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Abstract  

By describing the geometric analogues of the concepts from various perspectives, this work aims to provide a richer and 

intuitive comprehension of the concept of partial correlation coefficient in the regression analysis, especially for 

beginning students. Based on a simple and strictly correct geometric framework, this article geometrically illustrates the 

concept of partial correlation coefficient in regression analysis from the views of the Frisch-Waugh-Lovell Theorem, 

partial F test statistics, and the comparisons with other levels of correlation coefficients. In our opinion, the geometric 

approach sheds lights on the regression analysis as it provides a richer and more concrete understanding for readers, 

especially for beginners.  This paper can also be served as a supplementary reading material for serious beginners. 

Keywords: Frisch-Waugh-Lovell Theorem, Geometry Interpretation, Partial Correlation Coefficient, Partial F test, 

Regression Analysis 

1. Introduction 

Since the subject of regression emerged in the late of 19th century, algebra has been widely used to express concepts and 

build up models in regression analysis.  Most concepts in regression analysis are traditionally introduced in terms of 

algebraic equations and matrices.  Projection arguments in the form of matrix algebras (Graybill, 1976; Kutner, 

Nachtsheim & Neter, 2004) are widely used as educational and research tools for high-dimensional modelling in the 

advanced studies of multiple regression analysis. However, sometimes, it is challenging for non-math majors or beginners 

to completely understand the matrix algebra approaches as it requires the solid pre-knowledge of linear algebra for readers. 

In fact, geometric interpretation is in reality more helpful than cumbersome algebraic equations and matrices in 

understanding regression concepts because its visual presentation is concrete (Margolis, 1979; Bring, 1996). An 

understanding of the geometrical aspects of elementary regression analysis may assist a student more effectively than 

elegantly derived formulas (Saville & Wood, 1986).  

Despite its merits, geometry is seldom used in teaching regression analysis courses. Besides the long-time predominance 

of algebra since the 20th century, the resistance to abstraction is one of the primary reasons. To reduce the beginners’ fear 

of abstraction, an intuitive display of regression model in a visible three-dimensional space is the key to open the door of 

geometric thinking.  A multiple regression problem with two predictors is an ideal motivating example for introducing 

the geometric thinking of regression modeling to beginners as its layout perfectly fits into a visible space. Furthermore, it 

serves as an important step stone for understanding high dimensional linear regression models since all these basic results 

can be easily extended for a more general linear regression mode. By exploring vectors, triangles and projections, and 

drawing them clearly in such three-dimensional space, students do not have to delve into complicated algebraic 

calculations nor advanced matrix algebras.  

Some classical textbooks introduce the simple geometric illustration of basic concepts in regression analysis including the 

least-square estimation and the simple correlation coefficient (Draper & Smith, 2014). But the geometrical interpretation 

of other important concepts such as the partial correlation coefficient, partial regression coefficient and partial test statistic 

are often left out. In fact, students usually experience difficulty in understanding these concepts in studies. The visualized 

geometric representation will be of great help for understanding the partial correlation coefficient and its related concepts. 

The views from different perspectives will provide richer understanding for students. Based on a simple and strictly 

correct 𝐸3, the objective of this paper is to geometrically illustrate the concept of partial correlation coefficient from 

various perspectives. The rest of the paper is organized as follows. Section 2 first corrects a graphing problem in the 
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previous research by mapping the original n-dimensional space 𝐸𝑛 to a  𝐸3 one without the loss of information. Section 

3 geometrically interprets the partial correlation coefficients from the idea of the Frisch-Waugh-Lovell Theorem (Frisch 

& Waugh, 1933; Lovell, 1963), verifies its relationship with other types of correlation coefficients, and reveals its 

connection with the partial test statistics. Finally, conclusions and a brief discussion are given in section 4. Those who 

have finished an introductory course of econometrics or statistics would find it especially helpful when they examine 

these visual analogues sketched out in the paper.  

