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Abstract 

Investigating dependence structures of stocks that are related to one another should be an important consideration in 

managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ 

copula to overcome the limitations of traditional linear correlations. Financial time series data is typically characterized 

by volatility clustering of returns that influences an estimate of a stock’s future price. To deal with the volatility and 

dependence of stock returns, this paper provides procedures of combining a copula with a GARCH model which leads to 

the construction of a multivariate distribution. Using the copula-based GARCH approach that describes the tail 

dependences of stock returns, we carry out Monte Carlo simulations to predict a company’s movements in the stock 

market. The procedures are illustrated in two technology stocks, Apple and Samsung. 

Keywords: copula, GARCH, dependence structure, stock return 

1. Introduction 

In stock portfolio management, the dependence structure of stocks should be of important consideration in order to make 

profit and minimize losses, which explains from how the stock markets are related in one way or another, under certain 

economic conditions, a company’s stock price may rise or fall, as another company’s stock price rises or falls: they move 

in tandem with each other. Sometimes, these companies’ stock prices may be adversely affected. Such phenomena are 

frequently observed in competitive companies, such as Apple and Samsung in the technology market. Linear correlation 

is often used to describe such relationships between stocks. However, it cannot capture the non-linear dependence 

relationships. Linear correlation is unable to capture the dependence structure, especially when extreme events are highly 

dependent between lines of business, which is consequently misleading when estimating total required economic capital 

(Embrechts, McNeil & Straumann, 1999). 

Modeling dynamic dependence between stock returns with a multivariate distribution is a complex task, especially when 

returns follow a non-normal distribution. A copula is a function that binds univariate marginal distributions to produce a 

multivariate distribution, where various types of dependence can be represented (Sklar, 1959). It is well known that 

Financial data tends to exhibit tail dependence that describes the behavior during extreme events, that implies actual 

extreme events to happen more often than forecasted by the normal distribution (Bali, et al., 2009). When stock prices are 

correlated in the tail events, a large gain or loss will have an impact on future prices, and thus, these tail events should be 

taken into account when modeling. Copulas are useful tools to model multivariate distributions with various possible tail 

dependence features, since they can capture a wide range of tail dependence structures, which include symmetric and 

asymmetric structures (Joe, et al., 2010). To handle various types of dependencies of stock returns, this work employs 

elliptical and Archimedean copulas. 

In addition to the dependence issue above, another important issue in modeling is that financial time series data tends to 

exhibit volatility clustering (i.e., conditional variance), which is often referred to as heteroscedasticity. If the volatility of 

returns is not constant over time, a copula model could lead to under or over-predictions. Inaccurate predictions can lead 

to a failure to reassure a gain or loss in the stock market. To filter the volatility clustering effect of the data, a GARCH 

(Generalized Autoregressive Conditional Heteroskedastic) model (Bollerslev, 1986) is used in our study. When returns 

are serially correlated, meaning that large or small returns tend to occur in clusters causing its series to have a period of 

increased or decreased variation, an ARCH model is useful(Engle, 1982; Bera & Higgins 1993; Campbell, Lo & 

MacKinlay, 1997). A GARCH model is a generalized ARCH model, where the error variance is specified by an ARMA 
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(Autoregressive Moving Average) model (Bollerslev, 1986). GARCH models have been used in financial time series to 

deal with future conditional variances (Angelidis et al., 2004; Lu et al., 2014). In particular, a number of reports in the 

literature indicate that the most commonly used specification is GARCH(1,1). An example includes Hansen and Lunde 

(Hansen & Lunde, 2005) that compared 330 GARCH-type models in the analysis of IBM returns, they found that there is 

no evidence that the GARCH(1,1) is inferior to other models.  

In this paper, we fit the copula-based GARCH model to Apple and Samsung’s weekly historical stock prices from the first 

week of January in 2010 to the last week of May of 2016. Apple Inc. and Samsung Electronics Co., Ltd. are two of the 

most notorious companies that compete in the technology industry. We obtain marginal distributions of Apple and 

Samsung stocks using a GARCH model to accommodate time-varying conditional volatility, and then combine with a 

copula to fit the dependence structure of the two stock returns. Goodness-of-fit tests show that compared to the other 

copulas considered, Student’s t-copula for GARCH(1,1) well describes the dependence structure of Apple and Samsung 

stock returns. Based on the copula-based GARCH model, we perform Monte Carlo simulations to predict stock price 

movements of Apple and Samsung.  

