
International Journal of Statistics and Probability; Vol. 6, No. 2; March 2017
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

A Model to Approximate the Distribution of Rank Order Associations
Agostino Tarsitano1 & Ilaria L. Amerise1

1 Dipartimento di Economia, Statistica e Finanza - Università della Calabria Via Pietro Bucci, Cubo 1c, 87036 Rende
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Pietro Bucci, Cubo 1c, 87036 Rende (CS). Italy. E-mail: agostino.tarsitano@unical.it

Received: October 20, 2016 Accepted: December 21, 2016 Online Published: February 21, 2017

doi:10.5539/ijsp.v6n2p66 URL: https://doi.org/10.5539/ijsp.v6n2p66

Abstract

The relationship between two set of ranks can be evaluated by several coefficient of rank-order association. To judge the
significance of an observed value of one of these statistics we need a reliable procedure for determining the p-value of
the test. In several works the t-Student has been suggested as being relevant for the description of the null distribution of
many coefficients. In this article, we propose a new model of density function, the generalized Gaussian on a finite range,
which can be used to model data exhibiting a symmetrical unimodal density with a bounded domain. Several simulations
illustrate the advantages of this technique over conventional methods. This is particularly useful in the case the number
of ranks is larger than the threshold for which the exact null distribution is known, but lower than the threshold for which
the asymptotic Gaussian approximation becomes valid.
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1. Introduction

The extent of agreement between two rankings of n items, numbered from 1 to n, can be tested by using a non-parametric
statistic of rank correlation in place of the Pearson product-moment correlation. The most well known statistics of this
type are the Spearman, Kendall and Gini coefficients, which will be denoted, respectively, as r1, r2 and r3. The former
is the most often used measure in research in which the dependence is assumed monotonic but otherwise arbitrary. In
comparison with r1 and r2, Gini’s r3 seems to be applied rather rarely at present, although its characteristics are similar,
and sometimes better, to those of the other rank correlations.

To judge the significance of an observed value of one of these statistics, say rh, we need the exact distribution of rh under
the hypothesis of independence or, at least, a reliable procedure for determining the p-value of the test. Significance
levels could, for example, be calculated using asymptotic methods. In this regard, the convergence to the Gaussian
distribution renders its use legitimate in interpolating the p-values of rh, h = 1, 2, 3. Nonetheless, already Old (Olds, E.
G., 1938) states that a distribution with a finite range causes trouble at the tails when a Gaussian fit is attempted, and,
this is particularly relevant to studies where we are particularly interested in the tails. KIendall et al. (KIendall, et al.,
1939) add that Gaussian approximation is satisfactory for moderately large values, but for small values it is subject to the
disadvantage inherent in any attempt to represent a distribution of finite range by one of infinite range, that is, the fit near
the tails it is not likely to be very good. On the other hand, rank correlation statistics lies in the interval from −1 to 1 and
we think it is better for clarity to test them by using a theoretical curve with a bounded, rather than infinite, domain.

In order to circumvent these difficulties, many researchers have looked for probability densities which are capable of
fitting the distribution of rank correlations appropriately, including: Johnson S B (Johnson, N-L., 1949), Tadikamalla-
Johnson LB (Tadikamalla & Johnson, N-L., 1994). In particular, Pitman (Pitman, E. J. G., 1937) noted that the first
four moments of the r1-distribution were similar to the first four moments of the symmetrical beta or Pearson type II
distribution. Continuing this idea, Landenna et al. (Landenna, G., 1989) proposed the symmetrical beta for the Gini
coefficient r3 and Vittadini (Vittadini, G., 1996) suggested it for the Kendall coefficient r2. One key factor behind the wide
diffusion of this model is the strict relationship between the symmetrical beta curve and the Student’s t density function
(Willink, 2009). This allows for the use of easy tables and hence ensures computational convenience and simple checking
of results.

Our objective in this paper is to devise a new model for estimating the p-values of some rank association indices in the
case n is larger than the threshold for which the exact null distribution is known but lower than the value of n for which the
Gaussian approximation becomes valid. The structure of the paper is as follows. In Section 2, we succinctly discuss the
characteristics of r1, r2 and r3. A new density function, the generalized Gaussian on a finite range (GGFR), is introduced
in Section 3 and the prediction of p values is presented in Section 4. We conclude in Section 5.

