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Abstract

In this paper, we consider several binomial mixture models for fitting over-dispersed binary data. The models range
from the binomial itself, to the beta-binomial (BB), the Kumaraswamy distributions I and II (KPI & KPII) as well as
the McDonald generalized beta-binomial mixed model (McGBB). The models are applied to five data sets that have
received attention in various literature. Because of convergence issues, several optimization methods ranging from the
Newton-Raphson to the quasi-Newton optimization algorithms were employed with SAS PROC NLMIXED using the
Adaptive Gaussian Quadrature as the integral approximation method within PROC NLMIXED. Our results differ from
those presented in Li, Huang and Zhao (2011) for the example data sets in that paper but agree with those presented in
Manoj, Wijekoon and Yapa (2013). We also applied these models to the case where we have a k vector of covariates
(x1, x2, . . . , xk)

′
. Our results here suggest that the McGBB performs better than the other models in the GLM framework.

All computations in this paper employed PROC NLMIXED in SAS. We present in the appendix a sample of the SAS
program employed for implementing the McGBB model for one of the examples.

Keywords: beta-binomial, kumaraswamy, Mcdonald generalized beta-binomial

1. Introduction

The binomial outcome data are widely encountered in many real world applications. The Binomial distribution often fails
to model the binomial outcomes since the variance of the observed binomial outcome data exceeds the nominal Binomial
distribution variance, a phenomenon known as over-dispersion. One way of handling overdispersion is modeling the
success probability of the Binomial distribution using a continuous distribution defined on the standard unit interval. The
resultant general class of univariate discrete distributions is known as the class of Binomial mixture distributions. The
Beta-Binomial (BB) distribution is a prominent member of this class of distributions. The Kumaraswamy-Binomial (KB)
distribution (Kumuraswamy, 1980) is another well utilized member of this class. In this paper we focus the emphasis on
the McDonald’s Generalized Beta distribution (Manjor et al., 2015) of the first kind as the mixing distribution and would
employ the newly introduced the McDonald Generalized Beta-Binomial distribution(McGBB) Manoj al. (2013). Some
theoretical properties of McGBB are already discussed in Manoj et al. (2013) would not again be discussed here. The
parameters of the McGBB distribution are estimated via maximum likelihood estimation technique. Real world datasets
are modeled by using the new McGBB mixture distribution, and it is shown that this model gives better fit than its nested
models, namely, the beta-binomial and the Kumaraswamy type II models. We also compared the distributions for the
generalized linear model when we have covariates. The teratology data in Moore & Tsiatis (1991) are employed. Over-
dispersion in binomial regression could arise as a result of several reasons or combinations of reasons.In most cases, this
could be due to the binomial model grossly underestimating the response variance or it could also be caused by positive
correlation between the dependent responses. Hilbe (2011) has presented an elegant overview of this for the Poisson
model. When over-dispersion occurs, then standard errors of parameter estimates are often underestimated and this often
leads to wrong conclusions with regards to the significance of the predictor variables involved. The McGBB and other
mixing models consider here therefore model the parameter π of the binomial with continuous distributions defined in the
interval (0,1).

In this paper, we would consider the following binomial mixture distributions in addition to the binomial (used here as a
reference model only).

• The beta-binomial

• The Kumaraswamy binomial I & II binomial models

• The Macdonald’s generalized beta-binomial distribution
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1.1 The Binomial Model

The random variable Y =
∑

yi, where yi ∼ Bernoulli(π) has for a fixed n the binomial distribution:

f (y, π) =
(
n
y

)
πy(1 − π)n−y; , y = 0, 1, . . . , n. 0 < π < 1 (1)

The mean and variance of the Binomial are given respectively as:

E(Y) = nπ (2a)
Var(Y) = nπ(1 − π) (2b)

2. Mixture Models for the Binomial

We consider in this section the following mixture distributions for the binomial:

• The beta-binomial

• The Kumaraswamy binomial I & II binomial models

• The Macdonald’s generalized beta-binomial distribution

We develop each of these models in turn in what follows:

The mixture model is obtained by evaluating the well-known integral:

f (y) =
∫ 1

0
fY |π(y) fπ(π|Θ)dπ (3)

for y = 0, 1, . . . , n and Θ is the parameter space of the mixing distribution.