2. Drawing Graphs on 𝑬𝟑 

Consider a multiple regression model with two independent variables as follows: 

𝑣 = 𝛽1𝑢1 + 𝛽2𝑢2 + 𝑤                                    (1) 

where 𝑣 contains 𝑛 observations of response, 𝑢1 and 𝑢2 are two independent predictors, 𝛽1 ∈ 𝑅1 and 𝛽2 ∈ 𝑅1 are 

the regression coefficients, 𝑤 is the error term, and n is the size of the sample. In geometry, each regression variable is 

considered as a vector in an n-dimensional space. For example, 𝑣⃗ = (𝑣1, 𝑣2, … , 𝑣𝑛)𝑇 is the n-dimensional observation 

vector, two independent predictors 𝑢⃗⃗1 and 𝑢⃗⃗2 are both n-dimensional column vectors, 𝑤⃗⃗⃗ is also a column vector in 

n-dimensional Euclidean space, 𝐸𝑛 . For the ease of demonstration, in Figure 1, it is common practice to have an 

n-dimensional vector displayed in a 3-dimensional vector space (Bring, 1996). In Figure 1,  𝑣⃗̂ (or 𝑂𝑂′⃗⃗⃗⃗⃗⃗ ⃗⃗ ), is the orthogonal 

projection of 𝑣⃗  on the plane spanned by 𝑢⃗⃗1 and 𝑢⃗⃗2  that denoted by 𝑆𝑝𝑎𝑛 (𝑢⃗⃗1, 𝑢⃗⃗2).  Vector 𝑂𝐴⃗⃗⃗⃗ ⃗⃗  is the orthogonal 

projection of 𝑣⃗ on 𝑢⃗⃗1, and vector 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗  is the perpendicular projection of 𝑣⃗ on 𝑢⃗⃗2 .  

 

Figure 1. Geometric Interpretation of Least Squares Method in n-space. 

However, the problem with Figure 1 is that it is displaying in a 3-dimensional space which contradicts with the fact that 

𝑣⃗, 𝑢⃗⃗1 and  𝑢⃗⃗2 are vectors in n-dimensional space 𝐸𝑛. According to Saville and Wood (1991), this demonstration is not 

strictly correct as in higher dimensions (n>3), vectors cannot be shown pictorially in a strictly correct manner. To solve 

this contradiction, we establish a transformation matrix 𝐴 to map the n-dimensional vectors 𝑣⃗,  𝑢⃗⃗1  and  𝑢⃗⃗2 onto the 

3-dimentional space. This linear transformation keeps: 

a) The length of any vector unchanged; 

b) The angle between any two vectors unchanged. 

After pre-multiplying 𝐴 with both sides of the equation (1), it leads to the following model  

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀                                        (2) 

where 𝑦 , 𝑥1 , and 𝑥2  are vectors in the 3-dimensional Euclidean space   𝐸3 . At the same time, in the original 

n-dimensional space, 𝑣⃗,  𝑢⃗⃗1 and 𝑢⃗⃗2 span a 3-dimensional subspace of 𝐸𝑛. This subspace has the same dimensions as 𝐸3. 

On the other hand, we know that “any two finite Euclidean spaces are isomorphic if and only if they have the same 

number of dimensions.” Therefore, the subspace is isomorphic to 𝐸3. This isomorphism ensures that the results we obtain 

from the new 𝐸3 are the same as those we get by analyzing the original 𝐸𝑛. Furthermore, this process ensures the 

strictness and correctness of drawing any high dimensional vectors, angles and triangles in a 𝐸3. In this process, the 

regression coefficients 𝛽𝑖 (for  𝑖 = 1,2) is unchanged. This idea is summarized as: 

Theorem 1: For any 3 linearly independent vectors 𝒗⃗⃗⃗,  𝒖⃗⃗⃗𝟏 and 𝒖⃗⃗⃗𝟐 in 𝑬𝒏, there exists an orthogonal transformation 𝑨 
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between 𝑺𝒑𝒂𝒏(𝒗⃗⃗⃗, 𝒖⃗⃗⃗𝟏, 𝒖⃗⃗⃗𝟐)  and 𝑬𝟑 , such that, 
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In Theorem 1, θ is the angle between vector 𝑣⃗ and 𝑣⃗̂; the angle between vector 𝑢⃗⃗1 and 𝑣⃗̂ is named as 𝛾1, the angle 

between 𝑢⃗⃗1 and 𝑢⃗⃗2 is γ; and vector 𝑢 ̂⃗⃗⃗⃗
21 is defined as the predictor of 𝑢⃗⃗2 when regressing 𝑢⃗⃗2 on 𝑢⃗⃗1 . See appendix for 

the detailed proof. In the following sections, we focus on model (2). 