66



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 2; 2017

2. Indices of Rank Order Association

The degree of monotone association between rankings can be measured by rank index of association. The coefficients
reported in Table 1 are in general use.

Table 1. Rank association statistics

Coefficient Formula Number of distinct values

Spearman r1 =

(
3

n3 − n

)
S 1

(
n3 − n

)
/6 + 1

Kendall r2 =

(
2

n2 − n

)
S 2

(
n2 − n

)
/2 + 1

Gini r3 =

(
4

n2 − kn

)
S 3, kn=n mod 2

(
n2 − kn

)
/2 + 1,

Here S 1 =
∑n

i=1

[
(n+1−i −πi)2−(i−πi)2

]
where π is a permutation of order n. S 2 =

∑n−1
i=1

∑n
j=i+1sign

(
π j−πi

)
where sign(x)

takes the values −1, 0,+1 according to whether x is negative, zero or positive, S 3 =
∑n

i=1 (|n+1−i −πi|−|i−πi|). We remark
that the expressions presented in Table 1 assume absence of ties.

Coefficients in Table 1 vary within the range:[−1, 1]. The extremes are achieved if and only if there is perfect association,
negative or positive, for all pairs:rh (η, η) = rh (π, π) = 1, rh (η, η∗) = rh (π, π∗) = −1 where π∗= n+1−π and η∗= n+1−η
are the reverse permutations of π and η. The larger rh is, ignoring the sign, the stronger the association between rankings
is. All the three indices can be interpreted as differences between the distance from perfect direct association (1, 2, · · · , n)
and the distance from perfect inverse association (n, n − 1, · · · , 1).

Van de Wiel & Di Bucchianico (Van de Wiel, M. A., & Di Bucchianico, A., 2001), compute the null distribution of r1 for
n = 19, . . . , 22 using the representation of its probability generating function as a permanent (a signless determinant) with
monomial entries. See also Maciak (Maciak, W., 2009). It is interesting to note that he quantities S 1 and S 3 appearing in
r1 and r3 can be expressed as a sum of parts which allows the use of combinations of sub permutations that significantly
reduce the amount of computation required to build the exact distribution. See Otten (Otten, A., 1973) for a division of
the permutations in two groups. Girone et al. (Girone, G., et al., 2010) went further by breaking up the permutations into
four groups and executing a parallel processing scheme that, by the way, is naturally fit to Otten’s proposal. Research to
date has obtained the null distribution of the Spearman coefficient up to n = 26 (Gustavson, 2009) and that of the Gini
coefficient for up to n = 24. The same procedures cannot be applied for Kendall’s S 2, which, however, benefits from a
recurrence relationship. See Panneton & Robillard (Panneton & Robillard, 1972).

Under the null hypothesis of independent rankings, the distributions of r1, r2 and r3 are symmetrical and have support
in [−1, 1]. All the odd moments are zero because of the symmetry. Furthermore, and this is essential in our paper, their
variance and kurtosis are known as polynomials in n, as it is shown in Table 2.

Table 2. Second and fourth moments of r1 r2 r3

µ2 (n) µ4 (n)

r1
1

n − 1

3
(
25n3 − 38n2 − 35n + 72

)
25n (n + 1) (n − 1)3

r2
2 (2n+5)
9n (n − 1)

100n4+328n3−127n2−997n−372
1350 [0.5n (n−1)]3

r3
2

3 (n−1)

[
n2+2+kn

n2−kn

] 4[35n7−(111−35kn) n6+

(153+29kn) n5−(366 − 59kn) n4+

(304+11kn) n3−(456−114kn) n2

−(912−492kn) n+(1248−933kn)]

nkn (105−2kn) (n+kn)3 (n−kn)4 (n−3+kn)
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where kn=nmod 2. Both µ2 (n) and µ4 (n) are decreasing function of n with the values relative to r3 always intermediate
between those of r1 and r2 (the former systematically greater than the latter). It can also be observed that, because of the
presence of kn, the moments of r3 have an oscillating character due to the odd-even parity of n, that is the number of items.