2.1 The Beta-Binomial (BB)

For the beta-binomial (Skellam, 1946), is a mixture of the binomial Bin(n, π) and the beta distribution Beta(α, β). Where,

Y |π ∼ Bin(n, π), and π ∼ Beta(α, β)

That is, Bin(n, π) ∧ Beta(α, β) ∼ BB. The resulting unconditional pdf being the beta-binomial defined as:

f (y;α, β) =
(
n
y

)
B(α + y, β + n − y)

B(α, β)
, y = 0, 1, . . . , n (4)

2.2 The Kumaraswamy Distribution

The Kumaraswamy I (Kumaraswamy, 1980) written as KBI or KW(I) model is a mixture of Binomial and p having the
Kumaraswamy distribution, that is, is also a mixture of

Y |π ∼ Bin(n, π), and π ∼ KB(α, β)

where KB(α, β) has the distribution:

f (π, α, β) = αβπα−1(1 − πα)β−1, α, β > 0 (5)

Thus the KW(I) and KW(II) are resulting unconditional probability distributions given in (6) and (8) respectively as:
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f (y; β) =
(
n
y

)
β B(y + 1, n − y + β), β > 0 (6)

The mean and variance of KW(I) are respectively:

E(Y) = nβB(2, β) (7a)

Var(Y) = n2β[B(3, β) − βB2(2, β)] + nβ[B(2, β) − B(3, β)] (7b)

The KW(II) on the other hand, has the form:

f (y;α, β) = αβ
(
n
y

) ∞∑
i=0

(−1)i
(
β − 1

i

)
B(y + α + γi, n − y + 1) (8)

where α, β > 0 and y = 0, 1, 2, . . . , n.

Its mean and variance are given respectively as:

E(Y) = nβB
[
1 +

1
α
, β

]
(9a)

Var(Y) = n2β

[
B

(
1 +

2
α
, β

)
− βB2

(
1 +

1
α
, β

)]
+ nβ

[
B

(
1 +

1
α
, β

)
− B

(
1 +

2
α
, β

)]
(9b)

2.3 The McDonald Generalized Beta-Binomial Model (McGBB)

The McGBB distribution with parameters n, α, β, γ is a mixture of binomial Bin(n, π) and the McDonald’s generalized
beta distribution (McDonald, 1984, 1995) of the first kind GB1(α, β, γ) where the latter distribution is defined as:

f (π;α, β, γ) =
γ

B(α, β)
παγ−1(1 − πγ)β−1; 0 ≤ π ≤ 1 and α, β, γ > 0. (10)

Clearly, the GB1 reduces to the beta distribution when γ = 1 and to the Kumaraswamy distribution when α = 1.

Thus the McGBB being a mixture distribution of

Y |π ∼ Bin(n, π), and π ∼ GB1(α, β, γ)

has the resulting unconditional pdf given by:

f (y; n, α, β, γ) =
(
n
y

)
γ

B(α, β)

∞∑
i=0

(−1)i
(
β − 1

i

)
B(y + αγ + γi, n − y + 1) (11)

for y = 0, 1, . . . , n and α, β, γ > 0.

Following Manoj et al. (2013), a rearranged pdf of McGBB (n, α, β, γ) is given by:

f (y; n, α, β, γ) =
(
n
y

)
1

B(α, β)

n−y∑
j=0

(−1) j
(
n − y

j

)
B(

y
γ
+ α +

j
γ
, β) (12)

for y = 0, 1, . . . , n and α, β, γ > 0.

It can be easily demonstrated that the McGBB in (12):
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• reduces to the Beta-Binomial with parameters n, α, β if γ = 1.

• reduces to the Kumarswany-Binomial model with parameters n, β, γ if α = 1.

The mean and variance of the McGBB are given by:

E(Y) = nπ and Var(Y) = nπ(1 − π)[1 + (n − 1)ρ] (13)

where

π =
B(α + β, 1

γ
)

B(α, 1
γ
)
, and ρ =

(
B(α+β,2/γ)

B(α,2/γ)

)
−

(
B(α+β,1/γ)

B(α,1/γ)

)2(
B(α+β,1/γ)

B(α,1/γ)

)
−

(
B(α+β,1/γ)

B(α,1/γ)

)2

2.4 Parameter Estimation

For a single observation, the log-likelihood for the binomial, the beta-binomial, KPI, KPII, and the MCGBB are displayed
in expressions (14a) to (14e) respectively.