3. Geometric Interpretations: From Different Perspectives 

3.1 The Basic Idea of Correlation Coefficients 

A correlation coefficient is a quantitative measurement of the linear association between two variables of interests. In 

regression analysis, there are three classical correlation coefficients: the simple, partial and multiple correlation 

coefficients. In geometry, it is commonly known that the behavior of all three types of correlation coefficients can be 

expressed in the form of the cosine functions.   

First of all, the simple correlation coefficient between any two variables can be expressed as the cosine of the angle 

between the two vectors that represent the variables. For example, the simple correlation coefficient between 𝑦 and 𝑥1, 

denoted by 𝑟𝑦𝑥1
, can be depicted as the cosine of 𝜃1, where 𝜃1 is the angle between  𝑥⃗1 and 𝑦⃗ in Figure 2.  It is clear 

that the magnitude of the correlation coefficient depends on the angle between two variable vectors of interests. The closer 

one vector is to the other (or its opposite vector), the stronger linear relationship it suggests. Particularly, there is no linear 

association when two variable vectors are perpendicular to each other. 

The multiple correlation coefficient between 𝑦 and 𝑥1 and 𝑥2, denoted by 𝑟𝑦,𝑥1𝑥2
, is used to measure the goodness-of-fit 

of for a linear regression model. Similarly, in geometry, it is shown as the cosine of the angle between the response vector 

𝑦⃗ and the estimation space that spanned by 𝑥⃗1 and 𝑥⃗2. In another word,  

         𝑟𝑦,𝑥1𝑥2
= ± 

|𝑦⃗⃗̂|

|𝑦⃗⃗|
= 𝑐𝑜𝑠 𝜃  (𝑟𝑦,𝑥1𝑥2

≥ 0, 𝑖𝑓 𝜃 ≤  
𝜋

2
 𝑜𝑟 𝜃 ≥  

3𝜋

2
 ; 𝑟𝑦,𝑥1𝑥2

< 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) 

where the least square estimation vector 𝑦⃗̂ (or 𝑂𝑂′⃗⃗⃗⃗⃗⃗ ⃗⃗ ) is achieved by orthogonally projecting the observation vector 𝑦⃗ onto 

the 𝑥1𝑥2 plane, and θ is the angle between vector 𝑦⃗ and 𝑦⃗̂ in Figure 2.  In a general linear regression model with 𝑘 

predictors (where 𝑘 > 2), the multiple correlation coefficient is the cosine of the angle between the response vector 𝑦⃗ 

and the estimation space that spanned by all predictors.  

On the other hand, the partial correlation coefficient between 𝑦 and 𝑥1, denoted by 𝑟𝑦𝑥1∙𝑥2
, is defined in such a way that 

it measures the effect of 𝑥1  on 𝑦  where 𝑥2  is not accounted for in the model. Conceptually, it is calculated by 

eliminating the linear effect of 𝑥2 on 𝑦 as well as the linear effect of 𝑥2 on 𝑥1. To purify 𝑦 and 𝑥1 of the linear 

influence of 𝑥2, we can first regress 𝑥1 on 𝑥2 and obtain the residual 𝜀1̂ (i.e. 𝐷𝐸⃗⃗ ⃗⃗ ⃗⃗  in Figure 2). Next, we regress 𝑦 on 

𝑥2 to obtain the second residual 𝜀2̂ (i.e. 𝐵𝐺⃗⃗⃗⃗ ⃗⃗  in Figure 2). Then given 𝑥2, the partial correlation coefficient between  𝑦 

and 𝑥1, can be obtained as the simple correlation coefficient between 𝜀2̂ and 𝜀1̂, or equivalently in Figure 2,  

𝑟𝑦𝑥1∙𝑥2
= 𝑐𝑜𝑠 𝜙1                                       (3) 

where 𝜙1 is the angle between 𝐵𝐺⃗⃗⃗⃗ ⃗⃗  and 𝐷𝐸⃗⃗ ⃗⃗ ⃗⃗ .  This result leads to the following proposition.  
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Figure 2. Geometric Interpretation of Partial Correlation Coefficients 

Proposition 1: Given that 𝑥2 is retained in the model, the partial correlation coefficient between 𝑦 and 𝑥1 is the cosine 

of the angle between the subspace that spanned by 𝑦⃗ and 𝑥⃗2, and the estimation space that spanned by 𝑥⃗1 and 𝑥⃗2. 

