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Abstract

A directional Bayesian pure significance test for the equality of variances is developed. The approach is based on the
assessment of observed departure conditioned on the direction of departure in multivariate models. The resulting one-
dimensional directional distribution is easily interpreted. Normality is not required. Robustness of prior selection is
discussed focusing on directional properties of the multivariate prior. Several examples are considered.
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1. Introduction

Statistical significance tests for the equality of variation across treatment groups are often used in experimental settings
where ANOVA based analysis is required. This is an issue for example in toxicological and genetic applications (Gastwirth
et al. 2009). As shown in Box (1954), the robustness of the one-way ANOVA overall F-test to non-normality is dependent
on the degree of inequality among the group variances. Further, in moderate size samples, the p-value calculation may not
be accurate (Draper and Smith, 1998) and variance-stabilizing transformations may be required to develop a more stable
result. In settings where homogeneity of variation is to be formally tested, the commonly applied Bartlett test (Bartlett,
1937) which is a slight modification of a likelihood ratio test is often used, but is sensitive to the assumption of normality.
The non-parametric Levene test can provide a more robust test with the trade-off of lower power. See for example Miller
(1997).

Extensions of the Bartlett and Levene tests of homogeneity have been developed, often through modification of the L2
norm in the ANOVA setting and modifications of the assumed error distribution. The work in Gastwirth et al. (2009) re-
views several such approaches where typically bootstrap sampling methods and absolute value based (L1 norm) measures
of departure are used to extend standard tests. Earlier work in this regard can be found for example in Box and Tiao (1973)
where Bayesian inference is developed for variance components, tests of homogeneity, and the modeling of variation in
linear models with random effects.

With regard to likelihood based approaches for the modeling and testing of variation in a linear model, likelihood and
marginal likelihood approaches are given in Harville (1977) which reviews restricted maximum likelihood methods
(REML) based on error contrasts. This involves considering the transformation w = Ay where y is the original response
and A is a selected orthogonal projection matrix. The restricted likelihood for w resulting from this projection can be used
to analyze parameters in the Σ variance-covariance matrix as the mean parameter µ is orthogonalized out of the likelihood.
Harville (1974) points out the usefulness of the REML approach in a Bayesian setting. If the prior selection for mean
and variance component parameters is independent, the joint posterior resulting from using the restricted likelihood for
inference regarding Σ is equivalent to ignoring prior information for the mean parameter and using all the data to make
inferences for Σ.

In the setting of one-way ANOVA the assumption of homogeneity of variation across treatments underlies application
of the standard global F-test for differences among treatment averages. To test this assumption by examining the null
hypothesis H0 : σ2

1 = · · · = σ2
k in the model yli ∼ N(θi, σ

2
i ), i = 1, ..., k; l = 1, ..., ni where θi = µ + τi, the Bartlett test uses

a statistic of the form;

M = −
k∑

i=1

vi(log s2
i − log s2

p)

where s2
i is the sample variance for each treatment group s2

p = (1/v)
∑k

i=1 vis2
i , the pooled variance, vi = (ni − 1) and

v =
∑k

i=1 vi. Under the null hypothesis M is distributed as a χ2
k−1 random variable. The related p-value calculations are

standard in many statistical packages.
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In this paper we develop an analogue of the standard Bartlett significance test in a directional Bayesian framework. The
pure significance test developed assesses departure of the hypothesized null parameter value from the posterior mode
where the posterior distribution is conditioned on the direction of departure. The approach is general and does not require
normality as an assumption, though this is assumed here for comparative purposes with the Bartlett test. This measure
provides an assessment of the observed discrepancy of the predicted value or posterior mode from the hypothesized null
value. Its application to the multi-parameter hypothesis test H0 : σ2

1 = · · · = σ2
k is examined in detail. The sensitivity of

the test to prior and likelihood selection is defined. Several examples are considered.

2. Method

1. Bayesian Approach

The Bayesian approach to statistical inference is based on the posterior density function given by;

p(θ|data) = c · p(θ) · L(θ| data)

where L(θ| data) is the observed likelihood function, p(θ) is the prior density function for θ and c denotes the constant of
integration. The Bayesian approach to hypothesis testing is based on developing empirical measures of support for null
parameter values typically expressed in terms of posterior odds ratios or Bayes factors (Bernardo and Smith, 1994). The
posterior odds ratio for example comparing a specified value θ0 to a general alternative θ can be written

p(θ0|data)
1 − p(θ0|data)

/
p(θ|data)

1 − p(θ|data)
(1)

which provides a relative measure of the support given to the competing hypotheses within the context of the joint poste-
rior. Typically θ = θ̂,the posterior mode, is taken as a reference value to interpret the resulting odds ratio. If θ is a vector
of parameters, some initial marginalisation of parameters not of interest may be necessary.