LL1 = log
(
n
y

)
+ y log(π) + (n − y) log(1 − π) (14a)

LL2 = log
(
n
y

)
+ log[B(α + y, β + n − y)] − log[B(α, β)] (14b)

LL3 = log
(
n
y

)
+ log(β) + log[B(y + 1, n − y + β)] (14c)

LL4 = log(αβ) + log
(
n
y

)
+ log

 ∞∑
i=0

(−1)i
(
β − 1

i

)
B(y + α + αi, n − y + 1)

 (14d)

LL5 = log
(
n
y

)
+ log

(
1

B(α, β)

)
+ log

 n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ α +

j
γ
, β

) (14e)

Maximum-likelihood estimations of the above models are carried out with PROC NLMIXED in SAS, which minimizes
the function −LL(y,Θ) over the parameter space Θ numerically. The integral approximations in PROC NLMIXED is
the Adaptive Gaussian Quadrature (Pinheiro & Bates, 1995) and several optimization algorithms: namely:the quasi-
Newton algorithm (QUANEW), the Nelder-Mead Simplex method(NMSIMP), the Newton-Raphson method with line
search (NEWRAP) and the Conjugate Gradient method (CONGRA) of Powell (1977) & Beale (1972). Convergence is
often a major problem here and the choice of starting values is very crucial. For each of the cases considered here, the
above four optimizing algorithms were applied in turn to ascertain accuracy and consistency. Although the results differ
very slightly, on the whole, they all agree very well. Thus we may note here that each of these give slightly different
parameter estimates. They all give values that are very close.

LL = log
(
n
y

)
+ log

(
1

B(α, β)

)
+ log

 n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ α +

j
γ
, β

) (15)

Since the estimation of the Kumaraswamy-binomial often leads to non-convergence, we would employ the log-likelihood
of the McGBB since it reduces to the KB for α = 1. Thus its likelihood will now be of the form:

LL = log
(
n
y

)
+ log

(
1

B(1, β)

)
+ log

 n−y∑
j=0

(−1) j
(
n − y

j

)
B

(
y
γ
+ 1 +

j
γ
, β

) (16)
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3. Application to Data Examples

We have applied the above models to five data sets that have previously being analyzed by various authors. The five data
sets are described in Examples I to V.

3.1 Data Example I

This example is taken from Nelder & Mead (1965) and relates to the number of candidates having an “alpha”, i.e. at
least 15 scores out of a total 20 points from each of nine questions employed in assessing the final class of candidates
in an examination. Here, Y ∼ Bin(9, π). There were a total of 209 candidates for the examination and Table 1 gives the
distribution of these scores for the 209 candidates as well as the expected values and goodness-of fit-test under the five

models. For the binomial case for instance, the expected probabilities are P(Y = y) =
(
9
y

)
π̂y(1 − π̂)9−y and consequently,

the expected values are m̂y = 209 × P(Y = y), y = 0, 1, 2, . . . , 9. The computed probabilities and expected values, together
with the cumulative estimated probabilities and expected values under the McGBB model for this data are presented in
Appendix II. We note here that the estimated probabilities sum to 1.0

Table 1. Expected values under the five Models and corresponding GOF test

Five Different Models
Y Freq BIN BB KPI KPII McGBB
0 63 37.6895 68.5406 72.2772 69.3715 68.3907
1 67 71.1132 52.9068 50.9881 52.3367 54.0165
2 34 59.6345 36.5973 34.6924 36.1891 36.5044
3 18 29.1717 23.5102 22.5741 23.3822 22.9847
4 11 9.1736 14.0102 13.8807 14.0466 13.6015
5 8 1.9232 7.6362 7.9248 7.7252 7.4840
6 4 0.2688 3.7048 4.0861 3.7833 3.7357
7 3 0.0242 1.5234 1.8140 1.5705 1.6158
8 1 0.0013 0.4810 0.6301 0.5006 0.5514
9 0 0.0000 0.0897 0.1324 0.0942 0.1151

Total 209 209.00 209.00 209.00 209.00 209.00
- π̂ = 0.1733 α̂ = 1.1541 β̂ = 4.7578 β̂ = 5.4530 α̂ = 38.8887
- β̂ = 5.4564 - γ̂ = 1.0837 β̂ = 4.5288