3. A New Model of Density Function

A good model should reproduce the characteristics of r1, r2 and r3 generally observed over the whole population of
permutations. Specifically, curves must be unimodal, symmetrical around zero, bounded in the interval [−1, 1]; moreover,
as the range widens, they must tend towards the Gaussian probability distribution. The usual procedure to determine
theoretical probabilities and expected frequencies is to find a curve capable of providing all the required peculiarities cited
above, and then to integrate for the probabilities over the given intervals.

The main contribution of the present paper is to provide a theoretical explanation for the behavior of several coefficients
of rank order association. Suppose that the relative variation of the probability density of the absolute value of the random
variables f (|r|) representing the rank order association is inversely proportional to 1 − f (|r|).

d
[
f (|r|)]

f (|r|)
1

d
[|r|λ1

] = − λ2

1 − |r|λ1
where λ1 ≥ 1. (1)

Vianelli (Vianelli, 1968) shows that, under normalization condition, the integration of (1) leads to

f (r, λ) =
λ1

[
1−|r|λ1

]λ2

2B
(
λ1
−1, λ2 + 1

) with |r| ≤ 1; λ = (λ1, λ2) , λ1, λ2 > 0. (2)

We call this curve GGFR (generalized Gaussian distribution with finite range). It is easily verified that, for λ1, λ2 > 1,
f (r, λ) takes a bell shaped form. If 0 < λ1 ≤ 1 and λ2 > 1 the density (2) resembles the characteristic shape of the Laplace
density (with its sharp peak at the mode). The parameter λ2 mainly influences the tails of the distribution. The symmetrical
beta (alias t-Student) is a special case of (2) for λ1 = 2 and λ2 = 0.5n − 2. The GGFR density is symmetrical, unimodal
with mode at zero, is supported within interval [−1, 1], has two inflection points located at ± [(λ1 − 1) / (λ1λ2 − 1)]1/λ1 .
See Vianelli (1983). Furthermore, f (r, λ) converges towards the Gaussian distribution as the range is widened. See
Devroye (Devroye, 1986)[p.433-437].

To estimate the parameters of the GGFR we will follow the moment-matching method as. In this regard, the second and
fourth centered moments of the GGFR density are

µ2 (λ) =
B

(
3λ−1

1 , λ2 + 1
)

B
(
λ−1

1 , λ2 + 1
) ; µ4 (λ) =

B
(
5λ−1

1 , λ2 + 1
)

B
(
λ−1

1 , λ2 + 1
) . (3)

The variance µ2 (λ) increases for a higher λ1 or for a lower λ2, whereas the excess kurtosis γ2 (λ) = µ4 (λ) /σ4 (λ)− 3 rises
to zero for a decreasing λ2 or diminishes to zero for an increasing λ1.

Let us consider a loss function in which the lowest two even moments of rh,n (for n ranks) are matched to those of a GGFR
density.

Gn,h (λ) = minimizeλ
{
max

{|µ2 (λ) − µ2,h (n)|, |µ4 (λ) − µ4,h (n)|}} (4)

where h=1, 2, 3 and λ = (λ1, λ2). The GGFR density has two exponential parameters that make (4) highly nonlinear.
In addition, the presence of a beta function depending on the unknown parameters can create difficulties in numerical
stability. To increase the chances of getting a global solution in reasonable computational times, we executed a controlled
random search (CRS) algorithm discussed, for example, in Conlon (Conlon, 1992) and Brachetti et al. (Brachetti, et al.,
1997). See Amerise et al. (Amerise, 2015) for more details on the procedure used.

In Table 3 we show the estimates of λ for a few values of n with G (λ) < 0.1 × 10−16 in each experiment. The rows σ2

and γ2 indicate, respectively, the variance and the excess kurtosis of the coefficients obtained on the basis of Table 2. All
the three rank correlations have a platykurtic null distribution, which is flatter than Gaussian. This characteristic is more
evident for Spearman’s r1 whereas, under this point of view, Kendall’s r2 is the closest to the Gaussian distribution.

