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Abstract

This paper introduces a new generator of probability distribution-the adjusted log-logistic generalized (ALLoG) distri-
bution and a new extension of the standard one parameter exponential distribution called the adjusted log-logistic gen-
eralized exponential (ALLoGExp) distribution. The ALLoGExp distribution is a special case of the ALLoG distribution
and we have provided some of its statistical and reliability properties. Notably, the failure rate could be monotonically
decreasing, increasing or upside-down bathtub shaped depending on the value of the parameters δ and θ. The method of
maximum likelihood estimation was proposed to estimate the model parameters. The importance and flexibility of the
ALLoGExp distribution was demonstrated with a real and uncensored lifetime data set and its fit was compared with five
other exponential related distributions. The results obtained from the model fittings shows that the ALLoGExp distribution
provides a reasonably better fit than the one based on the other fitted distributions. The ALLoGExp distribution is therefore
recommended for effective modelling of lifetime data sets.

Keywords: asymptotic adjustment, exponential distribution, log-logistic distribution, reliability, failure rate

1. Introduction

Due to the lack of fits that characterize the standard probability distributions in modelling various complex real data sets a
lot of effort have been expended by researchers in developing new distributions as a way of circumventing the problem of
inadequate fits of the already existing distributions. The new distributions often referred to as as the generalized class of
distributions have consistently been shown to provide better fits than the existing (standard) ones. Almost all the available
methods of generating new distributions in statistical literature depends on the cumulative distribution function of the
standard distributions; for a holistic up-to-date review of these methods see; Nadarajah and Rocha (2016).

The main motivation of this paper stem from the trending literature of probability distribution construction and general-
ization; which in principle, entails the injection of one distribution into another distribution, in order to extend the injected
distribution to a wider family of distribution with added flexibility. In the literature, the generalized distributions are often
referred to as the G-distributions. For example,

1. Eugene et al. (2002) defined a new class of distribution called the Beta-G family of distributions as the logit of the
beta random variable with cumulative density function (cdf) as

F(x) =
Γ(α + β)
Γ(α)Γ(β)

∫ G(x)

0
yα−1(1 − y)β−1dy; 0 < α, β < ∞,

and probability density function (pdf) as

f (x) =
Γ(α + β)
Γ(α)Γ(β)

Gα−1(x)[1 −G(x)]β−1 dG(x)
dx

; 0 < α, β < ∞.

2. Cordeiro and de Castro (2011) introduced the Kumaraswamy-G family of distributions with cdf
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F(x) = ab
∫ G(x)

0
ya−1(1 − ya)b−1dy; x ∈ (0, 1), a, b > 0,

and pdf

f (x) = abg(x)Ga−1(x)[1 −Ga(x)]b−1; x ∈ (0, 1), a, b > 0.

3. Zografos and Balakrishnan (2009) proposed the Gamma-G family of distributions based on baseline continuous
distribution with reliability function Ḡ(x) = 1 −G(x). The cdf of the Gamma-G distributions is defined as

F(x) =
1
Γ(δ)

∫ − log Ḡ(x)

0
yδ−1e−ydy; x ∈ R, δ > 0,

and pdf as

f (x) =
1
Γ(δ)

[− log Ḡ(x)]δ−1g(x); x ∈ R, δ > 0.

4. An alternative version of Zografos and Balakrishnan (2009) was proposed by Ristić and Balakrishnan (2012). The
cdf of the gamma generator due to Ristić and Balakrishnan (2012) is defined as

F(x) = 1 − 1
Γ(δ)

∫ − log G(x)

0
yδ−1e−ydy; x ∈ R, δ > 0,

while its pdf is given by;

f (x) =
1
Γ(δ)

[− log G(x)]δ−1g(x); x ∈ R, δ > 0.

5. Alzaatreh et al. (2013) introduced the Weibull-G distributions whose cdf is defined as

F(x) =
α

βα

∫ − log Ḡ(x)

0
yα−1e−

(
y
β

)α
dy; x ∈ R, α, β > 0,

and pdf as

f (x) =
α

βα
g(x)
Ḡ(x)

[
− log Ḡ(x)
β

]α−1

e
−
[
− log Ḡ(x)
β

]α
; x ∈ R, α, β > 0.

In all cases, G(x) is the cdf of the injected distribution (or baseline distribution) with g(x) as the corresponding pdf,
F(x) is the cdf of the new generalized version of G(x) with f (x) as the corresponding pdf, and f (x) have the same
support as g(x).

and so on.