γ̂ = 0.0522
X2 91.7731 7.9710 8.8851 8.6413 7.0160
d.f 8 7 8 7 6

-2LL 791.9 708.1 708.6 708.3 706.8
AIC 793.9 712.1 710.6 712.3 712.8

6+ 8 0.2943
X2 253.8570
d.f 5

8+ 1 0.5707 0.7625 0.5948 0.6665
X2 8.1196 8.6094 8.3249 6.7030

d.f. 6 7 6 5

3.1.1 Results

In this paper, we have employed the binomial model as a baseline model for comparative purposes. The expected values
in column 3 in Table 1 are those under the binomial model designated as ‘BIN’. Under the natural binomial model for this
data, X2 = 455.6136 on 208 d.f with estimated dispersion parameter ϕ̂ = 2.1904 >> 1 indicating strong over-dispersion
in the data. The model produces very many small expected frequencies undermining the approximate distribution of
Pearson’s X2 as a χ2 distribution. Consequently, if we adopt the Lawal’s (1980) rule, which states that expected values
can be as small as r/d3/2 (where r is the number of expected values less than 3, and d is the degrees of freedom under such
model) without violating the χ2 assumption, we see that the minimum expected values required for the BIN model for

example will be
5

83/2 = 0.22 since only five expected values are less than 3 and the d.f.=(10 − 2) = 8. Hence cells 6,7,8,
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and 9, that is, 6+ will be collapsed, now giving a new X2 = 80.000 on 5 d.f. This presented in the bottom panel of Table
1. Corresponding expected minimum expectations for the BB, KPI, KPII and McGGB are 0.1620, 0.1326, 0.1620 and
0.2041 respectively, resulting in categories 8 and 9 (i.e. 8+) being collapsed. The expected values, X2 and the appropriate
degree of freedom are presented in the bottom panel of the data.

3.2 Data Example II-Terrorism in the US

The data in this example relate to the incidents of terrorism in the United States and was analyzed in Xiaohu Li et
al. (2011). The data was originally presented in Jenkins & Johnson (1975) who compiled a chronology of incidents
in international terrorism between 01/1968 and 04/1974. The number of incidents and frequency of occurrences are
presented in columns 1 and 2 respectively in Table 2. Here Y is the number of incidents recorded.

Table 2. Goodness of fit tests for Terrorism Incidents in the US

Five Different Models
Y Freq BN BB KPI KPII McGBB
0 38 33.7216 39.2961 40.2839 39.5565 39.4298
1 26 29.7544 22.0298 20.8953 21.7029 22.0184
2 8 10.5015 9.9312 9.6744 9.8906 9.7633
3 2 1.8532 3.6187 3.7991 3.6764 3.5988
4 1 0.1635 0.9751 1.1444 1.0144 1.0186
≥ 5 1 0.0058 0.1491 0.2029 0.1592 0.1711

Total 76 76.00 76.00 76.00 76.00 76.00
- π̂ = 0.1500 α̂ = 1.2126 β̂ = 5.6395 α̂ = 1.1012 α̂ = 8.5468

β̂ = 6.8161 - β̂ = 6.7530 β̂ = 5.4116
γ̂ = 0.2261

X2 - 6.7125 5.6673 6.4794 5.8002
d.f 4 3 4 3 2

-2LL - 188.3 180.4 180.6 180.5 180.1

3+ 4 2.0225
X2 3.5459
d.f 2

4+ 2 1.1242 1.3473 1.1736 1.1897
X2 2.5401 2.8345 2.6199 2.3525

d.f. 2 3 2 1

For this data, we would need to collapse cells 3,4,5 for the binomial and cells 4 and 5, for the other four models. Clearly,
the KPI seems to give the most parsimonious model for this data, but clearly the other models also fit the data well. The
McGBB even though has the smallest X2 but also has the smallest degrees of freedom because of the three parameters
estimated under the model. In spite of several optimization methods mentioned above in SAS PROC NLMIXED, we
could not reproduce the results of expected values presented in Li et al. (2011). All the methods lead to similar results
presented above. It is our opinion that there are inherent errors in the computational aspects of the results in Li et al.. The
-2 log likelihood (-2LL) obtained in our analyses are much lower than those presented in Li et al.. The generated expected
probabilities in our models all sum to 1 and the expected values are computed on this basis. Our results therefore are
much different from those of Li et al. and would conclude that Li et al. perhaps need to revisit their computations and
hopefully would observe that the new results will agree with those we presented in Tables 2 and 3 in this paper.

3.3 Data Example III-Terrorism Data in Argentina

This example data is again originally from Jenkins & Johnson (1975) and relate to the number of incidents of terrorism in
Argentina between 1968 and 1974.

