13, 0.12, 0.15,
0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12, 0.18, 0.14, 0.18, 0.13, 0.12, 0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 0.11,
0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16, 0.19, 0.15, 0.07, 0.09, 0.17, 0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08,
0.12, 0.13.

Figure 13 shows the dispersion of the data, while Table 13 provides some descriptive statistics. It is possible to observe,
for example, that the mean and the variance are 0.1408 and 0.0030, respectively. We adopt the maximum likelihood
method to estimate the model parameters and all computations are performed using the NLMixed subroutine in SAS.
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Figure 11. Dispersion of the 128 data units of the phosphorus concentration in the leaves

Table 9. Descriptives statistics for phosphorus concentration in leaves data

Statistic
n 128
Mean 0.1408
Median 0.1300
Variance 0.0030
Minimum 0.0500
Maximum 0.2800

In addition to the EGSHL model and its sub-models ESHLI and ESHLII, we consider the McDonald half-logistic
(MCSHL) and Kumaraswamy half-logistic (KWSHL) models introduced by Oliveira, J. et al. (2016). Table 10
lists the MLEs of the model parameters (with the corresponding standard errors in parentheses) for all fitted models and
also the values of the Akaike information criterion (AIC), Bayesian information criterion (BIC) and consistent Akaike
information criterion (CAIC). In general, it is considered that lower values of these statistics indicate the better fit to the
data. The figures in Table 10 reveal that the EGSHL model has the lowest AIC, BIC and CAIC values among all fitted
models. Thus, the proposed distribution is the best model to explain these data.

Finally, Figure 13 displays the histogram of the data and the estimated pdf and cdf of the EGSHL model. These plots
reveal that the proposed model is quite suitable for these data.

14. Conclusions

In this paper, we introduce a univariate continuous distribution with two parameters that govern the asymmetry and
kurtosis, named the exponentiated generalized standard half-logistic model, say EGSHL. We provide a comprehensive
mathematical treatment and show by numerical studies that the formulas related to the new model are computationally
manageable. In particular, the maximum likelihood estimators are easily estimated. These estimators have desirable
properties, such as low biases and variances, even in small or moderate sample sizes. A study using real data shows
that the new distribution can be used in practical situations due to its great power of adjustment when compared to other
competitive models. We hope that the proposed model can be useful for applied statisticians and other researchers who
refer to a model with few parameters but flexible to accommodate supported data in real positives. For future research,
we will study bias correction via bootstrap for estimators in small samples.
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Table 10. MLEs (and their standard errors in parentheses), AIC, BIC and CAIC for phosphorus concentration in leaves
data

Distribution â b̂ AIC BIC CAIC
EGSHL 39.5048 9.7074 −388.6 −382.9 -388.5

(3.1128) (1.8281)
ESHLI 1 0.3659 −5.4 −2.5 −5.3

(−) (0.03234)
ESHLII 13.6554 1 −251.1 −248.2 −251.0

(1.2070) (−)
â b̂ ĉ

MCSHL 13.915 58.358 0.614 −388.1 −379.5 −387.9
(2.781) (0.682) (125.480)

KWSHL 1314.13 1 2.8298 −385.7 −380.0 −385.6
(18.9075) (−) (0.03691)
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Figure 12. Estimated pdf and cdf of the EGSHL model for phosphorus concentration in leaves data
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