This paper is organized as follows: Section 2 provides a definition of a GARCH model, Section 3 gives an overview of 

copulas, and describes elliptical and Archimedean copulas used in our analysis. Section 4 presents data and its 

characteristics. Procedures of applying the copula-based GARCH model to data and numerical results are discussed in 

Section 5. Finally, Section 6 presents concluding remarks. 

2. GARCH Model 

For financial time series analysis, we often consider the log return changes as data. Denote it by tx  at time t . The usual 

mean equation of tx is  (Engle, 1982) 

tttt xEx    )|( 1 , 

where )|( 1ttxE  is the conditional mean of tx  given 1t , which is the information at time 1t . In order to 

describe the time series dependence and the conditional mean, we combine AR( p ) (autoregressive of order p ) and 

MA( q ) (moving average of order q ) to get a ARMA( p , q ) model, 
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where i  and j are parameters, t is the white noise (0,
2 ), and  is a constant which may not be included if the 

mean of tx is zero, and when 01  and 01  , then ARMA(1,1) = MA(1) = ARMA(0,1) and ARMA(1,1) = AR(1) 

= ARMA(1,0), respectively. Despite many advantages of ARMA, such as modeling conditional mean, the use of this 

model could be limited due to an assumption of constant variance (homoscedasticity). This assumption is often violated 

since financial time series data generally exhibits non-constant variance (Tsay 2002), often referred to as 

heteroscedasticity. The ARCH (Autoregressive Conditional Heteroscedasticity) model introduced by Engle (1982) could 

explain volatility clustering and heavy-tailed financial returns. The GARCH model is a generalized ARCH model, where 

the error variance is specified by an ARMA (Autoregressive Moving Average) model (Bollerslev, 1986). The t terms in 

the ARMA mean equation above are called the innovations of the time series process. Engle (1982) defined them as an 

autoregressive conditional heteroscedastic process such that 

ttt   , 

where t is a sequence of i.i.d. (0,1) random variables, and )|( 1

22

 ttt E  is the conditional variance of the error 

that changes over time. The variance equation of GARCH(p,q) model is then (Bollerslev,1986)  
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where 00   , 0i , 0j , 0p , 0q , c  is a constant, and the innovation sequence t is a sequence of 

i.i.d. (0,1) random variables. To model the marginal distribution of data, we use ARMA for the conditional mean and 

GARCH to address the conditional variance, called an ARMA-GARCH model, which accounts for conditional 
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heteroscedasticity (time-variant variance) and conditional dependence. An example includes ARMA(1,1)-GARCH(1,1) 

with Student’s t-distribution innovations (Bollerslev,1986) 

,11 tttt xx   
 

ttt   , 

2

11110

2

  ttt  . 

Dependence structure is an important source of information in order to lock in gains and avoid losses when managing 

stock portfolios. Thus, it should be taken into account when developing a model. In the following section, we discuss how 

to model dependence structures of the financial time series filtered by the ARMA-GARCH model. Financial data is 

known to have a relatively high correlation in tail events. We use copula to model the margins with the dependence 

structure.   

3. Copula 

The statistical properties and applications of copulas have been extensively studied in many recent works (e.g., Frees and 

Valdez 1998; Breymann et al. 2003; Demarta and McNeil 2005; Trivedi and Zimmer 2005). A copula is a function that 

combines univariate marginal distributions to construct a joint distribution with a specific dependence structure. Thus, it 

provides an easy way to create multivariate probability distributions that have a wide range of dependence and tail 

behavior. Sklar’s theorem (1959) states that if F is a joint distribution function with marginal distributions, 1,..., ,nF F  

then there exists a copula C  such that 

1 1 1
( ,..., ) ( ( ),..., ( )).

n n n
F x x C F x F x                            (1) 

Note that ( ),i iF X 1,..., ,i n  has a uniform distribution defined on the interval[0,1] . Therefore, the copula can be 

viewed as a multivariate function with standard uniform marginal distribution. Equation (1), the dependence structure 

depends only on the type of copula, not on the choice of marginal distribution. So a copula function allows flexibility in 

the choice of marginal distributions. Let iu be the observed value of ( )i iF X . Then, for continuous and strictly increasing 

univariate marginals, the unique copula function is given by 

1 1

1 1 1( ,..., ) ( ( ),..., ( )),n n nC u u F F u F u 
 

                         (2) 

where 
1 1

1 ,..., nF F 
 denote the quantile functions of the marginals, 1,..., nF F . From Sklar’s theorem, any marginals can 

be used since a copula links marginals to their multivariate distribution, and it is independent of marginals as a measure of 

dependence. Hence, such a copula is constructed under the assumption that marginal distributions are known and can be 

consistently estimated from a given data. Copulas provide a way of isolating the peculiar behavior of an individual stock 

return’s marginal distribution from the description of dependence structure. Thus, copula modeling fits well into a stock 

return framework due to the fact that each stock return has a different distributional characteristic. 