For this data, cells are collapsed for both the binomial and KPI models. The other three models have minimum expected
values that satisfy the Lawal’s rule. Here, the Beta-binomial, KPII and the McGBB all fit the data well but the beta-
binomial seems to be the most parsimonious for the data. Again here, the expected values obtained are different from
those presented in Li et al. (2011). The reasons presented earlier for Table 2 results also apply to these discrepancies in
our results. We believe that our computations are very accurate.

139



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 2; 2017

Table 3. Goodness of fit tests on Argentina Terrorism Data

Five Different Models
Y Freq BIN BB KPI KPII McGBB
0 46 30.2054 46.3620 36.8823 46.3510 46.3339
1 15 30.1282 12.6172 20.7649 12.8390 12.9117
2 5 12.5213 7.0643 10.7511 6.9975 6.9845
3 3 2.7754 4.4849 4.9675 4.3816 4.3570
4 5 0.3460 2.8903 1.9462 2.8239 2.8065
5 1 0.0230 1.7468 0.5847 1.7367 1.7312
6 1 0.0006 0.8344 0.1034 0.8702 0.8753

π̂ = 0.1425 α̂ = 0.3108 β̂ = 5.6571 β̂ = 1.7195 α̂ = 10.1455
β̂ = 1.8531 γ̂ = 0.3719 β̂ = 1.6955

γ̂ = 0.0443
X2 1789.16 3.4397 16.4866 3.3810 3.3677

D.f. 5 4 5 4 3
p-value 0.4871 0.4962 0.3383

-2LL 244.00 189.30 200.90 189.20 189.20

4+ 7 0.3696
X2 139.3368
d.f 3

p-value 0.0000

5+ 2 0.6881
X2 15.0032

d.f. 4
p-value 0.0047

Table 4. Goodness of fit tests for for the alcohol Drinking Data in Week I Under the Five Models

Five Different Models
Y Freq BIN BB KPI KPII McGBB
0 47 1.595 54.6205 38.4654 54.3128 51.3027
1 54 13.407 42.0028 39.9088 41.7253 45.6820
2 43 48.303 38.9019 41.6669 38.8598 43.1804
3 40 96.682 38.5399 43.8892 38.6929 41.6112
4 40 116.110 40.0691 46.8548 40.3775 40.5276
5 41 83.665 43.9956 51.1733 44.4135 40.0029
6 39 33.492 53.0899 58.5900 53.5016 41.7843
7 95 5.746 87.7803 78.4517 87.1169 94.9089

π̂ = 0.5456 α̂ = 0.7229 β̂ = 0.7468 β̂ = 0.5931 α̂ = 0.0366
β̂ = 0.5809 γ̂ = 0.7038 β̂ = 0.1937

γ̂ = 24.3004
X2 789.0557 9.5143 20.3224 9.9907 2.1559
d.f 6 5 6 5 4

p-value 0.0000 0.0902 0.0024 0.0755 0.7071
-2LL 2406.30 1626.90 1637.80 1627.40 1619.40
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3.4 Data Example IV: Alcohol Drinking Data in Week I

The alcohol drinking data refers to the numbers of alcohol consumption days in two reference weeks that are separately
reported by a randomly selected sample of 399 respondents in the Netherlands in 1983 (Alanko & Lemmens, 1996).
These are displayed in Tables 4 and 5 for week I and II respectively. The choice of these data sets is motivated by the fact
that they have also been analyzed in Rodriguez-Avi et al. (2007) and Li et al. (2011). Thus we can compare our results
with theirs.

For these two data sets, the number of days Y , an individual consumes alcohol out of n = 7 days in a particular week is
considered distributed binomial, however, the success probability π of consuming alcohol on a particularly day can not
be assumed constant because of person-to-person variation and thus a mixture binomial distribution could be applied to
these data, with π being modeled by either a beta distribution or a Kumaraswamy distribution in the interval [0,1]. This is
the approach adopted in Manoj et al. (2013) and Li et al. (2011).

3.5 Data Example V: Alcohol Drinking Data in Week II

The description of this data set is as earlier presented in 3.4 and in Table 5 are presented the expected values as well as
the goodness-of fit tests under the five models.

