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Abstract

Fisher’s exact test is commonly used for testing the hypothesis of independence between the row and column variables
in a r × c contingency table. It is a “small-sample” test since it is used when the sample size is not large enough for
the Pearsonian chi-square test to be valid. Fisher’s exact test conditions on both margins of a 2 × 2 table leading to a
hypergeometric distribution of the cell counts under independence. Moreover, it is conservative in the sense that its actual
significance level falls short of the nominal level. In this paper, we modify Fisher’s exact test by lifting the restriction of
fixed margins and allow the margins to be random. In doing so, we propose two new tests - a likelihood ratio test in a
frequentist framework and a Bayes factor test in a Bayesian framework, both of which are based on a new multinomial
distributional framework. We apply the three tests on data from the Worcester Heart Attack study and compare their
power functions in assessing gender difference in the therapeutic management of patients with acute myocardial infarction
(AMI).
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1. Introduction

Analysis of contingency tables is an important area in the statistical analysis of data. The most common form of a
contingency table is probably the 2×2 one although more general r× c dimensional tables are often used to cross-classify
two variables. Analysis of contingency tables usually revolves around testing for independence between the row and
column variables. There are various procedures (or tests) of achieving the same but the one that is commonly used is
the celebrated Pearsonian chi-square test formulated by the late Karl Pearson in 1900. This test compares the observed
frequencies (of each cell of the table) to those expected under independence through a test statistic which can be shown
to follow a chi-square distribution under the null hypothesis of independence. However, this approximation is only valid
for large samples (expected frequencies in each cell at least 5 in one formulation). However, in many instances, where
data is sparse, the above sample size restriction may not be satisfied and in that case the Pearsonian test statistic cannot be
approximated by a chi-square distribution. In those cases, Fisher’s exact test is generally used.

Fisher’s exact test of independence conditions on both margins of a 2×2 table (which are fixed) leading to a hypergeometric
distribution of the cell counts under the null hypothesis of independence. The “exactness” of this test is attributable to
the fact that the probabilities of the hypergeometric distribution can be calculated exactly under the null hypothesis of
independence. Thus the significance of deviation from null hypothesis can be calculated exactly rather than relying on
an approximation that becomes more precise (or “exact”) only in the limit as the sample size tends to infinity which is
the case for the “large sample” Pearsonian test. In fact, for small, sparse and unbalanced data, the exact and asymptotic
p-values can be quite different and may even lead to contradictory conclusions. In contrast, Fisher’s test is “exact” as long
as the experimental procedure keeps the row and column totals fixed and hence it is applicable regardless of the sample
characteristics. Having said that, Fisher’s exact test, although being a “small sample” test, is valid for all sample sizes.

Despite the fact that Fisher’s exact test provides exact p-values, one feature that has always come under scrutiny is its
“conservativeness”. This is due to the discreteness of the hypergeometric distribution due to which its actual rejection rate
(probability of type I error) is usually less than the nominal significance level. The Fisherian basis of this test, namely
that the marginal totals are ancillary statistics and hence provide no information regarding the table 1 has been shown
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to be incorrect by Berkson (1978) who compared the exact test with the normal (Z) test at nominal significance levels
α = 0.01, 0.05 and showed that the effective level (i.e. probability of type I error) is closer to the nominal level (α) for the
latter test. The normal test was also found to have considerably larger power than Fisher’s test. In view of these findings,
it was proposed that Fisher’s exact test may not be used in preference to the normal test (Berkson, 1978).

In this paper, we have put forward two distinct tests of independence as alternatives to Fisher’s exact test in the context of
a 2×2 contingency table. These are a likelihood ratio test formulated in a frequentist framework and a test based on Bayes
factor formulated in a Bayesian framework. In doing so, we have relaxed the fixed-margin assumption of the Fisher’s test
and have allowed the margins of the 2 × 2 table to be random. Instead of the hypergeometric distribution which results
from the fixed-margin restriction, the proposed tests are based on a multinomial distribution which adds to their flexibility.
We apply our proposed tests on data obtained from the Worcester Heart Attack study and compare their power functions
(against the Fisher’s test) at different significance levels. An extension of the tests to a more general r × c contingency
table is also shown.

The rest of the paper is organized as follows. In Section 2, we elaborate on the characteristics of the Fisher’s exact test,
specifically as it relates to its conservativeness. In Section 3, we explain the proposed likelihood ratio and the test based
on Bayes factor in detail including the multinomial distribution on which these tests are based. Section 4 provides a brief
overview of the Worcester Heart Attack study and a comparative analysis of the performance of the above tests in the
context of the study. We end with a discussion in Section 5.

2. Conservativeness of Fisher’s Test

Tests of independence of the row and column variables in a 2 × 2 contingency table is synonymous to testing for equality
of two independent binomial proportions. The three well known tests for this purpose are respectively (a) Pearson chi-
squared test for large samples, (b) Chi-square test with Yates’ continuity correction for intermediate sized samples (Yates,
1984) and (c) the Fisher’s exact test for small samples. A considerable body of research have done a comparative analysis
of these tests with respect to various characteristics and have concluded that Fisher’s exact test and the Yates correction to
Pearson’s test are both extremely conservative (Berkson, 1978; Conover, 1974; Liddell, 1976; Grizzle, 1967; Kempthorne,
1979; Upton, 1982). An extensive study comparing the above two tests with 22 other alternative tests of independence
corroborated the same (D’Agostino, 1988). It was also noted in the same study that the uncorrected chi-square test
performs relatively well in comparison and that the scaled Pearson chi-square test (N − 1)X2/N (where N is the combined
sample size and X2 is the Pearson chi-square test statistic) can be used as a preferred alternative.