The two classes of copulas that will be covered are elliptical and Archimedean copulas. Student’s t-copula which belongs 

to the class of elliptical copulas is (Embrechts, McNeil, & Straumann, 2002), 
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where ,t denotes a multivariate t  distribution with   degrees of freedom and   correlation coefficient matrix, and 

vt  is the marginal distribution of ,t . Student’s t-copula allows for joint extreme events in both tails. Archimedean 

copulas are in the form  

))()((),...,( 1
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for some generator function   and its generalized inverse 
1  (Nelson, 2006). From (4), the Gumbel copula (Gumbel 
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1960; Hougaard 1986) is obtained by
 )log()( uu  , 1 . The Clayton copula (Clayton 1978; Cook & Johnson 

1981) is constructed by 
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0  leads to the 

Frank copula (Frank, 1979). In those copulas, the parameter   in the generator function   exhibits a degree of tail 

dependence. In contrast to Student’s t-copula, Archimedean copulas take into account a range of asymmetric dependence 

structures. 

 

Figure 1. Scatter Plots of Student’s t-copula, the Gumbel copula, the Clayton copula and the Frank copula 

Figure 1 shows scatter plots of 500 pseudo observation for the copulas above (two variable case). From the plot of 

Student’s t-copula, it can be seen that correlations tend to be present in extreme events, which are found in both upper and 

lower tails of the two variables. So Student’s t-copula is suitable in modeling symmetric tail structure of data. The Gumbel 

copula has extreme events that are more correlated in the upper tail, while the Clayton copula has extreme events that are 

more correlated in the lower tail. This implies the Gumbel copula models upper tail dependence, and the Clayton copula 

captures lower tail dependence. So they are useful in modeling asymmetric tail dependence structures. It is seen that the 

Frank copula reveals no significant tail dependence. 

4. Data 

4.1 History 

The Apple-Samsung business relationship began in the early 2000s when Apple first introduced its revolutionary mobile 

music playing device – the iPod. In the initial models, Apple used mini hard drives to store music, but soon found that 

there existed a much better option. At the time, Samsung was a producer of a faster and more reliable method of storing 

electronic information. Using flash memory technology, Apple was able to distribute its first flash-memory iPod device in 

2005 after signing a deal with Samsung to lock in supply. For a brief period of time, Apple and Samsung worked very well 

together influencing the success of each other. Just two years later, Apple developed and released its first iPhone model in 

which most of its processing and memory was Samsung-made. Apple shifted its flash memory production away from 

Samsung and in 2009 and signed a deal with Toshiba Corporation. Apple found success in this move as in 2009, 

Samsung-made flash memory was in less than 10% of Apple products. In addition to flash memory and processors, touch 
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screens were an essential aspect to the new generation of smartphones and Apple decided to stay away from Samsung on 

these component parts as well. The iPhone 4, which was released in October 2011, was its first model that didn’t feature 

Samsung touch screens. Moving forward, as Apple was now developing its third-generation iPad, they realized that no 

one could match the production volume of Samsung’s screens, which forced them to maintain ties with Samsung (Lessin, 

2013). 

Apple remained relatively close with Samsung as Samsung began to increase their smartphone and tablet business even 

further. Though in 2012, Apple won a $1.05 billion lawsuit where it was found that Samsung infringed on six of Apple’s 

patents. The results from the lawsuit left Apple’s market position safe as well as their significant profit margins; however, 

it provided Samsung with new issues within their smartphone and tablet business (Vascellaro, 2012). 

While the smartphone and tablet market is only a portion of Samsung’s overall business, Apple wanted to maintain the 

look, feel, and aesthetic experience found in their smartphones and tablets. Samsung still beat Apple in 2014 smartphone 

volume, but Samsung saw its core mobile division profit margins decrease to 7% (down from 18% in 2013) as well as saw 

its mobile operating profits fall 42% (Cheng & Lee, 2015). 