To calculate the partial correlation between 𝑦 and 𝑥2 , one just needs to simply switch the subscripts of 𝑥 vectors. If we 

define the relevant angle as 𝜙2, we have 𝑟𝑦𝑥2∙𝑥1
= cos 𝜙2. 

3.2 Partial Correlation Coefficient and The Frisch-Waugh-Lovell Theorem 

One way to view the partial correlation coefficient is from the perspective of partial regression coefficient, since both 

terms are used to evaluate the contribution of the interested variable alone given the remaining variables in the regression 

model. In fact, the idea of Frisch-Waugh-Lovell theorem (Frisch & Waugh, 1933; Lovell, 1963), a well-known 

econometric theorem that is proposed to estimate the partial regression coefficient, is also helpful for understanding the 

geometric interpretation in equation (3) since its two-step trend removal procedure discloses the true meaning of partial 

correlation coefficient. As an alternative to the direct application of least squares, Frisch-Waugh-Lovell (FWL) Theorem 

shows that for the regression model  

𝑌 = 𝑋1𝛽1+𝑋2𝛽2 + 𝜀                                       (4) 

where 𝑋1 and 𝑋2 are 𝑛 × 𝑘1  and 𝑛 × 𝑘2 design matrices, respectively, the estimate of  𝛽1 , the 𝑘1 × 1 coefficient 

vector for 𝑋1, will be the same as its estimate from a modified regression model  

𝑀𝑋2
𝑌 = 𝑀𝑋2

𝑋1𝛽1 + 𝑀𝑋2
𝜀                                    (5) 

where 𝑀𝑋2
= 𝐼 − 𝑋2(𝑋2

𝑇𝑋2)−1𝑋2
𝑇 projects onto the orthogonal complement of the column space of 𝑋2. In a multiple 

regression with two-predictor setting (2), the second residual 𝜀2̂ can be obtained by projecting 𝑌 onto the orthogonal 

complement of the column space of 𝑋2. That is, 𝜀2̂ = 𝑀𝑋2
𝑌. The first residual 𝜀1̂ also yields to 𝑀𝑋2

𝑋1. According to the 

FWL theorem, the partial regression coefficient of 𝑥1  (i.e. 𝛽̂1) from regressing 𝑦 on 𝑥1  and 𝑥2  simultaneously is 

simply obtained by regressing 𝜀2̂  on 𝜀1̂ . Consequently, the partial correlation coefficient 𝑟𝑦𝑥1∙𝑥2
 yields the simple 

correlation coefficient between 𝜀1̂ and 𝜀2̂ in the modified regression model (5).  

3.3 Relationship among Simple, Partial, and Multiple Correlation Coefficients 

Another way to examine the partial correlation coefficient is by looking into its relationship with other types of correlation 

coefficients. This section geometrically studies and verifies the relationship among simple, partial and multiple 

correlation coefficients. Three classical equations are chosen to characterize the relationship among three types of 

correlation coefficients. These equations have been proved by using algebras and matrices which can be found in basic 

statistics or econometrics texts. However, in this section, the process of deriving these equations totally relies on simple 

geometric techniques that are not only easy to grasp but also provide readers with richer understanding of correlation 

coefficients from a different perspective.   

(I)   (1 − 𝑅2) = (1 − 𝑟𝑦𝑥2
2 )(1 − 𝑟𝑦𝑥1∙𝑥2

2 )                             (6) 
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This result first appears in a basic text by Anderson (1958). Here, the coefficient of determination 𝑅2 is simply the square 

of multiple correlation coefficient. Based on the geometric expressions summarized from the previous section, in Figure 2, 

it is clear that the left side of (6) yields to   

1 − 𝑟𝑦,𝑥1𝑥2
2 = (1 −  𝑐𝑜𝑠2 𝜃) = 𝑠𝑖𝑛2 𝜃 =

|𝑂′𝐺⃗⃗⃗⃗⃗⃗ ⃗⃗ |

|𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ |
 

Similarly, the right side of (6) yields to  

𝑠𝑖𝑛2 𝜃2 𝑠𝑖𝑛2 𝜙1 =
|𝐵𝐺⃗⃗⃗⃗ ⃗⃗ |

|𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ |

|𝑂′𝐺⃗⃗⃗⃗⃗⃗ ⃗⃗ |

|𝐵𝐺⃗⃗⃗⃗ ⃗⃗ |
=

|𝑂′𝐺⃗⃗⃗⃗⃗⃗ ⃗⃗ |

|𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ |
 

where 𝜃2 is the angle between 𝑥⃗2 and 𝑦⃗. Then (6) is concluded.   