Table 5. Goodness of fit tests for for the alcohol Drinking Data in Week II Under the Five Models

Seven Different Models
Y Freq BIN BB KPI KPII McGBB
0 42 1.6574 47.9022 40.4814 47.7196 46.0752
1 47 13.7932 42.9141 41.7310 42.8214 45.1044
2 54 49.1949 41.9502 43.2416 41.9595 44.6300
3 40 97.4774 42.5022 45.1337 42.5927 44.3245
4 49 115.8881 44.3031 47.6296 44.4530 44.1480
5 40 82.6654 47.8099 51.2075 47.9897 44.3265
6 43 32.7596 54.8871 57.2026 55.0292 46.6065
7 84 5.5638 76.7311 72.3726 76.4369 83.7849

π̂ = 0.5456 α̂ = 0.8576 β̂ = 0.7904 β̂ = 0.7068 α̂ = 0.0406
β̂ = 0.7008 γ̂ = 0.8528 β̂ = 0.2892

γ̂ = 24.1410
X2 662.5698 9.7615 11.8695 9.8789 4.0644
d.f 6 5 6 5 4

p-value 0.0000 0.0823 0.0649 0.0787 0.3974
-2LL 2295.60 1642.80 1645.20 1642.90 1637.0

3.5.1 Results

Our results in Tables 4 and 5 agree with those presented in Manjor et al. (2013), For both data, the McGBB model is
most preferable to the other models. Of course the binomial model does not fit the data at all as expected. At the 5%
nominal level, the beta-binomial, KPI, KPII and the McGBB fit the data however, the McGBB is the most parsimonious
with p-values of 0.7071 and 0.3974 respectively for data in Tables 4 and 5. We note here that the KPI does not fit the
week 1 data. The poor fit of the binomial model for instance can be attributed to the expected means and variances under
the binomial compared to the observed values of these parameters. For Table 4 for instance, these are displayed in the
following:

Model ȳ σ̂2

BIN 3.8192 1.7362
McGBB 3.8451 6.2607

Obser. Data 3.8195 6.2538

While the observed means and variance of the data are µ = 3.8195 and σ2 = 6.2538, we see that the binomial model
grossly underestimates the variance of the data, while the McGBB estimates the variance well. We thus see that the
McGBB and the other mixture models model the variance of the observed much better and hence fits the data much better
than the binomial.
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4. Extension to GLM

In this section we extend the applications of the models proposed above to the case where we have covariates. Suppose
we have a vector of covariates, say, (x1, x2, . . . , xt)

′
. We can incorporate this into our models-we present an example data

for illustration:

4.1 Example: Teratology Data

Teratology is the study of abnormalities of physiological development. The data below gives the results of studies on the
effects of dietary regiments or chemical agents on fetal developments in rats. (Moore & Tsiatis, 1991). Female rats on
iron-deficient diets were assigned to four groups. Group 1 (placebo injection), group 2 (injections on days 7 and 10),
group 3 (days 0 and 7), and group 4 (Injections weekly). 58 rats were made pregnant, sacrificed after three weeks, and
the total number of dead fetuses was counted in each litter. Due to non measured covariates and genetic variability the
probability of death may vary from litter to litter within a particular treatment group. There are 31, 12, 5 and 10 rats
respectively in groups 1, 2,3 and 4, and presented below are y/n for the data, where for instance, 1/10 means that y = 1
and n = 10.

group1 31 1/10, 4/11, 9/12, 4/4, 10/10, 9/11, 9/9, 11/11, 10/10, 7/10,

12/12, 9/10, 8/8, 9/11, 4/6, 7/9, 14/14, 7/12, 9/11, 8/13,

5/14, 10/10 10/12 8/13 10/10 3/14, 13/13, 3/4, 8/8, 5/13, 12/12

group2 12 1/10, 1/3, 1/13, 0/12, 4/14, 2/9, 2/13, 1/16, 0/11, 0/4, 0/1, 0/12

group3 5 0/8, 1/11, 0/14, 1/14, 0/11

group4 10 0/3, 0/13, 2/9, 2/17, 0/15, 0/2, 1/14, 0/8, 0/6, 0/17

If we let πi j denote the probability of death for fetus j in litter i, then,

• For the binomial, the set up is:

log
(
πi j

1 − πi j

)
= a0 + a2x2i + a3x3i + a4x3i

where

xgi =

1 if litter i is in group g
0 otherwise

• For the beta-binomial, Kumaraswamy II (fitted as nested within the McGBB) and McGBB models , the set up is as
follows in (17a) to (17c) respectively:

α = exp(a0 + a2x2 + a3x3 + a4x4), γ = 1, β > 0 (17a)
β = exp(a0 + a2x2 + a3x3 + a4x4), α = 1, γ > 0 (17b)
α = exp(a0 + a2x2 + a3x3 + a4x4), β, γ > 0 (17c)

where a0, a2, a3, a4 are to be estimated from the models in addition to the the other parameters of the models.