The aim of this paper is two-fold; first to introduce a new generator of distributions-the adjusted log-logistic generalized
(ALLoG) distribution which as far as we know have not appeared in the literature before now and secondly, to introduce
and give explicit statistical properties of the adjusted log-logistic generalized exponential (ALLoGExp) distribution as a
sub-model of the ALLoG distribution which generalizes the standard one parameter exponential distribution. The cdf G(x)
of the log-logistic distribution is given by;

G(x) =
xθ

δθ + xθ
; x > 0, δ, θ > 0 (1)

with the corresponding pdf g(x) defined as

g(x) =
θ
δ

(
x
δ

)θ−1[
1 +

(
x
δ

)θ]2 ; x > 0, δ, θ > 0, (2)

where δ is the scale parameter and θ is the shape parameter.
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We define the cdf F(x) and pdf f(x) of the new generator ALLoG with (1) and (2) as

F(x) =
θ(δθ + 1)
δθ

∫ G(x)

0
yθ−1

[
1 +

(y
δ

)θ]−2

dy; x > 0, δ, θ > 0. (3)

and

f (x) = (δθ + 1)δθθg(x)Gθ−1(x)[δθ +Gθ(x)]−2; x > 0, δ, θ > 0, (4)

respectively. Where, δθ + 1 in (3) is an asymptotic adjustment (normalizing constant); introduced, to ensure that
limx→∞ F(x) = 1.

The quantile function is given by;

F−1(p) = G−1

( pδθ

δθ + 1 − p

) 1
θ

 ; p ∈ (0, 1], δ, θ > 0, (5)

Unlike the cdf and pdf of the Beta-G and Gamma-G family of distributions, the cdf and pdf of the new generator ALLoG
is easy to work with analytically because, it does not contain any special function.

The remainder of this paper is organized as follows: In Section 2 we present the closed form expression for the proba-
bility density function pdf and the cumulative density function cdf and other statistical properties of the new probability
distribution (ALLoGExp). In Section 3 the parameters of the ALLoGExp distribution is estimated through the method of
maximum likelihood estimation. Section 4 contains some reliability characteristics and possible shapes of the ALLoGExp
distribution. In Section 5 we illustrate the applicability of the ALLoGExp distribution with a real data set. Section 6 is
the Monte-Carlo simulation study of the parameters and Finally, Section 7 gives the concluding remarks.

2. The ALLoGExp and its Properties

The standard one parameter exponential (Exp) distribution has its cdf G(x) as G(x) = 1 − e−ηx; x ≥ 0, η > 0 and pdf
g(x) as g(x) = ηe−ηx; x ≥ 0, η > 0; where, η is the rate parameter. Thus, it follows that the cdf F(x) of the ALLoGExp
distribution is given by;

F(x) =
(δθ + 1)(1 − e−ηx)θ

δθ + (1 − e−ηx)θ
; x ≥ 0, δ, θ, η > 0, (6)

with the corresponding pdf f(x) as

f (x) = (δθ + 1)δθθηe−ηx(1 − e−ηx)θ−1[δθ + (1 − e−ηx)θ]−2; x ≥ 0, δ, θ, η > 0, (7)

where δ is the scale parameter, θ is the shape parameters and η is the rate parameter.

2.1 Quantile Function and Random Number Generation

By using (6), we obtain the quantile function of the ALLoGExp distribution as

F−1(p) = −1
η

log

1 − [
pδθ

δθ + 1 − p

] 1
θ

 ; p ∈ (0, 1], δ, θ, η > 0. (8)

Random samples from the ALLoGExp distribution can be obtained through the inverse transformation method of random
number generation by simply substituting p in (8) with a Uniform (0, 1) variate. Also, it is easy to obtain the median of
the ALLoGExp distribution by simply substituting p = 0.5 in (8), which is given by;

F−1(0.5) = −1
η

log

1 − [
δθ

2δθ + 1

] 1
θ

 ; δ, θ, η > 0. (9)

2.2 Moments

In statistics and applications the moments of a random variable say X are important, they are used to characterize the
underlying distribution. For example, to measure the center, spread/variation of the distribution, and to ascertain the
degree of deviation from normality (skewness and kurtosis) of the distribution, etc.;
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Figure 1. Possible shapes of the probability density function pd f f (x) for some parameter values.

Figure 2. Possible shapes of the cumulative density function cd f F(x) for some parameter values.

Theorem 2.1. If X follows the ALLoGExp distribution with pdf defined in (7) then its kth crude moment is given by;

µ′k =
(δθ + 1)θ
(−η)kδθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)
∂k

∂ℓk
B(ℓ + 1, θ(m + 1))

∣∣∣∣∣∣∣
ℓ=0

,

where B(·) is the beta function.