Symmetrically,  

   (1 − 𝑅2) = (1 − 𝑟𝑦𝑥1
2 )(1 − 𝑟𝑦𝑥2∙𝑥1

2 )                              (7) 

Equation (6) and (7) can also be simplified as  

  𝑅2 = 𝑟𝑦𝑥1
2 + (1 − 𝑟𝑦𝑥1

2 )𝑟𝑦𝑥2∙𝑥1
2                                   (8) 

and 

 𝑅2 = 𝑟𝑦𝑥2
2 + (1 − 𝑟𝑦𝑥2

2 )𝑟𝑦𝑥1∙𝑥2
2                                    (9) 

respectively. Equation (8) states that the proportion of the variation in 𝑦 explained by 𝑥1 and 𝑥2 jointly is the sum of 

two parts: the part explained by 𝑥1 alone ( i.e. 𝑟𝑦𝑥1
2 ) and the part not explained by 𝑥1 ( i.e. 1 − 𝑟𝑦𝑥1

2 ) times the proportion 

that is explained by 𝑥2 after eliminating the influence of 𝑥1 (Gujarati, 1995). 

(II)   ryx1
= ry∙x1x2

rŷx1
                                   (10) 

This equation builds up a connection between the simple correlation and multiple correlation. In Figure 2, section 3.1 

suggests that 𝑟𝑦𝑥1
= cos 𝜃1 =

|𝑂𝐵⃗⃗⃗⃗⃗⃗⃗|

|𝑂𝐺⃗⃗⃗⃗⃗⃗⃗|
. Note that 

𝑟𝑦∙𝑥1𝑥2
𝑟𝑦̂∙𝑥1

= cos 𝜃 cos 𝛾1 =
|𝑂𝑂′⃗⃗⃗⃗⃗⃗ ⃗⃗ |

|𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ |
∙

|𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ |

|𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
=

|𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ |

|𝑂𝐺⃗⃗ ⃗⃗ ⃗⃗ |
 

where  𝛾1 denotes the angle between vector 𝑥⃗1 and 𝑦⃗̂. Equation (10) is therefore clearly obtained. Symmetrically,   

 

𝑟𝑦𝑥2
= 𝑟𝑦∙𝑥1𝑥2

𝑟𝑦̂𝑥2
                                  (11) 

 

(III)     𝑟𝑦𝑥1∙𝑥2
=

𝑟𝑦𝑥1−𝑟𝑦𝑥2𝑟𝑥1𝑥2

√(1−𝑟𝑦𝑥2
2 )(1−𝑟𝑥1𝑥2

2 )
                               (12) 

This is a well-known algebraic formula for developing partial correlation coefficient from simple correlation coefficients. 

The spherical triangles method (Thomas & O’quigley, 1993) shows that equation (12) is identical to the formula of 

spherical trigonometry, which is illustrating but advanced for some readers. Alternatively, this section proposes a simple 

version of its geometric proof. 

Proof: According to the equations (6) and (10), we can conclude that  

cos 𝜃1 = cos 𝜃 ∙ cos 𝛾1                                    (13) 

And   

cos 𝜃2 = cos 𝜃 ∙ cos 𝛾2                                    (14) 

where 𝛾2 is the angle between vector 𝑥⃗2 and 𝑦⃗̂. In Figure 2,  

cos 𝜙1 =
|𝐵𝑂′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

|𝐵𝐺⃗⃗ ⃗⃗ ⃗⃗ |
=

|𝑦⃗⃗̂| sin 𝛾2

|𝑦⃗⃗| sin 𝜃2
=

cos 𝜃 sin 𝛾2

sin 𝜃2
                              (15) 

On the other hand, since 𝛾1 = 𝛾 − 𝛾2, then  
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cos 𝜃1 = cos 𝜃 ∙ cos 𝛾1

                        = cos 𝜃 ∙ cos(𝛾 − 𝛾2)
                                                          = cos 𝛾 cos 𝜃 cos 𝛾2 + sin 𝛾 cos 𝜃 sin 𝛾2

                       (16)  

Substitute (14) into (16),  

  cos 𝜃 sin 𝛾2 =
cos 𝜃1−cos 𝜃2 cos 𝛾

sin 𝛾
                                     (17) 

Substitute (17) into (15),  

cos 𝜙1 =
cos 𝜃1 − cos 𝜃2 cos 𝛾

sin 𝜃2 sin 𝛾

                               =
cos 𝜃1 − cos 𝜃2 cos 𝛾

√(1 − cos2 𝜃2)√(1 − cos2 𝛾)

 

Therefore, equation (12) is concluded.  