The use of exp(x′a) is some times preferable to the use of the logit - 1/[1 + exp(−x′a)] (see Martinez, 2015). For a general
set of covariates, the above, for instance, α becomes α = a0 + a1x1 + a2x2 + . . . ,+at xt.

5.2 Computing the Pearson’s GOF X2

We generate the Pearson’s goodness-of fit test statistic X2 with the the basic GOF defined as:

X2 =

n∑
i=1

[yi − E(Y)]2

Var(Y)
(18)

where n = 58 the total number of observations in our data. Expressions for E(Y) and Var(Y) have been presented for each
of the models considered in this study. While those of the binomial are presented in expressions (2), those for the McGBB
and its nested models BB and KPII can be generated from the expressions in (13) appropriately.
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5.2.2 Results

We present in Table 6 the results of applying these models to the teratology data.

Table 6. Parameter estimates and GOFs under the four models for the teratology Data

Parameters BIN BB KPII McBB
- β̂ = 0.8510 γ̂ = 1.7481 β̂ = 0.1451

γ̂ = 45.8639
â0 1.1440 0.9924 -0.8121 -2.9930
â2 -3.3225 -2.3814 4.5903 -2.2076
â3 -4.4762 -3.0343 6.5215 -2.8533
â4 -4.1297 -3.1799 5.9134 -2.9923

-2LL 248.3499 198.70 176.80 194.00
X2 154.7070 44.8798 53.5515 37.5571
d.f. 54 52 52 51

p-value 0.000 0.7475 0.4145 0.9196

Under the Binomial model, we see that the data is clearly over-dispersed with the dispersion parameter estimated as
ϕ̂ = 154.7070/54 = 2.8649 >> 1. Of course the model does not fit the data at all. Of the four models, the McGBB fits
best with X2 = 37.5571 on 52 d.f and a corresponding p-value of 0.9196. Interestingly, both the BB and the KPII also
fit the data, however, the BB fits better than the KPII. We present in Table 7, the estimated probabilities {0.7714, 0.2300,
0.1337, 0.1182} for the four groups as well as the corresponding means and variances for the first five observations in
groups 1, 2 and 3 and the last five observations in group 4 together with their corresponding contributions to X2.

Table 7. Estimated means and Variances under the McGBB Model

Obs GP n y π̂ mean var X2

1 1 10 1 0.7714 7.7139 6.5919 6.8382
2 1 11 4 0.7714 8.4853 7.8413 2.5657
3 1 12 9 0.7714 9.2567 9.1979 0.0072
4 1 4 4 0.7714 3.0856 1.3492 0.6198
5 1 10 10 0.7714 7.7139 6.5919 0.7928
...
...

...
...

...
...

...
...

32 2 10 1 0.2300 2.2999 9.9196 0.1704
33 2 3 1 0.2300 0.6900 1.0745 0.0894
34 2 13 1 0.2300 2.9899 16.4265 0.2411
35 2 12 0 0.2300 2.7599 14.0764 0.5411
36 2 14 4 0.2300 3.2199 18.9576 0.0321
...
...

...
...

...
...

...
...

44 3 8 0 0.1337 1.0694 4.3919 0.2604
45 3 11 1 0.1337 1.4705 8.0811 0.0274
46 3 14 0 0.1337 1.8715 12.8841 0.2719
47 3 14 1 0.1337 1.8715 12.8841 0.0590
48 3 11 0 0.1337 1.4705 8.0811 0.2676
...
...

...
...

...
...

...
...

54 4 2 0 0.1182 0.2363 0.3205 0.1743
55 4 14 1 0.1182 1.6544 11.6595 0.0367
56 4 8 0 0.1182 0.9454 3.9723 0.2250
57 4 6 0 0.1182 0.7090 2.3067 0.2179
58 4 17 0 0.1182 2.0089 17.0164 0.2372
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6. Conclusions

In all the data examples considered in this study, the McGBB performs best. We employ the finite series representation
of the McDonald’s Generalized Beta-Binomial distribution as presented in Manoj et al. (2013). The McGBB has con-
siderable improvement over the BB, KPI and KPII models. However, convergence problem for the McGBB makes it
daunting for easy use but with the array of optimizations algorithms available in SAS PROC NLMIXED and R studio, the
distribution is not more difficult to fit than any of the other models.