While the “exactness” of Fisher’s test may seem to outweigh its shortcomings Upton (Upton, 1982) was of the opinion
that its conservativeness and inferior power characteristic are of greater concern than its so-called “exactness”. This was
confirmed by D’Agostino et al. (D’Agostino, et al., 1988) who further demonstrated that the uncorrected chi-squared test
and the two-sample t test with pooled variance are robust since their actual levels of significance are, in most situations,
close to or smaller than the nominal levels which is not the case for Fisher’s test.

Little (Little, 1989) analysed two 2 × 2 tables of widely varying sizes, the smaller one being T1 = {a, b, c, d} = {3, 0, 0, 3}
(provided by Barnard, 1945), and the larger being T2 = {a, b, c, d} = {170, 2, 162, 9}. In both examples, the idea was to
compare two treatments (each yielding a binomial sample) with respect to their success probabilities, say π1 and π2. Thus,
the null hypothesis was that the treatments are equally effective (H0 : π1 = π2) while the alternative can be either one
(Ha : π1 > π2) or two (Ha : π1 , π2) sided. Table 1. depicts the above setup.

Table 1. General notation of a 2 × 2 table

Outcome
Treatment Success Failure Total

1 a b n1
2 c d n2

Total m1 m2 n = n1 + n2

On applying the three tests, namely Pearsonian (P), Yates correction (Y) and Fisher’s (F) on each of the above tables, it
was observed that the p-values of the last two tests are close and considerably larger than that for the Pearsonian test for
both the set-ups. Table 2. has the details (p-values are in percentages).
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Table 2. P-values (in %) corresponding to one and two sided alternatives for Pearson, Yates and Fisher’s tests

T1 T2
Test One-sided Two-sided One-sided Two-sided

Pearson (P) 0.7 1.4 1.6 3.2
Yates (Y) 5.1 10.2 3.2 6.4
Fisher (F) 5.0 10.0 3.0 3.5

It is clear that for one-sided tests, p-values of Y and F are quite close. Moreover, the p-values for Y and F are considerably
larger than that of P, even for the larger sized table T2. Overall, the results illustrate that even in quite respectable-sized
samples, choice of the three methods matter. Although conventional wisdom favors the use of Y in moderate samples and
F in small samples, this position has been challenged . Building on earlier work (Berkson, 1978; Grizzle, 1967; Upton,
1982) it has been claimed that Y and F are much too conservative in small samples and hence the usual pooled t-test for
independent normal samples is preferable. The t-test is essentially a studentized version of P, and hence will perform like
P unless the combined sample size is less than, say, 30.

Table 3. depicts the empirical rejection rates for Pearsonian and Fisher’s tests corresponding to the one-sided alternative
(Ha : π1 > π2) at the nominal 5% level with null values of π = .2, .5, and .8, and samples sizes ranging from 5 to 200 in
each group.

Table 3. Rejection probabilities under H0 (in %) of Pearson and Fisher’s tests at α = 0.05 for a one-sided alternative

π = 0.5 π = 0.2, 0.8
n1 = n2 Pearson Fisher Pearson Fisher

5 5.5 1.1 2.2 .2
10 5.8 2.1 4.6 1.5
20 2.1 5.1 2.3
50 4.5 2.9 5.0 2.9
100 5.2 3.8 4.9 3.5
200 4.9 4.0 - -
∞ 5 5 5 5

Based on the results above, it is clear that Fisher’s test is conservative since its empirical rejection rates are much smaller
than the nominal level (5%). Chi-square test with Yates correction (not shown in the table) is similarly conservative. On
the other hand, the empirical rejection rate of the Pearsonian test is close to the nominal level, even for small samples
(except for n1 = n2 = 5). Previous research has shown that rejection rates for the studentized version of P are close to the
nominal levels (D’Agostino, 1988). Overall, the above findings are impressive evidences against the use of Fisher’s exact
test or the chi-square test with Yates’ correction. There are two reasons why Fisher’s test is so conservative. Firstly, the
test statistic has a discrete null distribution, yielding discontinuities at the rejection rates. Secondly, the test conditions on
both fixed margins. While the former reasoning applies to any discrete statistic, the fixed-margin restriction compounds
the conservativeness issue (Mehta et al., 2003). It is to be noted, however, that the computations in Table 3. are based on
conditioning on one margin as dictated by the sampling design.

3. Proposed Methodology

In this section we will lay out two tests allowing the margins of a contingency table to be random, rather than fixed as
is the case for Fisher’s exact test. In doing so, we will compare these tests against Fisher’s in terms of power function
and conservativeness. However, we will first develop a novel framework based on the multinomial distribution, on which
these tests will be based.

3.1 Multinomial Distribution

We start with a motivating example taken from the Worcester Heart Attack study which deals with analyzing gender
differences in receiving Lidocaine therapy in Acute Myocardial Infarction (AMI) patients older than 75 years who have a
history of hypertension and stroke. There were 81 patients in total (30 males and 51 females). Moreover, the design does
not accommodate fixed margins. Table 4. has the details.
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Table 4. Lidocaine therapy data

Therapy
Gender Receive Not receive Total
Males 8 22 30

Females 16 35 51
Total 24 57 81

Clearly, the hypothesis of independence (between gender and receipt of lidocaine therapy) is synonymous to that of equal-
ity of the success probabilities of two binomial distributions corresponding to males and females respectively (receiving
therapy being success and vice versa) (Hashemi et al., 1997; Nandram et al., 2005).