3.4 Partial Correlation Coefficient and Partial Test Statistic 

Similar to the concept of partial correlation coefficient, given the effect of a set of removed controlling variables, the 

partial F test is used to measure the importance of the interested variable alone from the perspective of hypothesis testing. 

This section discusses the geometric expression of the partial F test and discovers its geometric connection with partial 

test statistics.  

In general, consider a multiple regression model with 𝑘 predictors  

  𝑣 = 𝛽1𝑢1 + 𝛽2𝑢2 + ⋯ + 𝛽𝑘𝑢𝑘 + 𝑤                           (18) 

where 𝑣⃗, 𝑢⃗⃗1, 𝑢⃗⃗2 … 𝑢⃗⃗𝑘 are n-dimensional column vectors in 𝐸𝑛 and the regression coefficients 𝛽𝑖 ∈ 𝑅1 for 𝑖 = 1,2, … 𝑘. 
Assume that we are interested in testing the statistical significance of the first predictor 𝑢1. That is,  test  𝐻0: 𝛽1 = 0. In 

algebraic methods, the corresponding test statistic 𝑡1 is given by  

t1
2 = F1,d =

Extra sum of squres per dimension

Residual sum of squares per dimension
=

(SSER−SSEUR)/1

SSEUR/d
              (19) 

Here, 𝑆𝑆𝐸𝑈𝑅 is the residual sum of squares of the unrestricted model that regresses 𝑣 on 𝑢1, 𝑢2, … , 𝑢𝑘 while 𝑆𝑆𝐸𝑅 is 

the residual sum of squares the restricted model that regresses 𝑣 on 𝑢2, … , 𝑢𝑘 only, leaving out 𝑢1. Thus, (𝑆𝑆𝐸𝑅 −
𝑆𝑆𝐸𝑈𝑅) is the extra sum of squares when omitting 𝑢1 in the model. In the geometric approach, the number of degrees of 

freedom, denoted by 𝑑, is the number of dimensions in which the vector is free to move. Note that the dimension of 

𝑠𝑝𝑎𝑛(𝑣⃗, 𝑢⃗⃗1,…, 𝑢⃗⃗𝑘) is (𝑛 − 1), while the dimension of 𝑠𝑝𝑎𝑛(𝑢⃗⃗1,…, 𝑢⃗⃗𝑘) is 𝑘. Consequently, the dimension of the 

subspace in which the residual vector is free to move is (𝑛 − 𝑘 − 1).  

Figure 3 illustrates the geometric process of the partial test statistic 𝑡1. In Figure 3, vector 𝑣⃗̂1 (i.e. 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ ) is the estimation 

vector from projecting the observation vector 𝑣⃗  on the subspace 𝑠𝑝𝑎𝑛(𝑢⃗⃗2 ,…, 𝑢⃗⃗𝑘) . Vector 𝑣⃗̂   (i.e. 𝑂𝑂′⃗⃗⃗⃗⃗⃗ ⃗⃗ ) is the 

estimation vector from projecting 𝑣⃗ on the subspace 𝑠𝑝𝑎𝑛(𝑢⃗⃗1 ,…, 𝑢⃗⃗𝑘). Vector 𝑂′𝐺⃗⃗⃗⃗⃗⃗⃗⃗  and 𝐵𝐺⃗⃗⃗⃗ ⃗⃗   represent the residual 

vectors from projecting 𝑣⃗  on the subspace 𝑠𝑝𝑎𝑛(𝑢⃗⃗1 ,…, 𝑢⃗⃗𝑘)  and the subspace 𝑠𝑝𝑎𝑛(𝑢⃗⃗2 ,…, 𝑢⃗⃗𝑘) , respectively. 