Proof. By using (7) we have

µ′k =

∫
R

xk f (x)dx. (10)
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Where (10) is computed as follows

µ′k =

∫ ∞

0
xk(δθ + 1)δθθηe−ηx(1 − e−ηx)θ−1[δθ + (1 − e−ηx)θ]−2dx

= (δθ + 1)δθθη
∫ ∞

0
xke−ηx(1 − e−ηx)θ−1[δθ + (1 − e−ηx)θ]−2dx, (11)

substituting y = e−ηx in (11) we have

µ′k =
(δθ + 1)δθθ

(−η)k

∫ 1

0
(log(y))k(1 − y)θ−1[δθ + (1 − y)θ]−2dy

=
(δθ + 1)δθθ

(−η)k

∫ 1

0

∂k

∂ℓk
yℓ(1 − y)θ−1[δθ + (1 − y)θ]−2dy

∣∣∣∣∣∣
ℓ=0
, (12)

by expanding (12) we have

µ′k =
(δθ + 1)δθθ

(−η)k

∂k

∂ℓk

∫ 1

0
yℓ(1 − y)θ−1

∞∑
m=0

(−1)m
(
2 + m − 1

m

)
(1 − y)θmδ−θ(2+m)dy

∣∣∣∣∣∣∣
ℓ=0

=
(δθ + 1)θ
(−η)kδθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)
∂k

∂ℓk

∫ 1

0
yℓ(1 − y)θ(m+1)−1dy

∣∣∣∣∣∣
ℓ=0

=
(δθ + 1)θ
(−η)kδθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)
∂k

∂ℓk
B(ℓ + 1, θ(m + 1))

∣∣∣∣∣∣∣
ℓ=0

. (13)

�

Corollary 2.1.1. Evaluating (13) at k=1, 2, 3, and 4 we have the first four crude moments of the ALLoGExp distribution
as follows:

µ′1 =
(δθ + 1)θ
−ηδθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)(Ψ(1) − Ψ(1 + θ(m + 1)))B(1, θ(m + 1)), (14)

µ′2 =
(δθ + 1)θ
(−η)2δθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)(Ψ(1, 1) − Ψ(1, 1 + θ(m + 1)))B(1, θ(m + 1))

+ (Ψ(1) − Ψ(1 + θ(m + 1)))2B(1, θ(m + 1)),

(15)

µ′3 =
(δθ + 1)θ
(−η)3δθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)(Ψ(2, 1) − Ψ(2, 1 + θ(m + 1)))B(1, θ(m + 1))

+ 3(Ψ(1, 1) − Ψ(1, 1 + θ(m + 1)))(Ψ(1) − Ψ(1 + θ(m + 1)))B(1, θ(m + 1))

+ (Ψ(1) − Ψ(1 + θ(m + 1)))3B(1, θ(m + 1)),

(16)

and

µ′4 =
(δθ + 1)θ
(−η)4δθ

∞∑
m=0

(
−1
δθ

)m

(m + 1)(Ψ(3, 1) − Ψ(3, 1 + θ(m + 1)))B(1, θ(m + 1))

+ 4(Ψ(2, 1) − Ψ(2, 1 + θ(m + 1)))(Ψ(1) − Ψ(1 + θ(m + 1)))B(1, θ(m + 1))

+ 3(Ψ(1, 1) − Ψ(1, 1 + θ(m + 1)))2B(1, θ(m + 1)) + 6(Ψ(1, 1))

− Ψ(1, 1 + θ(m + 1)))(Ψ(1) − Ψ(1 + θ(m + 1)))2B(1, θ(m + 1))

+ (Ψ(1) − Ψ(1 + θ(m + 1)))4B(1, θ(m + 1)),

(17)

where B(·) is the beta function and Ψ(·) is the psi or digamma function.
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Corollary 2.1.2. By appropriately using (14)-(17) we can obtain the variance (σ2), coefficient of variation (CV), skewness
(γ1) and kurtosis (γ2) of the ALLoGExp distribution as

σ2 = µ′2 − µ′21 ,

CV =

√
µ′2
µ′21
− 1,

γ1 =
µ′3 − 3µ′2µ

′
1 + 2µ′31

(µ′2 − µ′21 )
3
2

,

and

γ2 =
µ′4 − 4µ′3µ

′
1 + 6µ′2µ

′2
1 − 3µ′41

(µ′2 − µ′21 )2
,

respectively.

Theorem 2.2. If X follows the ALLoGExp distribution with pdf defined in (7) then its moment generating function (mgf)
is given by;

MX(t) = θ(δθ + 1)
∞∑

k,m=0

(−1)m(m + 1)tk

(−η)kδθ(m+1)k!
∂k

∂ℓk
B(ℓ + 1, θ(m + 1))

∣∣∣∣∣∣
ℓ=0
. (18)

Proof. Using the definition of the mgf of the continuous random variable say X which is defined as

MX(t) = E(etx) = E

 ∞∑
k=0

(tx)k

k!