Since Samsung’s product line is much more extensive than that of Apple’s, their overall stock price was less volatile 

throughout the time period of this study (2010–2016). Additionally, since Apple introduces new product lines every 

September, reoccurring volatility is expected based on how the market perceives the value of these new products. Though, 

when looking at small subsets of this time period, a correlation is found between the two companies’ stocks. For example, 

both Apple and Samsung have a peak in percent change in stock price from February 2015 to May 2015 and a valley from 

August 2015 to October 2015. Thus, it may be beneficial to study a data set that covers a shorter period of time within this 

study to make the results more accurate. Nonetheless, both Apple and Samsung both reside in the technology sector and 

are equally affected by macroeconomic events, such as recessions, which provides a tangible economic relationship 

between the two technology giants. 

4.2 Marginal Time Series  

As indicated in Section 2, we use the rate of the log return changes as data. So, data that will be GARCH-filtered and 

copula-fitted are defined by 

tt
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,                                 (5) 

where tS is a stock’s closing price at time t . Our data set includes weekly Apple and Samsung’s closing prices from the 

first week of January in 2010 to the last week of May of 2016. Figure 2 shows the logarithm of weekly closing prices and 

returns of Apple and Samsung over the period of January 2010 through May 2016.  

 

Figure 2. Apple and Samsung weekly closing prices and weekly returns, January 2000 - May 2016 

It can be observed from Figure 2 that the returns have volatility clustering, which suggests that the GARCH model is the 

model to use. The conditional heteroscedasticity of the return series is also exhibited by ACF plots in Figure 3. To further 
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improve the objectivity of the graphical results, the Ljung-Box tests (Ljung & Box, 1978), which formally assess 

autocorrelation of the series, were carried out at lags 1-19.  P-values from the Ljung-Box tests are 0.0026 and 0.1415 for 

Apple and Samsung, respectively. Both Ljung-Box test values being close to zero and the graphical results suggest time 

varying conditional volatility, and this validates the use of the GARCH model. 

Table 1 displays that the skewness for Samsung is 0.1223, which implies the distribution is skewed to the right. On the 

other hand, it is observed that Apple is skewed to the left since it has a negative value of skewness. The kurtosis values 

greater than 3 imply that the returns have the heavy-tailed characteristic when compared to a normal distribution.  The 

Jarque-Bera test results, along with the results of the skewness and kurtosis, indicate the non-normality of the returns. 

Note that GARCH model with Student’s t-distribution innovations is appropriate to use for heavy-tailed time series 

(Bollerslev, 1987).  

 

Figure 3. ACF of Apple and Samsung returns and squared returns, January 2000 - May 2016 

Table 1. Summary statistics of the returns 

 Samsung Apple 

Min -0.1111 -0.1281 

Max 0.1265 0.1320 

Mean 0.0013 0.0037 

SD 0.0359 0.0393 

Skewness 0.1223 -0.1722 

Kurtosis 3.6712 3.3485 

Jarque-Bera p-value 0.0231 0.0331 

 

 

 

5. Procedures and Results 

Since the mean and the variance of the returns are correlated, the ARMA and GARCH models are used to deal with the 

serial correlation in the conditional mean and variance respectively. The Akaike Information Criteria (AIC) is used for 

the comparison of the models considered. Based on AIC, the ARMA(1,1) with Student’s t-distribution innovations 

appears to be the most suitable model  for the conditional mean, when compared to other specifications of p and q . We 

also select GARCH(1,1) that accounts for the time-varying volatility of the series. The difference of the GARCH( p , q ) 
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AIC values in consideration is quite small, so we have chosen the model with less parameters. Note that GARCH(1,1) is 

the most used heteroscedastic model in financial time series (Bera & Higgins 1993). Thus, ARMA(1,1)-GARCH(1,1) 

with Student’s t-innovations, which provides the global fit to all variables, is used for the marginal distribution that is 

associated with copula. Table 2 presents the estimates of the ARMA(1,1)-GARCH(1,1) parameters obtained by 

maximum likelihood method. AIC results for the model are also summarized in Table 2. 

Table 2. Parameter estimates for ARMA(1,1)-GARCH(1,1) with Student’s t-innovations 

Variables μ Φ θ α β AIC 

Samsung 0.0011 -0.0776 -0.0119 0.0093 0.9488 -3.7969 

Apple 0.0040 0.1693 -0.2763 0.0533 0.8677 -3.6239 

 

From expression (1) in Section 3, copula has standard uniform marginal distribution. To obtain such margins, we 

standardize the residuals from ARMA(1,1)-GARCH(1,1), and then convert to uniform(0,1) samples using the 

probability integral transformation method. To model dependence structure with these uniform samples, Student’s 

t-copula, the Gumbel copula, the Clayton copula and the Frank copula are utilized.  