Therefore, it is easy to conclude that   

𝐹1,𝑛−𝑘−1 =
|𝐵𝑂′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

2

|𝑂′𝐺⃗⃗⃗⃗⃗⃗ ⃗⃗⃗|
2

/(𝑛−𝑘−1)
= (𝑛 − 𝑘 − 1) cot2 𝜙1                      (20) 

where 𝜙1 is the angle between the residual vector from the restricted model and the vector that obtained by subtracting 

the residual vector of restricted model from the residual vector of unrestricted model. Equation (20) discloses the 

geometric interpretation of partial F test statistic.  A similar result is concluded in Siniksaran (2005) from a different way.  

In the general regression model (18), cos 𝜙1 is the partial correlation coefficient between 𝑣 and 𝑢1, given that 𝑢2, … , 𝑢𝑘 

are retained in the model. Specially, consider model (2), when 𝑘 = 2, the display in Figure 3 is consistent with that of 

Figure 2. Equation (20) is reduced to  

tan 𝜙1 =
√𝑛−3

𝑡1
                                       (21) 
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Figure 3 Geometric interpretation of t-statistics (3-D Graph) 

According to equation (3) and trigonometric equation cos2 𝜙1 =
1

1+tan2 𝜙1
, a simple algebraic manipulation of (21) will 

lead to  

𝑟𝑦𝑥1∙𝑥2
2 =

𝑡1
2

𝑡1
2+(𝑛−3)

                                        (22) 

It is meaningful to study equation (22). On one hand, it furthermore discovers the relationship between test statistics and 

the partial correlation coefficients. On the other hand, it reveals the ideas for establishing the decision rule in the 

hypothesis testing. It is commonly known that the 𝐻0: 𝛽1 = 0 should be rejected under significance level α when 𝑡1
2 or 

𝐹1,𝑛−𝑘−1 is large enough, say, larger than the critical value 𝐹1,(𝑛−3),𝛼. Based on equation (22), a large value of 𝑡1
2 or 

𝐹1,𝑛−𝑘−1 implies a large value of 𝑟𝑦𝑥1∙𝑥2
 which inherently suggests a stronger linear correlation between 𝑦 and 𝑥1, given 

that 𝑥2 is already retained in the model. Consequently, it is more likely that 𝑥1 is a significant addition to the prediction 

of 𝑦.  

4. Conclusion  

To ensure the strictness of drawing n-dimensional vectors, angles and triangles into a 𝐸3, this article first corrects an 

existing graphing problem in the current literature. This article also geometrically introduces and interprets the concept of 

partial correlation coefficient from the perspectives of FWL theorem, simple correlation coefficient, multiple correlation 

coefficient, and partial F test statistics. Unlike other pedagogical literatures in the regression studies, the geometric 

analogues of the regression concepts in a 𝐸3 do not require the prerequisite of advanced linear algebra nor abstruse 

abstract thinking. All the geometric proofs proposed in this article are concise and easy to follow. It is clear that the 

demonstration of the basic regression concepts in a visualized and familiar three-dimensional space facilitates the 

understanding of basic concepts for students and furthermore it serves as an important step stone for learning complex 

regression models in their future studies. It is worth to mention that the graphical displays in this paper are also suitable for 

a general multiple regression model with more than two predictors. And the results can be easily generalized. One just 

need to hold the vector of interested variable while having the other vector in the estimation space to represent the rest of 

predictors. Furthermore, for future work, other classical concepts and theorems in the regression analysis can also be 

visualized and interpreted in terms of a few principles of geometry through the geometric structure in this paper.  
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Appendix 

Proof of Theorem 1  

In Figure 1, 𝜃1 is the angle between 𝑢⃗⃗1 and 𝑣⃗; 𝜃2 is the angle between 𝑢⃗⃗2 and 𝑣⃗; the angle between vector 𝑢⃗⃗2 and 𝑣⃗̂ 

is 𝛾2. 
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On the other hand,  
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Therefore, we prove that any pairs of row vectors in A  are orthogonal vectors. 
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Therefore, A  keeps the length of any vector unchanged. In addition, we have, 

 2121212121 ,cos00cos, uuuuuuxxxx T 
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,coscoscos)cos(cos 2222212   

Therefore, A  also keeps the inner product, or equivalently, the angle between any two vectors unchanged. Thus, 

theorem 1 is proved. 
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