 = ∞∑
k=0

tk

k!
µ′k, (19)

and by substituting (13) into (19) it is clear that the mgf of the ALLoGExp distribution is as presented in (18). �

2.3 Entropy Measure

In this section we present the Rényi entropy measure of the ALLoGExp distribution. The Rényi entropy measure is used
to quantify the uncertainty of variation in a random variable say X and the Rényi entropy measure of a continuous random
variable is generally given by;

IR(φ) =
1

1 − φ log
(∫

R
f φ(x)dx

)
; φ > 0\{1}. (20)

Theorem 2.3. If X follows the ALLoGExp distribution with pdf defined in (7) then its Rényi entropy measure is given
by;

IR(φ) =
1

1 − φ log

 ([δθ + 1]δθθ)φ

η−φ+1

∞∑
i, j=0

(−1)i+ j

× δ
−θ(2φ+ j)Γ(φ(θ − 1) + 1)Γ(2φ + j)B(φ + i + 1, θ j + 1)
Γ(i + 1)Γ( j + 1)Γ(φ(θ − 1) − i + 1)Γ(2φ)

]
,

where Γ(·) is the gamma function and B(·) is the beta function.

Proof. Substituting (7) into (20), setting
∫

R f φ(x)dx toAφ and evaluating the integral on the support [0,∞) gives

Aφ =

∫ ∞

0
f φ(x)dx

=

∫ ∞

0
([δθ + 1]δθθη)φe−φηx(1 − e−ηx)φ(θ−1)[δθ + (1 − e−ηx)θ]−2φdx

= ([δθ + 1]δθθη)φ
∫ ∞

0
e−φηx(1 − e−ηx)φ(θ−1)[δθ + (1 − e−ηx)θ]−2φdx. (21)
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By expanding (21) we have

Aφ = ([δθ + 1]δθθη)φ
∫ ∞

0
e−φηx

∞∑
i=0

(
φ(θ − 1)

i

)
(−1)ie−ηix

×
∞∑
j=0

(
2φ + j − 1

j

)
(−1) j(1 − e−ηx)θ jδ−θ(2φ+ j)dx,

Aφ = ([δθ + 1]δθθη)φ
∞∑

i, j=0

(−1)i+ j
(
φ(θ − 1)

i

)(
2φ + j − 1

j

)
δ−θ(2φ+ j)

×
∫ ∞

0
e−η(φ+i)x(1 − e−ηx)θ jdx,

(22)

and by substituting y = e−ηx into (22) we have

Aφ =
([δθ + 1]δθθ)φ

η−φ+1

∞∑
i, j=0

(−1)i+ j
(
φ(θ − 1)

i

)(
2φ + j − 1

j

)
δ−θ(2φ+ j)

×
∫ 1

0
yφ+i(1 − y)θ jdy,

which further simplifies to

Aφ =
([δθ + 1]δθθ)φ

η−φ+1

∞∑
i, j=0

(−1)i+ j
(
φ(θ − 1)

i

)(
2φ + j − 1

j

)
δ−θ(2φ+ j)

× B(φ + i + 1, θ j + 1),

and finally

Aφ =
([δθ + 1]δθθ)φ

η−φ+1

∞∑
i, j=0

(−1)i+ j

× δ
−θ(2φ+ j)Γ(φ(θ − 1) + 1)Γ(2φ + j)B(φ + i + 1, θ j + 1)
Γ(i + 1)Γ( j + 1)Γ(φ(θ − 1) − i + 1)Γ(2φ)

.

(23)

Thus, substituting (23) into (20) completes the proof. �

2.4 Order Statistics

Order statistics is an essential tool in reliability and life testing analysis. For instance, suppose the following n-sized
random sample X1, X2, . . . , Xn are drawn from the ALLoGExp distribution with cd f and pd f corresponding to (6) and
(7). Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n represent the ith order statistics denoted by Xi,n then, Xi,n could be interpreted as the
lifetime of the (n − i + 1)th item of the total nth independent and identical components. The density of Xi,n could be
expressed as

fX(i) (x) =
n!

(i − 1)!(n − i)!
F i−1(x)(1 − F(x))n−i f (x)

=
n!