Generally, as n increases, the parameter estimates increase; moreover, the variance of the best fitting density decreases and
the associated excess kurtosis remains negative but tends to zero (which could be a symptom of asymptotic Gaussianity).
The trend for Gini’s cograduation has two branches, one for even and the other for odd parity of n. This alternating
behavior is due to the strong effect of kn = n mod 2, which appears both in the expressions and in the moments of r3.
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Tbale 3. Estimation of the parameters of the GGFR

number of ranks
21 22 23 24 25 26 27 28

r1 λ1 1.8969 1.9031 1.9086 1.9135 1.9179 1.9220 1.9256 1.9290
λ2 7.8254 8.3116 8.7984 9.2858 9.7737 10.2621 10.7509 11.2402
σ2 0.0500 0.0476 0.0455 0.0435 0.0417 0.0400 0.0385 0.0370
γ2 -0.2194 -0.2094 -0.2002 -0.1918 -0.1841 -0.1769 -0.1703 -0.1642

r2 λ1 1.9423 1.9466 1.9504 1.9538 1.9568 1.9594 1.9618 1.9639
λ2 17.4755 18.5811 19.6883 20.7967 21.9063 23.0169 24.1284 25.2407
σ2 0.0249 0.0236 0.0224 0.0213 0.0204 0.0195 0.0187 0.0179
γ2 -0.1017 -0.0971 -0.0928 -0.0890 -0.0854 -0.0822 -0.0791 -0.0763

r3 λ1 1.9634 2.1549 1.9680 2.1359 1.9716 2.1221 1.9745 2.1117
λ2 12.9026 16.5302 14.4071 18.0374 15.9097 19.5723 17.4109 21.1280
σ2 0.0336 0.0319 0.0305 0.0291 0.0280 0.0267 0.0258 0.0248
γ2 -0.1664 -0.2703 -0.1521 -0.2477 -0.1400 -0.2294 -0.1297 -0.2141

4. Approximations of p-values

To compare the GGFR solution with the asymptotic method (Gaussian density) and t-Student alternative for smal-
l samples, we consider both exact and fitted significance levels α of the test H0 : rankings are independent against
H1 : rankings are dependent, by using ρ1 (Spearman), ρ2 (Kendall), ρ3 (Gini). Let r1, r2 and r3 indicate, respectively,
the empirical values of Spearman, Kendall and Gini rank order associations. The statistics involved in the t-Student
approximation are

r∗1=r1

√
m1

1−r2
1

∼ tm1 , r∗2=r2

√
m2

1−r2
2

∼ t⌊m2⌋ r∗3=r3

√
m3

1−r2
3

∼ t⌊m3+0.5⌋ (5)

with m1 = n − 2, m2 =
9n (n − 1)
(4n + 10)

− 1, m3 =

[
3 (n − 1)

(
n2 − kn

)]
2
(
n2 + 2 + kn

) − 2.

The statistics involved in the standard Gaussian approximation are

r+1 = r1
√

n − 1, r+2 = r2

√
9n(n − 1)
4n + 10

, r+3 = r3
√

1.5n . (6)

4.1 Accuracy of Approximations

Iman & Conover (Iman & Conover, 1978) correctly observe that the discreteness of rank correlations often leads into
situations where no critical region has exactly the size α. Rather there will be a choice of using the next smaller exact size
called conservative p-value (denoted by Cα,h) or the next larger exact size called liberal p-value (denoted by Lα,h). Let
ρα,h,C and ρα,h,L be the quantiles of ρh, h = 1, 2, 3 corresponding to the probability levels Cα,h and Lh,α, respectively. The
test of H0 and H1 above is conclusive if both the conservative and the liberal p-values lie on the same side with respect of
the prefixed nominal level α. If Cα,h < α < Lα,h, then the test is unreliable.