Let I and J be random variables representing the gender of a patient (1 for male and 0 for female) and whether a patient
has received the therapy (1 received and 0 did not receive) respectively. Let P(I = 1) = p and P(J = 1) = q. Clearly, the
duplet (I, J) can determine all the possible combinations of gender and therapy. Now assuming X and Y to be the number
of patients who are males and the number of patients receiving Lidocaine therapy respectively, we have

X =
N∑

k=1

Ik, Y =
N∑

k=1

Jk, Z =
N∑

k=1

Ik Jk,

where N is the total number of patients. Clearly, X and Y follow binomial distributions with success probabilities p and q
respectively. Also, defining πi j as P(I = i, J = j); (i, j = 0, 1), we have the following table,

J

I

1 0
1 π11 π10 p
0 π01 π00 1 − p

q 1 − q 1

where p = π11 + π10 and q = π11 + π01. For the counts, we have the following 2 × 2 contingency table

Receive Not receive
Males Z X-Z X

Females Y-Z N-X-Y+Z N-X
Y N-Y N

with probability mass function as follows

P(z, x − z, y − z,N − x − y + z) =
n!

z!(x − z)!(y − z)!(n − x − y + z)!
· π11

zπ10
x−zπ01

y−zπ00
n−x−y+z

where 0 ≤ x ≤ n, 0 ≤ y ≤ n, max(0, x + y − n) ≤ z ≤ min(x, y). Let γ denote the correlation between I and J. It is
straightforward to show that

γ =
π11 − pq√

p(1 − p)q(1 − q)
. (1)

The following simultaneous equations represent the relationships between πi j(i, j = 0, 1) and (p, q) defined in the table
above

π11 + π10 = p,

π11 + π01 = q,

π11 + π10 + π01 + π00 = 1. (2)
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Using (2) and (3), we have the following expressions

π11 = pq + γ
√

p(1 − p)q(1 − q),

π10 = p(1 − q) − γ
√

p(1 − p)q(1 − q),

π01 = q(1 − p) − γ
√

p(1 − p)q(1 − q),

π00 = (1 − p)(1 − q) + γ
√

p(1 − p)q(1 − q). (3)

Furthermore, the marginal distribution of X can be shown to be

P(X = x) =
x∑

z=0

n−x+z∑
y=z

P(X,Y,Z)

=

x∑
z=0

n−x+z∑
y=z

n!π11
z(p − π11)x−z(q − π11)y−z(1 − p − q + π11)n−x−y+z

z!(x − z)!(y − z)!(n − x − y + z)!

=

x∑
z=0

n!π11
z(p − π11)x−z

z!(x − z)!

n−x+z∑
y=z

(p − π11)x−z(q − π11)y−z(1 − p − q + π11)n−x−y+z

(y − z)!(n − x − y + z)!

=
n!px(1 − p)n−x

x!(n − x)!

x∑
z=0

x!( π11
p )z(1 − π11

p )x−z

z!(x − z)!

n−x∑
y−z=0

(n − x)!( q−π11
1−p )y−z(1 − q−π11

1−p )n−x−y+z

(y − z)!(n − x − y + z)!

=

(
n
x

)
px(1 − p)n−x. (4)

So that X ∼ Binomial(n, p). Similarly, the marginal distribution of Y can be shown to be Binomial(n, q). It follows
immediately that E(X) = np, E(Y) = nq, V(X) = np(1 − p) and V(Y) = nq(1 − q).

3.1.1 Maximum Likelihood Estimation

In order to formulate the likelihood ratio test, we need to obtain the maximum likelihood estimates of p, q and γ. Towards
that end, let us first consider the following 2×2 table

Received Not Received
Male n11 n10 n1.

Female n01 n00 n0.

n.1 n.0 n

where n1. = n11 + n10 and n.1 = n11 + n01. In order to proceed with a statistical optimization, we can set the initial value
of the parameters as

p̂ =
n11 + n10

n
q̂ =

n11 + n01

n
γ̂ =

n11/n − p̂q̂√
p̂(1 − p̂)q̂(1 − q̂)

. (5)

From (4), we have

pq + γ
√

p(1 − p)q(1 − q) ≥ 0,

p(1 − q) − γ
√

p(1 − p)q(1 − q) ≥ 0,

q(1 − p) − γ
√

p(1 − p)q(1 − q) ≥ 0,

(1 − p)(1 − q) + γ
√

p(1 − p)q(1 − q) ≥ 0. (6)

So, given the value of any two parameters, we can get an interval for the third parameter. We can then calculate the
respective estimates from these intervals. Accordingly, the intervals of p corresponding to the range of γ are

if γ > 0,
γ2q

1 − q + γ2q
≤ p ≤ q

γ2(1 − q) + q

if γ ≤ 0,
γ2(1 − q)

q + γ2(1 − q)
≤ p ≤ 1 − q

γ2q + 1 − q
. (7)
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Similarly, the intervals for q can be shown to be

if γ > 0,
γ2 p

1 − p + γ2 p
≤ q ≤ p

γ2(1 − p) + p

if γ ≤ 0,
γ2(1 − p)

p + γ2(1 − p)
≤ q ≤ 1 − p

γ2 p + 1 − p
. (8)