(i − 1)!(n − i)!

n−i∑
ℓ=0

(
n − i
ℓ

)
F i+ℓ−1(x) f (x). (24)

The cdf of the ALLoGExp distribution in (6) to the (i + ℓ − 1)th power is given by;

F i+ℓ−1(x) = [δθ + 1]i+ℓ−1(1 − e−ηx)θ(i+ℓ−1)[δθ + (1 − e−ηx)θ]−(i+ℓ−1), (25)

7
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and if θ ∈ N, where N\{0} is a natural number; then we have the series representation of (34) as

F i+ℓ−1(x) =
θ(i+ℓ−1)∑

k=0

(
θ(i + ℓ − 1)

k

)
(−1)k[δθ + 1]i+ℓ−1e−ηkx

×
i+ℓ−1∑
m=0

(−1)m
(
i + ℓ + m − 2

m

)
δ−θ(i+ℓ+m−1)(1 − e−ηx)θm,

F i+ℓ−1(x) =
θ(i+ℓ−1)∑

k=0

i+ℓ−1∑
m=0

(−1)k+m[δθ + 1]i+ℓ−1δ−θ(i+ℓ+m−1)e−ηkx

×
(
θ(i + ℓ − 1)

k

)(
i + ℓ + m − 2

m

) θm∑
n=0

(
θm
n

)
(−1)ne−ηnx,

F i+ℓ−1(x) =
θ(i+ℓ−1)∑

k=0

i+ℓ−1∑
m=0

(−1)k+m+n[δθ + 1]i+ℓ−1δ−θ(i+ℓ+m−1)

×
(
θ(i + ℓ − 1)

k

)(
i + ℓ + m − 2

m

)(
θm
n

)
e−η(k+n)x.

(26)

Also, the series representation of (7) is given by;

f (x) = [δθ + 1]δθθηe−ηx
θ−1∑
h=0

(
θ − 1

h

)
(−1)he−ηhx

2∑
i=0

(−1)i
(
i + 1

i

)
δ−θ(2+i)(1 − e−ηx)θi

= [δθ + 1]δθθηe−ηx
θ−1∑
h=0

2∑
i=0

(−1)h+i
(
θ − 1

h

)(
i + 1

i

)
δ−θ(2+i)e−ηhx

θi∑
j=0

(
θi
j

)
(−1) je−η jx

= [δθ + 1]δθθη
θ−1∑
h=0

2∑
i=0

θi∑
j=0

(−1)h+i+ jδ−θ(2+i)
(
θ − 1

h

)(
i + 1

i

)(
θi
j

)
e−η(h+ j+1)x. (27)

Therefore substituting (26) and (27) into (24) gives the density of the ith order statistics of the ALLoGExp distribution as

fX(i) (x) =
n![δθ + 1]i+ℓδθθη

(i − 1)!(n − i)!

θ−1∑
h=0

2∑
i=0

θi∑
j=0

θ(i+ℓ−1)∑
k=0

n−i∑
ℓ=0

i+ℓ−1∑
m=0

θm∑
n=0

(−1)k+ℓ+m+n

× δ−θ(2i+ℓ+m+1)
(
θ − 1

h

)(
i + 1

i

)(
θi
j

)(
θ(i + ℓ − 1)

k

)(
n − i
ℓ

)
×

(
i + ℓ + m − 2

m

)(
θm
n

)
e−η(h+ j+k+n+1)x.

The density of the smallest order statistics of the ALLoGExp distribution is given by;

fX(1) (x) = n[δθ + 1]1+ℓδθθη

θ−1∑
h=0

θ∑
j=0

θℓ∑
k=0

n−1∑
ℓ=0

ℓ∑
m=0

θm∑
n=0

(−1)k+ℓ+m+nδ−θ(3+ℓ+m)

×
(
θ − 1

h

)(
θ

j

)(
θℓ

k

)(
n − 1
ℓ

)(
ℓ + m − 1

m

)(
θm
n

)
e−η(h+ j+k+n+1)x,

while the density of largest order statistics of the ALLoGExp distribution is given by;

fX(n) (x) = n[δθ + 1]n+ℓδθθη

θ−1∑
h=0

θn∑
j=0

θ(n+ℓ−1)∑
k=0

n+ℓ−1∑
m=0

θm∑
n=0

(−1)k+ℓ+m+nδ−θ(ℓ+m+2n+1)
(
θ − 1

h

)

×
(
n + 1

n

)(
θn
j

)(
θ(n + ℓ − 1)

k

)(
ℓ + m + n − 2

m

)(
θm
n

)
e−η(h+ j+k+n+1)x.
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2.4.1 Moment of the Order Statistics

Theorem 2.4. If X follows the ALLoGExp distribution with pdf of the ith order statistics fX(i) (x) then, its pth crude
moment is given by;

E(Xp
i,n) =

zx(i)Γ(p + 1)
[η(h + j + k + n + 1)]p+1 ,

where Γ(·) is the gamma function and zx(i) is defined below.

Proof. By the definition of moment of a continuous random variable we have,

E(Xp
i,n) = zx(i)

∫ ∞

0
xpe−η(h+ j+k+n+1)xdx, (28)

by substituting y = η(h + j + k + n + 1)x in (28) we have

E(Xp
i,n) =

zx(i)

[η(h + j + k + n + 1)]p+1

∫ ∞

0
ype−ydy

=
zx(i)Γ(p + 1)

[η(h + j + k + n + 1)]p+1 .