We also observe here that the results presented in Liet al. (2011) are suspect and our results are confirmed by the use of
several SAS procedures as mentioned in the body of this paper. Thus if convergence can be achieved, the three parameter
McDonald’s generalized beta-binomial model offers a much better alternative to some of the well known mixture models
for over-dispersed binary data, at least for the example cases considered in this paper.
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beta-binomial distribution. Journal of the Royal Statistical Society. Series C (Applied Statistics), 56(1), 51-61.
https://doi.org/10.1111/j.1467-9876.2007.00564.x

Skellam, J. G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of
success as a variable between sets of trials. J. R. Statist. Sco., B10, 257-261. https://doi.org/10.2307/2983779

Appendix

Appendix I SAS PROC NLMIXED Program to Fit the McGBB Model

options nodate nonumber ls=85 ps=66;

data arg;

INPUT y count @@;

n=6;

datalines;

0 46 1 15 2 5 3 3 4 5 5 1 6 1

;

run;

data new1;

set arg;

do i=1 to count;

output;

end;

keep y n;

run;

title ’Terrorism Data Argentina’;

proc nlmixed data=new1 tech=nmsimp qpoints=21;

parms aa=1.5 beta=2 gamma=1;

bounds aa >0, beta >0, gamma>0;

b=lgamma(aa)+lgamma(beta)-lgamma(aa+beta);

z=lgamma(n+1)-lgamma(y+1)-lgamma(n-y+1);

sum=0.0;

t=n-y;

do j=0 to t;

u1=(-1)**j;

u2=(y/gamma)+aa+(j/gamma);

z1=lgamma(t+1)-lgamma(j+1)-lgamma(t-j+1);

z2=lgamma(u2)+lgamma(beta)-lgamma(u2+beta);

b1=z1+z2;

sum=sum+(u1*exp(b1));

keep sum;

end;

LL=z-b+log(sum);

model y ˜general(LL);

predict aa out=aa1;

predict beta out=bb;

predict gamma out=cc;

run;

data q1;

set aa1;

aa=pred;
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run;

data q2;

set bb;

beta=pred;

run;

data q3;

set cc;

gamma=pred;

run;

data qq3;

merge q1 q2 q3;

do s=0 to n;

suma=0.0;

k=n-s;

do i=0 to k;

uu1=(-1)**i;

uu2=(s/gamma)+aa+(i/gamma);

zz1=lgamma(k+1)-lgamma(i+1)-lgamma(k-i+1);

zz2=lgamma(uu2)+lgamma(beta)-lgamma(uu2+beta);

bb1=zz1+zz2;

suma=suma+(uu1*exp(bb1));

keep suma;

end;

/* Compute estimated probabilities, cumulative as well as the expected */;

/* frequencies */;

b1=lgamma(aa)+lgamma(beta)-lgamma(aa+beta);

zz=lgamma(n+1)-lgamma(s+1)-lgamma(n-s+1);

LL1=zz-b1+log(suma);

prob=exp(LL1);

fit1=DF*prob;

ss1+fit1;

cum+prob;

output;

end;

stop;

keep s prob cum fit1 ss1 aa beta gamma;

run;

/* Print the estimated probabilities and expected values*/;

proc print data=qq3;

var s prob cum fit1 ss1 ;

run;

title1 ’Compute Pearson’s GOF for the Data’;

data gof;

merge arg qq3;

xx=((count-fit1)**2)/fit1;

sum+xx;

run;

proc print data=gof;

var sum;

format sum 10.4;

run;
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Appendix II

Estimated probabilities and expected values from the SAS program. ss1 is the cumulative expected values.

y π̂i P(Y ≤ y m̂i ss1
0 0.32723 0.32723 68.3907 68.391
1 0.25845 0.58568 54.0165 122.407
2 0.17466 0.76034 36.5044 158.912
3 0.10997 0.87032 22.9847 181.896
4 0.06508 0.93540 13.6015 195.498
5 0.03581 0.97120 7.4840 202.982
6 0.01787 0.98908 3.7357 206.718
7 0.00773 0.99681 1.6158 208.333
8 0.00264 0.99945 0.5514 208.885
9 0.00055 1.00000 0.1151 209.000
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