Finally, the interval for γ will be

max

 −pq√
p(1 − p)q(1 − q)

,
−(1 − p)(1 − q)√
p(1 − p)q(1 − q)

 ≤ γ ≤ min

 p(1 − q)√
p(1 − p)q(1 − q)

,
q(1 − p)√

p(1 − p)q(1 − q)

 ,
which can be simplified to

max

−
√

pq
(1 − p)(1 − q)

,−
√

(1 − p)(1 − q)
pq

 ≤ γ ≤ min


√

p(1 − q)
(1 − p)q

,

√
q(1 − p)
(1 − q)p

 .
It is clear from the above simplification that the two terms in the left and right limits of (10) have a reciprocal relationship
(i.e., the maximum is greater than -1 and minimum is less than 1). So, on choosing the initial values of p, q and γ, we can
get a new set of parameter values by successive random selection from within their ranges (i.e., stochastic optimization).
For example, we generate 1100 sets of parameter values and plug each set into the likelihood function f (p, q, γ) given by

f (p, q, γ) = C · (pq + γ
√

p(1 − p)q(1 − q))
n11

(q − pq − γ
√

p(1 − p)q(1 − q))
n10 · (9)

(p − pq − γ
√

p(1 − p)q(1 − q))
n01

(1 − p − q + pq + γ
√

p(1 − p)q(1 − q))
n00
.

where C = n!
n11!n10!n01!n00! is the coefficient of the mass function of p, q.

With the above restrictions, we can apply a grid method to perform a statistical optimization of the parameters in the
likelihood function above by drawing a large set of values of the triplet (p, q, γ). (In our application, we have drawn
1100 values with a burn-in of 100 values). Considering the fact that these samples may not be stable, we drop the first
set of values and then plug in the remaining sets to the likelihood function to obtain the values for which the function is
maximized. For our example, we generated 1100 values and dropped the first 100 to obtain the likelihood maximizer.

3.2 Likelihood Ratio Test

The first test that we develop as an alternative to the Fisher’s test (in terms of power and conservative properties) is the
likelihood ratio test. Below, we first go over the power and p-value calculations for this test followed by that of Fisher’s
under the multinomial distributional framework described above.

Let us consider the following hypotheses,

H0 : γ = 0 versus Ha : γ > 0.

For testing the above hypotheses, we can define the likelihood ratio test statistic as

T =
L(x, y, z|H0)
L(x, y, z|Ω)

=
L(x, y, z| p̂0, q̂0, γ = 0)

L(x, y, z| p̂, q̂, γ̂) ,

where L(x, y, z|H0) and L(x, y, z|Ω) represent the likelihood function under the null hypothesis and the whole parameter
space respectively. Here ( p̂0, q̂0) and ( p̂, q̂, γ̂) are the maximum likelihood estimates of the parameters under the null and
alternative hypothesis respectively. The maximum likelihood estimates are calculated as mentioned in Section 3.1 (i.e.,
stochastic optimization). For calculating the p-value of T , we proceed as follows:

1. Under the null hypothesis, draw 1000 samples of the quadruplet (n11, n10, n01, n00) from a multinomial distribution
with parameter p̂ =

n11 + n10

n
, q̂ =

n11 + n01

n
, γ = 0.

2. For the hth sample drawn above i.e (n(h)
11 , n

(h)
10 , n

(h)
01 , n

(h)
00 ), calculate the parameter values under H0 i.e (p(h)

0 , q
(h)
0 , γ

(h) =

0) and Ha i.e (p(h), q(h), γ(h)).

111



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 2; 2017

3. Plug in each of the above drawn sample parameter estimates, as well as the original table values into the likelihood
ratio test statistic and count the number of samples for which the test statistic value is smaller than that corresponding
to the original table values. Thus, the p-value will be

P(T < Tobs|H0) = #(T < Tobs)/1000

where Tobs is the test statistic value obtained by plugging in the original table values.

3.2.1 Power Calculation

One of the most critical element to look at when comparing two or more tests is the power function. Towards that end,
we will calculate the power functions of the proposed likelihood ratio test (LRT) and Fisher’s exact test under various
significance levels, specifically α = 0.01, 0.05. In order to evaluate the power of the LRT, we need to calculate the
probability of rejection of the null hypotheses under the alternative parameter space (i.e γ > 0) but conditional on the
restriction imposed by p and q in (10). In doing so, we divide the range into thin slices of width .01, the ith slice being
γi, (i = 1, ..., s) where s is the number of slices and γ1 = 0. For each γi, we evaluate the power in the same way as we
calculated the p-value in Section 3.2. However, instead of drawing samples from the null hypothesis, we draw a fixed
number (say 1000) samples corresponding to each γi > 0 and then calculate the LR statistics for each of the drawn
samples. Thus, the p-value can be expressed as

p = #(Ti < Tα)/1000,

where Tα is the αth quantile of the 1000 likelihood ratio test statistic values obtained from the samples generated above.

For calculating the power function of Fisher’s exact test, we follow the same procedure outlined above (i.e., we compute
the power at each γi). For that purpose, we need to use the non-central hypergeometric distribution. Let us consider the
following table

Receive Not receive
Males x m1 − x m1

Females n − x m2 − n + x m2

n N − n N

where N = m1 + m2. Thus, the probability mass function of x will be

f (x|n,m1,N,w) =

(
m1

x

)(
m2

n − x

)
wx

xmax∑
y=xmin

(
m1

y

)(
m2

n − y

)
wy

, (10)

where x ∈ [xmin, xmax] represent the number of the male patients who received the therapy, and xmin = max(0, n −
m2), xmax = min(n,m1) while w is the odds ratio of receiving therapy for males versus females and is given by

w =
π11

π11 + π10

π01 + π00

π01
=

pq + γ
√

p(1 − p)q(1 − q)

q(1 − p) − γ
√

p(1 − p)q(1 − q)
.
1 − p

p
.