Lastly, to check the adequacy of copula based ARMA(1,1)-GARCH(1,1) for the observed data, we perform goodness of 

fit tests that will measure how well the model fits the data (Genest et al. 2009). The procedures are based on the 

comparison of the empirical copula and the corresponding theoretical copula obtained under the null hypothesis, where 

the empirical copula is copula (Deheuvels 1979) defined as 

 








m

j

njnj uZuZI
m

uC
1

11 ,...,
1

1
)( , 

where jiZ ’s , ,,...,1 ni  represent the pseudo-samples defined as  















1
,...,

1

1

m

r

m

r
Z

jnj

ji , 

where jir  is the rank of the observation iX . The Cramer-von Mises statistic by Genest et al. (2009) is 
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where )(uC is a copula associated with the estimates of parameters. This statistic, 


T , measures the squared deviations 

of the empirical copula from the theoretical copula of the corresponding fit. Thus a small value indicates that the model 

has a good fit. Based on 


T  in (6), Student’s t-copula with 52 degrees of freedom for ARMA(1,1)-GARCH(1,1) is chosen 

to best describe the data, with a p-value of 0.2651. The Gumbel, Clayton and Frank copulas fit the data with p-values of 

0.0035, 0.1124 and 0.0500, respectively. The results show that the two stock returns, Apple and Samsung, show 

symmetrical tail dependence structures well-described by Student’s t-copula, when compared to other copulas that have 

asymmetric tail features.  

Using the copula chosen, we perform a Monte Carlo simulation that generates 200,000 simulated observations for Apple 

and Samsung to evaluate the performance of the return series. In the simulation algorithm, we use estimated parameters of 

the copula-based ARMA(1,1)-GARCH(1,1) model and Kendall’s rank correlation coefficients as inputs. The following 

steps outline the simulation scheme:  

Step 1. Obtain ARMA(1,1)-GARCH(1,1) standardized residuals. 

Step 2. Transform the standardized residuals to Uniform(0,1) samples. 

Step 3. Fit the copula-based ARMA(1,1)-GARCH(1,1) to the transformed data. 

Step 4. Generate 200,000 simulated observations of Apple and Samsung. Let 1U and 2U represent Apple and Samsung, 

respectively.  

Step 5. Obtain )( 1

1

1 UF 
 and )( 2

1

2 UF 
to transform the uniformly distributed values back into the original units. 
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Step 6. Obtain n-step-ahead forecasts at a specified level. The forecast is based on the previous GARCH(1,1) variance. 

Table 3 presents the rate of return estimates using Student’s t-copula which is chosen as the best model for Apple and 

Samsung filtered by ARMA(1,1)-GARCH(1,1). We estimate the return in terms of percentage. The results in Table 3 

present forecasts of the return rate in terms of percentage for the future periods from the first week denoted by ‘w1’ to the 

tenth week denoted by ‘w10’ after the last week of May in 2016 (i.e. the time of the last data point). We start with the first 

week of June 2016 (w1) due to our sample data spanning from the first week of January 2010 through the last week of 

May 2016. The results consist of the first (Q1), second (Q2) and third (Q3) quartiles of the distribution of 200,000 

simulated observations. To report the results with a high, a median and a low estimate, we divide the 200,000 simulated 

observations into four equal groups, which leads to quartiles. Table 4 presents weekly predicted and actual prices 

calculated from Table 3. It is worth mentioning that all the actual prices in Table 4 are close to Q2 overall, bounded by Q1 

and Q3. For instance, it is predicted that from the relationships with Samsung, Apple moves 0.427% (w1:Q2, predicted 

50th percentile) to $97.81 for the first week of June 2016, with a high increase (w1:Q3,  predicted 75th percentile) of 2.513% 

and a 1.657% decline (w1:Q1, predicted 25th percentile). Note that the actual Apple stock price for the last week of May 

(5/30/2016) was $97.92, and the first week of June (6/6/2016) was $98.83. Based on the same model, Samsung has a 

median of 0.095% increase (w1:Q2), with a high increase of 2.060% (w1:Q3) and a low estimate of -1.865% (w1:Q1) for 

the first week of June 2016.  