To investigate the accuracy of the proposed approximations, we examine a set of 500 nominal levels α = 0.0001, 0.0002,
· · · , 0.0500. For each α we compute both the actual Cα,h and the fitted Ĉα,h,k conservative p-values and repeat the same
calculation for the actual Lα,h and the fitted L̂α,h,k liberal p-values. The fitted p-values are based on GGFR (k = 1),
Gaussian (k = 2) and t-Student (k = 3) probability densities. A summary of the results is presented in Table 4. The most
notable figures are emphasized in bold font. For reason of space, attention is focused on n = 19, · · · , 24 which are the
largest values of n for which the exact null distribution is known for all the three rank correlations. The quantity

δα,h,k = 0.5
(∣∣∣∣Ĉα,h,k −Cα,h

∣∣∣∣ + ∣∣∣∣L̂α,h,k − Lα,h
∣∣∣∣) (7)

k = 1, 2, 3; h = 1, 2, 3; α ∈ {0.0001, · · · , 0.05} gives the average distance between lower and upper fitted and actual
significance levels and it is used to assess the quality of approximation. High values of δα,h,k indicate that approximations
to the null distribution of the rank correlation h, based on model k, far exceed or under-run at least one exact threshold at
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the level α. Low values of δα,h,k point to good approximations. The value δα,h,k = 0 tends to zero when the gap between
exact conservative and liberal p-values tends to vanish and, at the same time, the k-th theoretical model yields an almost
exact match to these p-values.

Table 4. Summary statistics for δh,α,k × 103

Spearman r1 Kendall r2 Gini r3
n GGFR t Gauss GGFR t Gauss GGFR t Gauss

19.000 Max 0.136 0.838 1.733 3.291 3.461 3.720 2.803 3.059 8.167
Median 0.025 0.722 0.873 1.956 2.341 1.662 1.673 2.025 4.266
St.Dev. 0.048 0.147 0.555 0.902 0.898 1.179 0.790 0.822 2.581

20.000 Max 0.119 0.768 1.633 3.180 3.282 3.648 2.665 2.949 7.498
Median 0.035 0.657 0.823 1.739 2.080 1.420 1.499 1.870 3.576
St.Dev. 0.035 0.137 0.525 0.833 0.823 1.087 0.736 0.778 2.325

21.000 Max 0.106 0.709 1.544 2.921 3.002 3.342 2.533 2.531 7.643
Median 0.054 0.599 0.789 1.667 1.960 1.388 1.492 1.622 3.979
St.Dev. 0.027 0.130 0.498 0.780 0.764 1.020 0.683 0.663 2.293

22.000 Max 0.095 0.658 1.465 2.578 2.666 2.891 2.25 2.328 6.504
Median 0.065 0.548 0.752 1.519 1.780 1.232 1.365 1.539 3.441
St.Dev. 0.025 0.124 0.473 0.728 0.709 0.953 0.636 0.631 2.071

23.000 Max 0.089 0.613 1.393 2.417 2.481 2.715 2.167 2.329 6.698
Median 0.070 0.507 0.720 1.475 1.699 1.229 1.256 1.510 3.406
St.Dev. 0.027 0.119 0.451 0.683 0.660 0.894 0.596 0.612 2.058

24.000 Max 0.099 0.574 1.328 2.382 2.402 2.730 2.101 2.287 6.306
Median 0.072 0.470 0.700 1.369 1.567 1.123 1.172 1.448 3.026
St.Dev. 0.030 0.115 0.431 0.644 0.618 0.846 0.559 0.584 1.874

The findings in Table 4 demonstrate that GGFR provides a more accurate fitting of the null distribution of r1 and r3 than
Gaussian or t-Student densities for all the values of n considered in the table. This is not surprising, since it means that
the addition of a shape parameter to the symmetrical beta yields a significant enhancement over the conventional method.
The findings also show that a density with a bounded domain yields better fittings than those obtained from t-Student and
Gaussian distributions, which takes value on the entire real line.

In the case of r2, GGFR has the lowest maximum error but does not always give the smallest median error. On the contrary,
in this respect, the Gaussian model offers a better fit for n > 19. The good performance of the Gaussian density might be
explained by the low thickness of the tails of the null distribution of Kendall’s r2. In fact, fittings with a Student’s t density
do not improve the fittings with of the Gaussian density, even though the former yield the smallest standard errors of the
criterion (7). We attribute this mixed behavior of GGFR mainly to the varying size of serrations in the frequency polygon
of r2, which are more intense than those in r1 and r3.