Where,

zx(i) =
n![δθ + 1]i+ℓδθθη

(i − 1)!(n − i)!

θ−1∑
h=0

2∑
i=0

θi∑
j=0

θ(i+ℓ−1)∑
k=0

n−i∑
ℓ=0

i+ℓ−1∑
m=0

θm∑
n=0

(−1)k+ℓ+m+n

× δ−θ(2i+ℓ+m+1)
(
θ − 1

h

)(
i + 1

i

)(
θi
j

)(
θ(i + ℓ − 1)

k

)(
n − i
ℓ

)
×

(
i + ℓ + m − 2

m

)(
θm
n

)
.

�

3. Estimation

Here, we estimate the parameters of the ALLoGExp distribution by the method of maximum likelihood estimation. Sup-
pose the random sample x1, x2, x3, . . . , xn of size n is drawn from the ALLoGExp distribution with pdf f(x) in (7) then the
maximum likelihood estimation (mle) procedure for estimating its parameters is as follows:

The likelihood (L) equation is given by;

L =

n∏
i=1

[δθ + 1]δθθηe−ηxi (1 − e−ηxi )θ−1[δθ + (1 − e−ηxi )θ]−2

= [δθ + 1]n(δθθη)ne−η
∑n

i=1 xi

n∏
i=1

(1 − e−ηxi )θ−1[δθ + (1 − e−ηxi )θ]−2 (29)

and the log-likelihood function is given by;

L = n log[δθ + 1] + n log(δθθη) − η
n∑

i=1

xi + (θ − 1)
n∑

i=1

log(1 − e−ηxi )

−2
n∑

i=1

log[δθ + (1 − e−ηxi )θ]. (30)

Taking the partial derivatives of (30) with respect to δ, θ and η gives

∂L

∂δ
=

nθδθ−1

δθ + 1
+

nθ
δ
− 2

n∑
i=1

θδθ−1

δθ + (1 − e−ηxi )θ
, (31)

9
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∂L

∂θ
=

nδθ log(δ)
δθ + 1

+ n log(δ) +
n
θ
+

n∑
i=1

log(1 − e−ηxi )

− 2
n∑

i=1

δθ log(δ) + (1 − e−ηxi )θ log(1 − e−ηxi )
δθ + (1 − e−ηxi )θ

,

(32)

and
∂L

∂η
=

n
η
−

n∑
i=1

xi + (θ − 1)
n∑

i=1

xie−ηxi

1 − e−ηxi
− 2

n∑
i=1

θxie−ηxi (1 − e−ηxi )θ−1

δθ + (1 − e−ηxi )θ
. (33)

Furthermore, setting (31)-(33) to zero results to a system of three equations in three unknowns which has no analytical
solutions.

However, the estimates δ̂, θ̂ and η̂ can only be obtained by solving (31)-(33) by some non linear numerical optimization
methods eg.; the Newton-Raphson or quasi-Newton-Raphson’s technique.

4. Reliability

The reliability function R(x) is an important tool in reliability analysis for characterizing life phenomena. The reliability
function is mathematically expressed as 1 − F(x). Under certain predefined conditions R(x) generally gives the estimate
of the probability that, a system will not fail given that it has operated without failure up to time x. The reliability function
of the ALLoGExp distribution is given by;

R(x) = 1 − (δθ + 1)(1 − e−ηx)θ

δθ + (1 − e−ηx)θ
; x ≥ 0, δ, θ, η > 0.

Another important reliability characteristics is the failure rate function h(x). The failure rate function gives the probability
of failure, for a system that has not failed up-to time x. The failure rate function is mathematically expressed as f (x)/R(x).
The failure rate function of the ALLoGExp distribution is given by;

h(x) =
(δθ + 1)δθθηe−ηx(1 − e−ηx)θ−1

[δθ + (1 − e−ηx)θ][δθ + (1 − e−ηx)θ − (δθ + 1)[1 − e−ηx]θ]
; x ≥ 0, δ, θ, η > 0.

4.1 Shapes and Asymptotics

(a) The pdf of the ALLoGExp distribution could either be a unimodal or monotonic decreasing function of x depending
on the value of δ and θ, while F(x) is an increasing function of x for all possible values of δ and θ parameters (see;
Figures 1 and 2), and the asymptotic behaviour of the pdf is

lim
x→0

f (x) =


0, if θ > 1,
η(δ + 1)/δ, if θ = 1,
∞, if θ < 1,

and the asymptotic behaviour of the cdf is limx→∞ F(x) = 1 while limx→0 F(x) = 0.