Table 3. 10-step-ahead forecast (%) for the Apple and Samsung returns 

Variable Quartile w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 

Samsung Q1 -1.865 -1.849 -1.845 -1.844 -1.844 -1.844 -1.844 -1.843 -1.843 -1.843 

Q2 0.095 0.111 0.115 0.116 0.116 0.116 0.116 0.116 0.116 0.116 

Q3 2.068 2.084 2.087 2.088 2..088 2.088 2.088 2.088 2.088 2.087 

Apple Q1 -1.657 -1.689 -1.689 -1.688 -1.688 -1.688 -1.687 -1.687 -1.687 -1.686 

Q2 0.427 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394 

Q3 2.513 2.479 2.479 2.479 2.479 2.478 2.478 2.478 2.478 2.477 

 

Table 4. Comparison of predicted and actual price, Apple and Samsung 

Variable Quartile/ 

Actual 

w1 w2 w3 w4 w5 

Samsung Q1 KRW 1,350,353 KRW 1,325,385 KRW 1,300,932 KRW 1,276,942 KRW 1,253,396 

Q2 KRW 1,377,323 KRW 1,378,852 KRW 1,380,437 KRW 1,382,039 KRW 1,383,642 

Q3 KRW 1,404,472 KRW 1,433,741 KRW 1,463,663 KRW 1,494,224 KRW 1,525,424 

Actual KRW 1,404,995 KRW 1,424,981 KRW 1,398,999 KRW 1,466,000 KRW 1,460,000 

Apple Q1 $95.78 $94.16 $92.57 $91.01 $89.47 

Q2 $97.81 $98.19 $98.58 $98.97 $99.36 

Q3 $99.84 $102.31 $104.85 $107.45 $110.11 

Actual $98.83 $95.33 $93.40 $95.89 $96.68 
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Table 5. Continued 

Variable Quartile/ 

Actual 

w6 w7 w8 w9 w10 

Samsung Q1 KRW 1,230,283 KRW 1,207,597 KRW 1,185,341 KRW 1,163,495 KRW 1,142,052 

Q2 KRW 1,385,247 KRW 1,386,854 KRW 1,388,463  KRW 1,390,073 KRW 1,391,686 

Q3 KRW 1,557,275 KRW 1,589,791 KRW 1,622,985 KRW 1,656,873 KRW 1,691,452 

Actual KRW 1,518,000 KRW 1,516,000 KRW 1,539,000 KRW 1,561,000 KRW 1,545,000 

Apple Q1 $87.96 $86.48 $85.02 $83.58 $82.18 

Q2 $99.75 $100.14 $100.54 $100.93 $101.33 

Q3 $112.84 $115.64 $118.50 $121.44 $124.45 

Actual $98.78 $98.66 $104.21 $107.48 $108.15 

 

6. Concluding Remarks 

A copula is a function that links a multivariate distribution to their univariate marginal distributions in such a way that 

allows various types of dependence to be represented. Thus, copula modeling enables us to explore the impact of 

dependencies between different stocks on their rate of returns. To deal with the complexities of the marginal distributions, 

such as mean and variance changing over time, we employed time series models, ARMA(1,1) for the mean model and 

GARCH(1,1) for the variance model. The copula-based ARAM(1,1)-GARCH(1,1) model developed in this work 

accounts for some important issues in financial markets, such as skewness, volatility clustering, and conditional 

dependence. We find that Student’s t-copula, which has a symmetric tail dependence structure, with 

ARMA(1,1)-GARCH(1,1) fits the data well. Using this copula-based ARMA(1,1)-GARCH(1,1) model that considers the 

relationship of Apple and Samsung, we simulated a weekly return rate of those companies to measure forecasted 

performance. Our study also suggests some issues for future research. For example, the best fit was found for Student’s t 

copula with 52 degrees of freedom, which suggests a Gaussian copula. The use of a Gaussian copula will observe the 

consequence of ignoring extreme events. Unlike Student’s t-copula, a Gaussian copula does not allow for extreme events 

to be dependent, and thus underestimates the effects of extreme events in the heavy tails. For GARCH-filtered data that 

may have correlation structures with high dimensions, we can consider vine copulas (Aas, et al., 2009; Joe, 1996), which 

is recently developed for multivariate data, instead of elliptical or Archimedean copulas. Since vine copulas allow 

heterogeneous pairwise dependence of variables, it could be more flexible in high-dimensional dependence modeling. 

The methodology developed in this work can also give a reliable way to calculate Value at Risk, often denoted by VaR in 

the area of risk management, to quantify gains or losses on a portfolio that contains several variables. 
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