The above odds ratio can be expressed as a function of γ since p = m1/N and q = n/N, each of which can easily be
obtained from the table above. Thus, we can map a specific γ to a specific non-central hypergeometric distribution via the
odds ratio w. To obtain the power, it is imperative to find cα, the upper (1 − α)% critical value of X. However, this is not
possible due to the discrete nature of the distribution of X as we cannot strictly satisfy the equality Pr(x ≥ cα|H0) = α.
Hence we choose cα such that cα= {x : Pr(x ≥ cα|H0) − α is minimum}. For this value of cα, the power function is given
by

power(γ) = P(x ≥ cα|Ha) = Pr(x ≥ cα|γ , 0)

=

n∑
x=cα

f (x|n,m1,N,w(γ)). (11)
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(a) α = .01

(b) α = .05

Figure 1. Power functions of likelihood ratio and Fisher’s exact tests at α = .01 and α = .05
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Using the data in Table 5 we have calculated the power functions for all age groups. Figures 1(a) and 1(b) depict the
power functions of the proposed LRT and Fisher’s exact test at α = 0.01 and α = 0.05 respectively for patients older
than 75 years in the Lidocaine therapy group. It is clear that, in both cases the power curve of the likelihood ratio test is
consistently above that of the Fisher’s exact test. Thus we are less likely to make a type II error with the LRT than that
with Fisher’s exact test. Additionally, the fact that at γ = 0, the power function degenerates to the test size validates our
methodology of computing the power functions.

3.3 Bayes Factor

A Bayesian alternative to the likelihood ratio test for testing the hypothesis of independence is the Bayes factor which is
the ratio of the marginal posterior densities under the null (H0 : γ = 0) and alternative (Ha : γ , 0) hypotheses, denoted by
M0 and M1 respectively. Thus the Bayes factor can be viewed as a discriminator between the null and alternative models,
M0 and M1. Since the essence of our problem is that of testing two hypotheses, Bayes factor is a natural choice and can be
calculated through a sampling route. The Bayes factor has been used in various contexts of our own work (e.g., Nandram,
Bhatta & Bhadra 2013, Nandram & Katzoff 2012, Nandram & Choi 2007, Nandram, Cox & Choi 2005, Nandram & Choi
2006, Nandram, Liu, Choi & Cox 2005, Hashemi, Nandram & Goldberg 1997 ) for various situations of Bayesian testing
for two-way contingency tables.

Under the null hypothesis, the probability density function (pdf) of (X,Y,Z) is given by

p(x, y, z|p, q,M0) =
n!

z!(x − z)!(y − z)!(n − x − y + z)!
px(1 − p)n−xqy(1 − q)n−y

while, under the alternative, the pdf will be

p(x, y, z|p, q, γ,M1) =
n!

z!(x − z)!(y − z)!(n − x − y + z)!
π11

zπ10
x−zπ01

y−zπ00
n−x−y+z,

where 0 ≤ x ≤ n, 0 ≤ y ≤ n and max(0, x + y − n) ≤ z ≤ min(x, y). As shown in Section 3.1, the following identities still
hold

π11 = pq + γ
√

p(1 − p)q(1 − q),

π10 = p(1 − q) − γ
√

p(1 − p)q(1 − q),

π01 = q(1 − p) − γ
√

p(1 − p)q(1 − q),

π00 = (1 − p)(1 − q) + γ
√

p(1 − p)q(1 − q).

Since p, q and γ range from 0 to 1, a reasonable assumption for the prior distributions of the parameters are π(p) =
1, π(q) = 1 and π(γ) = 1. Thus the marginal posterior under the null hypothesis is

f (x, y, z|M0) =
∫ 1

0

∫ 1

0
p(x, y, z|p, q)π(p)π(q) dp dq

=

∫ 1

0

∫ 1

0
C · px(1 − p)n−xqy(1 − q)n−y · 1 · 1 dp dq

= C · B(x + 1, n − x + 1)B(y + 1, n − y + 1), (12)

where B() represents the beta function, and C =
n!

z!(x − z)!(y − z)!(n − x − y + z)!
is the normalization constant. Similarly,

the marginal posterior under the alternative hypothesis is

f (x, y, z|M1) =
∫ a1(p,q)

a0(p,q)

∫ 1

0

∫ 1

0
p(x, y, z|p, q, γ)π(p)π(q)π(γ) dp dq dγ, (13)

where a0(p, q) = 0 and a1(p, q) = min
(√

(p(1−q)
q(1−p) , 1/

√
(p(1−q)
q(1−p)

)
is a function of (p, q) indicates the upper bound of γ given

p and q. So the Bayes factor is the ratio of (14) and (15). That is,

TBF =
f (x, y, z|M1)
f (x, y, z|M0)

.

The Bayes factor can be calculated using Monte Carlo integration of (15) (since (14) is in closed form). The computation
is explained in detail in the Appendix. Following are some thresholds for Bayes factors provided by Kass & Raftery,
1995:
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2 ln(B10) (B10) Evidence against H0

0 to 2 1 to 3 Not worth more than a bare mention
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

where B10 is the Bayes factor of M1 with respect to M0.