(b) The reliability function R(x) of the ALLoGExp distribution is generally a monotonic decreasing function of x for all
possible values of δ and θ parameters (see; Figure 3), and limx→∞ R(x) = 0 while limx→0 R(x) = 1.

(c) The failure rate function (frf) h(x) of the ALLoGExp distribution could be a decreasing, increasing or upside-down
bathtub shaped function of x depending on the value of the δ and θ parameters (see; Figure 4), and limx→∞ h(x) =
0, while

lim
x→0

h(x) =


0, if θ > 1,
η(δ + 1)/δ, if θ = 1,
∞, if θ < 1.
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Figure 3. Possible shapes of the reliability function R(x) for some parameter values.

Figure 4. Possible shapes of the hazard rate function h(x) for some parameter values.

The loss of memory property of the exponential distribution and the shape limitation of its failure rate are well known.
The major advantage of the new distribution over the baseline model is its added tail and skewness flexibility due to the
presence of δ and θ. The ALLoGExp is suitable for modelling lifetime data sets with increasing, decreasing, unimodal
and upside-down bathtub failure rate characteristics.

5. Monte-Carlo Simulation

In this section, we investigate the consistency of the mle estimates of the ALLoGExp distribution with different sample
size (n), through a Monte-Carlo study. The simulation procedure as outlined below was implemented in R (Statistical
software):

1. simulate a random sample of size n from the ALLoGExp distribution with parameters δ = 0.5, θ = 4.0 and η = 6.0
using the inversion of the cdf method with Equation (8).

2. compute the mle of the parameters of the ALLoGExp distribution.
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3. repeat steps 1-2 5000 times.

4. compute the mean, standard deviation (standard error), bias and mean square error (mse) of the 5000 estimates of
each of the parameters (δ, θ and η).

5. repeat steps 1-4 for different sample sizes ( n=150, 250,...,950.).

Results from the Monte-Carlo simulation study are tabulated in Tables 1 and 2.

Table 1. Simulation results of the estimates and standard errors of the ALLoGExp distribution parameters for different
sample sizes

n δ̂ θ̂ η̂ seδ̂ seθ̂ seη̂
150 0.610892 4.067068 6.751090 1.658690 0.598297 3.510499
250 0.529417 4.054277 6.540886 0.305542 0.464951 2.948877
350 0.515020 4.031474 6.404858 0.169692 0.406658 2.484260
450 0.501594 4.003761 6.180374 0.159987 0.372123 2.285624
550 0.511001 4.027797 6.299262 0.139514 0.332690 2.060127
650 0.498788 3.997763 6.094940 0.131292 0.294331 1.894563
750 0.499263 3.996266 6.089056 0.119744 0.281376 1.757239
850 0.506678 4.013708 6.171866 0.108199 0.253175 1.602942
950 0.507347 4.011057 6.186832 0.108731 0.257343 1.612633

Table 2. Simulation results of the bias and mse of the ALLoGExp distribution parameters for different sample sizes

n biasδ̂ biasθ̂ biasη̂ mseδ̂ mseθ̂ mseθ̂
150 0.110892 0.067068 0.751090 2.760798 0.362099 12.875415
250 0.029417 0.054277 0.540886 0.094128 0.218909 8.979740
350 0.015020 0.031474 0.404858 0.028992 0.166196 6.329287
450 0.001594 0.003761 0.180374 0.025573 0.138351 5.251386
550 0.011001 0.027797 0.299262 0.019566 0.111345 4.329437
650 -0.001212 -0.002237 0.094940 0.017222 0.086549 3.594793
750 -0.000738 -0.003734 0.089056 0.014325 0.079107 3.092733
850 0.006678 0.013708 0.171866 0.011740 0.064221 2.596392
950 0.007347 0.011057 0.186832 0.011865 0.066282 2.632891

The simulation results in Table 1 indicates that the mle estimates of the ALLoGExp distribution is generally consistent for
n; while the standard error, bias and mse approaches zero as n becomes large.

6. Application

This section illustrates the applicability and flexibility of the ALLoGExp distribution with a real data set. The goodness of
fit of the new lifetime distribution would be assessed by a comparison of its performance in modelling real data with the
following five distributions:

(i) The exponentiated exponential (EE) distribution due to Gupta and Kundu (1999),

f (x) = αη(1 − e−ηx)α−1e−ηx; x, α, η > 0.

(ii) The Log-logistic (LLo) distribution,

f (x) =
θ
δ

(
x
δ

)θ−1[
1 +

(
x
δ

)θ]2 ; x, θ, δ > 0.

(iii) The Lindley exponential (LE) distribution due to Bhati et al. (2006),

f (x) =
ϕ2ηe−ηx(1 − e−ηx)ϕ−1(1 − log(1 − e−ηx))

1 + ϕ
; x, ϕ, η > 0.
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(iv) The Nadarajah-Haghighi exponential (NHE) distribution due to Nadarajah and Haghighi (2015),

f (x) = βη(1 + βx)η−1e1−(1+βx)η ; x, β, η > 0.