In general, all the indicators: max, median and standard deviation show a common tendency to decrease as the number of
ranks increases, presumably as an effect of the concomitant convergence of the null distribution of r1, r2, r3 to the Gaussian
density. To this there are some exceptions, notably in the column headed GGFR. As it can easily be noted, however, the
values of the indicators are very small in comparison with those of the other columns so that it may be assumed that the
observed deviations from the common decreasing pattern reflect small-scale fluctuations in the computations.

4.2 Practical Applications

To illustrate how the proposed procedure can be applied in practice, Table 5 shows a few examples selected with a view
towards demonstrating that the level at which rank correlations were considered statistically significant in those cases was
uncertain and/or the conclusions questionable. Note that, in all the cases reported, the authors of the various papers have
made use of two-sided tests. Naturally, we have given most attention to those studies in which the number of ranks n
are larger than those included in available tables of the exact null distribution of r1, r2 and r3, because we assume that
researchers have little motivation to use approximate p-values whenever exact p-values are available (except that in cases
in which tests are inconclusive). Examination of Table 5, reveals that the GGFR offers approximations to the p-value of
r1, which are intermediate between those of the t-Student and the Gaussian. For the coefficient r2, the GGFR is more
liberal than the other two. Overall, it appears that a single measure often does not appropriately reflect the strength of the
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Table 5. Observed and predicted p-values.

Observed Nominal Approximate Sig. Lev.
Reference Coefficient statistic n Sig. Lev. GGFR t-Student Gaussian
Chong et al. (2004) r1 -0.423 59 0.0010 0.0009 0.0008 0.0013
Jones et al. (2012) r1 -0.240 121 0.0100 0.0081 0.0080 0.0086
Thornton (1943) r1 -0.080 44 0.6200 0.6034 0.6057 0.5999
Dupuis et al. (1995) r2 0.240 90 0.0010 0.0014 0.0007 0.0008
Swann et al. (2008) r2 0.169 74 0.050 0.0364 0.0327 0.0332
Merry et al. (2008) r2 0.245 76 0.0024 0.0017 0.0016 0.0017
Coccia & Rolfo (2008) r3 -0.492 33 0.0010 0.0002 0.0003 0.0005
Salvemini (1951) r3 0.340 30 0.0232 0.0119 0.0233 0.0226
Amato (1951) r3 0.204 91 0.0178 0.0123 0.0172 0.0172

association so that the combined evaluation of more than one approximation may throw light on the correct significance of
a test. With regard of r3, the p-values proposed by GGFR are more conservative than Gaussian and t-Student distributions.

5. Discussion and Conclusion

Over recent years, the number of ranks for which the exact null distribution is fully available has increased for many
measures of monotone association. For problems involving a number of ranks, which is not included in the existing
software though, it is necessary to resort to the omnipresent Gaussian approximations while awaiting faster and more
economical computers. However, the Gaussian density can be misleading, particularly in the tails, which often are the
most important part. In this paper, we have demonstrated the usefulness of the generalized Gaussian density with finite
range (GGFR) for fitting the exact null distribution of three statistics which are routinely used for measuring the correlation
between two rankings: Spearman, Kendall and Gini coefficients. All that is required is that variance and kurtosis be known
functions of the number of ranks.

The performance of the GGFR is decidedly superior to that of t-Student and Gaussian distributions, which are traditionally
employed to estimate tail probabilities for the Spearman and the Gini coefficients. The situation regarding the Kendall
coefficient is rather different. In this case, the Gaussian model achieves the best results. Improvement over conventional
procedures (Gaussian and t-Student densities) does not appear impressive, but touches on the distribution tails, which are
the most interesting from a practical point of view. It must be added that the GGFR achieves the largest improvement in
fitting the null distribution of Spearman’s ρ, which is the most known and probably most used rank correlation coefficient.
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