We can also obtain the power function of Bayes factor test as was done for the likelihood ratio test statistics in Section 3.2.
To obtain the critical value of the Bayes test, we drew 1000 samples under M0, calculated the Bayes factor and obtained
the 100(1 − α) quantile (e.g., α = .01, .025, .05) for each of these 1000 samples. Then, to obtain the power function for
each γ we drew 1000 samples under M1 and calculated the proportion of Bayes factors larger than the critical value.

4. Data Description and Results

We have done a comparative analysis of the proposed likelihood ratio and Bayes factor tests with Fisher’s test (with
respect to their size and power characteristics) in the context of the Worcester Heart Attack study. In this section, we first
provide a brief description of the heart attack data followed by the main results of our analysis.

4.1 Worcester Heart Attack Study

The Worcester Heart Attack Study is a population-based study examining the trends in incidence rates, death rates (hos-
pital and post discharge) and occurrence of major clinical complications of patients hospitalized with acute myocardial
infarction (AMI) at all metropolitan Worcester (Massachusetts) hospitals during the period 1975-2003. This study also
examined the time trajectory of duration of pre-hospital delay following the onset of severe coronary symptoms and mor-
tality related to coronary heart disease in the greater Worcester population. This study was funded by the National Heart,
Lung and Blood Institute since the mid-1980’s. A total of 12,760 patients (all residents of greater Worcester Metropoli-
tan area) were incorporated in this study. Patients discharged from hospitals were also followed up through a variety of
sources to ascertain their long-term survival status and possible changes in post discharge survival over time.

With regard to the principal study findings, an initial increase, followed by decline, and then relative stabilization in the
incidence rates of initial AMI was observed. Furthermore, patients hospitalized with AMI during more recent study years
were found to be increasingly older with a greater prevalence of comorbidities. Finally, a marked increase in the use of
various medical treatment approaches and coronary reperfusion strategies was observed over time.

We have applied the three tests - Fisher’s exact test, Likelihood ratio test and Bayes factor test to the Worcester Heart
Attack data described above with a view to compare their relative conservativeness (as measured by the respective p-
values) and power characteristics. In doing so, we consider data corresponding to gender difference in the receipt of
Lidocaine, Anti-platelet and Beta-blocker therapies for AMI patients with a history of hypertension and stroke. In each
case, the frequencies are classified according to age (in years) of the patients involved. The data is summarized in Table
5. (“M” denote Male, “F” denote Female, “R” denote received therapy while “NR” denote not received therapy).

Table 5. Gender difference in the receipt of Lidocaine, Anti-platelet and Beta-blocker therapies for AMI patients with
hypertension & stroke (M: male; F: female; R: receive; NR: not receive)

Lidocaine Anti-platelet Beta-blocker
M F M F M F

Age(years) R NR R NR R NR R NR R NR R NR
< 55 4 4 0 5 3 5 2 3 0 1 3 2
55-59 2 3 1 2 3 2 0 3 0 6 2 1
60-64 6 5 2 4 5 6 1 5 2 4 1 5
65-69 4 3 6 6 3 4 8 4 4 3 2 7
70-74 8 11 3 12 14 5 5 10 7 12 6 6
≥ 75 8 22 16 35 16 14 22 29 7 21 16 66
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4.2 Data Analysis

Corresponding to each of the therapies, the p-values for Fisher’s exact test and likelihood ratio test as also the Bayes
factors are shown in Table 6.

Table 6. P-values for Likelihood ratio and Fisher’s tests and Bayes factors (BF) corresponding to Lidocaine, Anti-platelet
and Beta-blocker therapies

Lidocaine Anti-platelet Beta-blocker
Age LRT Fisher BF LRT Fisher BF LRT Fisher BF
<55 0.01 0.098 2.65 0.803 0.751 2.666 0.910 1 0.202

55-59 0.456 0.71 0.376 0.036 0.179 1.89 0.798 1 0.102
60-64 0.214 0.373 0.548 0.12 0.261 0.903 0.283 0.5 0.474
65-69 0.355 0.57 0.315 0.979 0.933 0.127 0.094 0.182 1.197
70-74 0.104 0.159 0.796 0.012 0.022 5.554 0.902 0.863 0.132
≥ 75 0.54 0.756 0.092 0.178 0.255 0.304 0.288 0.356 0.226

Overall, we observe that the p-value of the Fisher’s test tend to be higher than that of the likelihood ratio test although
with some exceptions (e.g., patients younger than 55 years for Lidocaine and Anti-platelet therapy and patients with
age between 60-64 years for Beta-blocker therapy etc). This corroborates the fact that Fisher’s test is relatively more
conservative than the likelihood ratio test. For 15 of the 18 (age) groups considered across the three types of therapies
(last five for Lidocaine, 1st, 3rd, 4th, 6th for Anti-platelet and all six for Beta-blocker), we obtain a consistent conclusion
of failure to reject the hypotheses of significant gender difference in receiving therapy. That is, no evidence that males
are more likely to receive the therapy than females since the p-values (for both the likelihood ratio and Fisher’s test)
are greater than the nominal level of 0.05 while the Bayes factor is less than 1. On the other hand, for the first group
in Lidocaine and the second group in Anti-platelet, both likelihood ratio test and Bayes factor reject the hypotheses of
independence while Fisher’s exact test fails to do so. For the 5th group in Beta-blocker, all three tests tend to reject while
for the 4th group in Beta-blocker, only Bayes factor rejects.