(v) The standard one parameter exponential (Exp) distribution,

f (x) = ηe−ηx; x, η > 0.

Comparison of the models would be based on the following information criteria statistics:

• the Akaike information criterion (AIC) statistic, Akaike (1992),

AIC = −2L̂ + 2k

• the AIC with a correction statistic (AICc), Sugiura (1978),

AICc = AIC +
2k(k + 1)
n − k − 1

• and the Hannan-Quinn information criterion (HQC) statistic, Hannan and Quinn (1979),

HQC = −2L̂ + 2k log log(n).

Where −L̂ , k, and n corresponds to the estimate of the model minimized log-likelihood function, number of model
parameters and sample size, respectively.

We have also considered some goodness-of-fit test based on the empirical distribution function; namely, the Kolmogorov-
Smirnov (K-S) statistics by Henze and Meintanis (1999) and Liao-Shimokawa statistics due to Liao and Shimokawa
(2005). They are given by;

•
K − S = max

(
i
n
− F(x(i)), F(x(i)) −

i − 1
n

)
,

and

•

L − S =
1
√

n

n∑
i=1

max
(

i
n − F(x(i)), F(x(i)) − i−1

n

)
√

F(x(i))(1 − F(x(i)))
,

respectively. Where n is the number of observations in the data set, 1 ≤ i ≤ n and F(x(i)) is the cdf of the fitted distribution
under the ascending ordered data.

The real and uncensored data set in Table 3 is on the active repair times in hours for an airborne communication transceiver.
The data set was originally reported by Von Alven (1964) and later Chhikara and Folks (1977) used it on the inverse
Gaussian distribution.

Table 3. Active repair time data

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0 1.0
1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0
4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

The results of the fits are listed in Table 4. The plots in Figure 5 shows the pdf and cdf of the fitted theoretical distributions
superimposed on the empirical density and distribution function, respectively.

13



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 4; 2017

Table 4. Results

Models Estimates −L̂ AIC AICc HQC K-S L-S
ALLoGExp

δ̂ 0.1856
θ̂ 1.5666 100.7382 207.4763 208.0477 209.5314 0.01157303 0.01701021
η̂ 0.0995

LE
ϕ̂ 1.2803 103.7034 211.4067 211.6858 212.7768 0.01973152 0.06499466
η̂ 0.2401

EE
α̂ 0.9583 104.9829 213.9658 214.2449 215.3359 0.02043486 0.08348181
η̂ 0.2694

NHE
β̂ 0.6364 103.2059 210.4118 210.6909 211.7819 0.01476631 0.02616426
η̂ 0.6348

LLo
θ̂ 0.6477 101.1710 206.3421 208.3421 205.4908 0.01847885 0.02023060
δ̂ 0.6257

Exp
η̂ 0.2773 105.0062 212.0124 212.1033 212.6974 0.0206178 0.09083219
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Figure 5. The estimated pdf F(x) (left panel) and cdf F(x) (right panel) plots of the fitted distributions superimposed on
the empirical pdf F(x) and cdf F(x) of the active repair time data.

7. Concluding Remarks

In this paper we have introduced a new generator of distributions called the adjusted log-logistic generalized (ALLoG)
distribution and a new lifetime distribution-the adjusted log-logistic generalized exponential (ALLoGExp) distribution
is also introduced as a sub-model of the ALLoG distribution. The new lifetime distribution generalizes the exponential
(Exp) distribution. We have given explicit expressions of some of its basic statistical properties such as the probability
density function, cumulative density function, kth raw moment, mean, variance, coefficient of variation, skewness, kur-
tosis, moment generating function, pth quantile function, the ith order statistics, and the Rényi’s entropy measure. Also,
some of its reliability characteristics like the reliability function and the failure rate function were provided; the failure
rate could be monotonically decreasing, increasing or upside-down bathtub shaped depending on the value of the scale
parameter δ and shape parameter θ. Estimation of the model parameters was approached through the method of maximum
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likelihood estimation mle and the stability of the mle estimates was verified through a Monte-Carlo simulation study. The
applicability and goodness of fit of the ALLoGExp distribution was illustrated with the active repair times data and the
results based on the AIC, AICc, HQC K-S and L-S statistics shows that the ALLoGExp distribution provides a better fit
than the Exp, EE, LE, LLo, and NH distribution, also, the density plot of the ALLoGExp distribution comparatively pro-
vides the best fit to the histogram of the empirical data. We strongly recommend the ALLoGExp distribution for effective
modelling of life time data because of its flexible failure rate characteristics.
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