Table 7. Power values of the three tests for varying γ at α = .01 and 0.05

γ LRT Fisher’s test BF
0.00 0.022 0.011 0.008
0.05 0.060 0.032 0.018
0.10 0.128 0.082 0.057
0.15 0.224 0.173 0.152
0.20 0.368 0.312 0.292
0.25 0.573 0.486 0.453
0.30 0.731 0.631 0.561
0.35 0.868 0.816 0.749
0.40 0.927 0.917 0.869
0.45 0.973 0.971 0.951
0.50 0.990 0.992 0.986
0.55 0.997 0.9979 0.997
0.60 0.998 0.9998 0.996
0.65 1.000 0.999989 1.000
0.70 1.000 0.999999 1.000
0.75 1.000 1.000 1.000
0.80 1.000 1.000 1.000

(a) α = 0.01

γ LRT Fisher’s test BF
0.00 0.054 0.0353 0.053
0.05 0.128 0.0887 0.113
0.10 0.249 0.1853 0.217
0.15 0.409 0.3287 0.384
0.20 0.526 0.5037 0.565
0.25 0.740 0.6795 0.736
0.30 0.860 0.8239 0.837
0.35 0.938 0.9199 0.940
0.40 0.974 0.9709 0.977
0.45 0.992 0.9918 0.994
0.50 1.000 0.9983 0.999
0.55 0.997 0.9997 1.000
0.60 0.999 0.99998 1.000
0.65 1.000 0.999999 1.000
0.70 1.000 0.9999999 1.000
0.75 1.000 1.000 1.000
0.80 1.000 1.000 1.000

(b) α = .05

To understand this apparent contradiction, we construct the power functions of these tests. A higher power plot indicates a
relatively smaller chance of failing to reject the null hypothesis when the alternative hypothesis is true. Figure 2 (patients
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(c) α = .01

(d) α = .05

Figure 2. Power functions of the three tests at α = .01 and .05
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older than 75 years using Lidocaine) shows that the power function of the likelihood ratio test generally goes above that
of the Fisher’s exact test at α = 0.01 and 0.05. Table 7 depicts the power values for the three tests at α = 0.01 and 0.05
for different values of the correlation parameter γ which corroborate the same. This superiority of the proposed likelihood
ratio (in terms of power) may be due to the more flexible modeling framework (with respect to the Fisher’s test) on which
it is based. The power values of the test based on Bayes factor is generally between that of the likelihood ratio and Fisher’s
test.

5. Discussion

Fisher’s exact test is a well known small sample test used for testing the hypothesis of independence between the row
and column variables in a 2 × 2 contingency table. It is generally used when the sample sizes are not large enough for
the “large-sample” Pearsonian tests to be valid. However, Fisher’s test conditions on both the margins of a contingency
table resulting in a hypergeometric distribution of the cell counts. Moreover, it is conservative in the sense that its actual
rejection rate (probability of type I error) falls short of the nominal significance level. In this paper, we have corrected the
Fisher’s exact test by lifting the restriction of fixed margins. That is, we have allowed the margins to be random and in
doing so, have proposed two tests - the first based on likelihood ratio and the other based on the Bayes factor. We have
performed some data analysis and have compared the conservativeness (probability of type I error) and power functions
of these tests against that of the Fisher’s exact test.

We have used data from the Worcester Heart Attack study. For the purpose of our study we considered data corresponding
to gender difference in the receipt of Lidocaine, Anti-platelet and Beta-blocker therapies for patients suffering from acute
myocardial infarction (AMI) who have a history of hypertension and stroke.

On applying the three tests on the above data, it was observed that the p-value of the likelihood ratio test tends to be lower
than that of Fisher’s test although with some exceptions. This corroborates the conservativeness property of the latter test.
The test based on Bayes factor also gave similar conclusions as the likelihood ratio one. It was also observed that the
power of the likelihood ratio test tends to be higher than that of the Fisher’s test at different significance levels.

In this paper, we have restricted our discussion to 2 × 2 tables although it would be worthwhile to extend our proposed
methodology to higher dimensional tables, specifically to r × c tables with random margins. (Fisher’s exact test is known
for r × c tables with fixed margins). One issue with higher dimensional tables is that we can no longer use the correlation
coefficient (γ) between the rows and columns as a test parameter. This is one of our future work.
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Appendix

Calculation of Bayes Factor

As shown in Section 3.3, the Bayes factor for our problem is given by

TBF =
f (x, y, z|M1)
f (x, y, z|M0)

where f (x, y, z|M0) and f (x, y, z|M1) are respectively given in (14) and (15). Thus, to calculate the Bayes factor, we need
to evaluate the above expressions. The former is relatively straightforward since it is a product of two Beta functions.
However, for approximating (15), we use Monte Carlo integration technique. Nandram and Kim (2002) used this
procedure for studying the marginal likelihood for a class of Bayesian generalized models. In doing so, we rewrite (15) as

f (x, y, z|M1) =
∫ a1(p,q)

a0(p,q)

∫ 1

0

∫ 1

0

{ p(x, y, z|p, q, γ)π(p)π(q)π(γ)
πa(p, q, γ|x, y, z)

}
πa(p, q, γ|x, y, z) dp dq dγ. (14)

Thus, instead of integrating over its prior density, we do the integration over an approximation to the posterior density
πa(p, q, γ|x, y, z). We can then implement the Monte Carlo method by drawing samples from this density. Towards this
end, we need to obtain an approximation to the posterior density function πa(p, q, γ|x, y, z). Due to the conjugacy of the
Beta-Binomial distribution, we approximate the posterior of p and q by the beta distribution. Thus, given the data
(x, y, z), we can draw p from πa(p|x, y, z) = beta(x + 1, n − x + 1), and q from πa(q|x, y, z) = beta(y + 1, n − y + 1). Hence
the approximate posterior density of (p, q, γ) can be expressed as :

πa(p, q, γ|x, y, z) = πa(p|x, y, z) πa(q|x, y, z) πa(γ|p, q, x, y, z) (15)

We can draw p and q from the beta distributions and can certainly expect the posterior density of γ to be close to beta as
well. In fact, by doing some minor adjustments, we can transform the range of γ to (0, 1) which is the admissible range
for the beta distribution.

The detailed step-by-step procedure for obtaining the posterior density πa(γ|p, q, x, y, z) of γ is given below:
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a) Given the count data (x, y, z), we draw M = 1000 sets of p and q from Beta(x + 1, n − x + 1) and Beta(y + 1, n − y + 1)
respectively, the kth sample being denoted as p(k) and q(k) respectively.
b) Generate M = 1000 sets of (p(h), q(h), γ(h)) through the procedure (MLE) detailed in Section 3.1.1 and calculate
a0(p(h), q(h)) and a1(p(h), q(h)) from the generated values, (h = 1, 2, ..., 1000).
c) Fit the γ(h) values to the following equation:

γ(h)
1 =

γ(h) − a0(p(h), q(h))
a1(p(h), q(h)) − a0(p(h), q(h))

∼ Beta(µτ, (1 − µ)τ), 0 < µ < 1, τ > 0. (16)

Thus, we can estimate the beta parameters by equating the sample mean to the theoretical mean (µ) and sample variance
to the theoretical variance (µ(1 − µ)/(τ + 1)) which yields

E(γ(h)
1 ) =

∑M
h=1 γ

(h)
1

M
= µ

Var(γ(h)
1 ) =

∑M
h=1(γ(h)

1 − E(γ(h)
1 ))2

M − 1
=
µ(1 − µ)
τ + 1

. (17)

Solving the above equations we obtain the following estimates of µ and τ,

µ̂ = E(γh
1)

τ̂ =
µ(1 − µ)(M − 1)∑M

h=1

(
γ(h)

1 − E(γ(h)
1 )

)2 − 1 (18)

d) Draw γ(k)
1 from Beta (µ̂τ̂, (1 − µ̂)τ̂) and obtain γ = h(γk

1) = [a1(p(k), q(k)) − a0(p(k), q(k))]/[γ1 + a0(p(k), q(k))], where p(k)

and q(k) are drawn from beta distribution in step (a)
e) The probability density function of γ1 is given by

f (γ1) =
γ
µ̂τ̂
1 (1 − γ1)(1−µ̂)τ̂

B(µ̂τ̂, (1 − µ̂)τ̂) . (19)

On transforming γ1 to γ as γ = h(γ1), the probability density function of γ will be

πa(γ|p, q, x, y, z) = f (h−1(γ))

=
[h−1(γ)]µ̂τ̂[1 − h−1(γ)](1−µ̂)τ̂

B(µ̂τ̂, (1 − µ̂)τ̂) · d(h−1(γ))
dγ

=

[ γ−a0(p,q)
a1(p,q)−a0(p,q)

]µ̂τ̂{1 − [ γ−a0(p,q)
a1(p,q)−a0(p,q)

]}(1−µ̂)τ̂

B(µ̂τ̂, (1 − µ̂)τ̂) · 1
a1(p, q) − a0(p, q)

(20)

f) Together with

πa(p|x, y, z) =
px(1 − p)n−x

B(x + 1, n − x + 1)

πa(q|x, y, z) =
qy(1 − q)n−y

B(y + 1, n − y + 1)

we obtain

πa(p, q, γ|x, y, z) = πa(p|x, y, z)πa(q|x, y, z)πa(γ|p, q, x, y, z)

=
px(1 − p)n−x

B(x + 1, n − x + 1)
qy(1 − q)n−y

B(y + 1, n − y + 1)
[h−1(γ)]µ̂τ̂[1 − h−1(γ)](1−µ̂)τ̂

B(µ̂τ̂, (1 − µ̂)τ̂) · d(h−1(γ))
dγ

(21)

Based on the above derivations, our Bayes factor can now be expressed as

TBF =
f (x, y, z|M1)
f (x, y, z|M0)

=

∫ a1(p,q)

a0(p,q)

∫ 1

0

∫ 1

0

{ p(x, y, z|p, q, γ)π(p)π(q)π(γ)
πa(p, q, γ|x, y, z)

}
πa(p, q, γ|x, y, z) dp dq dγ

C · B(x + 1, n − x + 1)B(y + 1, n − y + 1)

=

1
M

M∑
k=1

Cπz
11π

x−z
10 π

y−z
01 π

n−x−y+z
00 π(p)π(q)π(γ)

πa(p, q, γ|x, y, z)

C · B(x + 1, n − x + 1)B(y + 1, n − y + 1)
(22)
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g) We now plug in 1000 sets of (p(k), q(k), γ(k)) in (24) to obtain samples from the Bayes factor. As we know, a Bayes
factor value greater than 1 will indicate a rejection of null hypothesis and vice versa.
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