1.1 Bayesian Bartlett Test

A Bayesian test of variances that is a version of the Bartlett test is given in Box and Tiao (1973), p. 132. Assume the
samples (y11, . . . , y1n1 ), . . . , (yk1, . . . , yknk ) of n1, . . . , nk independent observations, respectively, are drawn from the Normal
populations N(θi, σ

2
i ), where i = 1, . . . , k. If both the means θi and variances σ2

i are unknown and it is assumed that a
priori θi and logσi are approximately independent and locally uniform it follows that the joint posterior for σ2

1, . . . , σ
2
k is

given by

p(σ2
1, . . . , σ

2
k |y) =

k∏
i=1

ci(σ2
i )−[νi/2+1]exp(−

νis2
i

2σ2
i

) (2)

for σ2
i > 0, i = 1, . . . , k. Here ci = [Γ(υi/2)]−1(νis2

i /2)νi/2, νi = ni − 1, s2
i is the standard deviation for the ith sample.

To compare variation across the k samples any (k - 1) linearly independent contrasts in logσi can be used. Following the
development in Box and Tiao (1973) we can define

ψi = logσ2
i − logσ2

k

for i = 1, . . . , (k − 1). Changing variables in (2), the (k − 1)- dimensional joint posterior for ψ1, . . . , ψk−1 can be expressed
as;

p(ψ | y) = c · (a1e−ψ1 )ν1/2 · · · (ak−1e−ψk−1 )νk−1/2 (3)
·[1 + a1e−ψ1 + · · · + ak−1e−ψk−1 ]−ν/2 (4)

where i = 1, . . . , k− 1, ai = νis2
i /νk−1s2

k−1, v =
∑k−1

i=1 vi and −∞ < ψi < ∞. The mode of this distribution is given by ψ = ψ̂,
where ψ̂i = log s2

i − log s2
k for i = 1, . . . , (k − 1).

The null hypothesis σ2
i = · · · = σ2

k can be rewritten as ψ = 0. Box and Tiao (1973) use a Likelihood Ratio type pivotal
quantity in a Bayesian context to develop a χ2

k−1 based approximate testing procedure. The presence of ψ = 0 in the
approximate 95% credible region is interpreted as evidence that the null hypothesis of homogeneity is supported by the
observed data.

2. Directional Bayesian Significance Testing

The Bayesian approach to testing hypotheses is an examination of the observed posterior probability based weight ob-
served for each potential θ value of interest. There is no assumption of a true value, rather a comparison of relative weights
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for potential θ values. Typically a posterior modal value for θ, θ̂, can be compared to specific θ values of interest using the
posterior odds ratios or Bayes factor.

The directional approach applied here emphasizes the observed magnitude of departure of the hypothesized parameter
value θ0 from a central posterior value θ̂, typically the mode of the posterior distribution. This is viewed in terms of two
distinct elements; the direction of departure and the magnitude of departure. The direction of departure out from the
central modal value θ̂ is defined along the unit vector d = (θ0 − θ̂)/||θ0 − θ̂||. This is formally conditioned upon as other
directions are not of immediate interest in assessing (θ0 − θ̂). The observed magnitude of departure, r0 = ||θ0 − θ̂|| is then
evaluated under the resulting one-dimensional local directional distribution.

Geometrically, this involves examining the posterior distribution along the span of the unit vector d out from the mode,
subject to an initial change of variable θ → (r,d), including a Jacobian factor. The resulting conditional distribution,
pr(r|d) provides tail areas that can be evaluated in terms of a one-dimensional integral using pr(r|d). As noted above, the
joint posterior density can be written as;

p(θ|y) = c · p(θ) · L(θ|y) (5)

where p(θ) is the prior distribution for θ, c is a constant of integration and L(θ|y) is the observed likelihood function.
The value for θ is taken to lie in the parameter space Ω ⊂ ℜk. There may be nuisance parameters involved in the initial
specification of the model. We assume for simplicity of exposition that nuisance parameters have been integrated out.

Some assumptions regarding the form of the joint posterior for θ are useful; θ must be a continuously valued vector of
reals defined in a parameter space Ω which is also a vector space and p(θ | y) is assumed to be unimodal. The support for
p(θ|y), i.e., {θ ∈ Ω : p(θ | y) > 0}, is assumed here to be a convex set with the linear span of the vector d = (θ0 − θ̂)/||θ0 − θ̂||
, L{d} entirely within Ω. The vector d is a unit vector lying on S k−1, the unit sphere in (k − 1) dimensions. In cases where
the convexity is not global, the region of Ω about θ0 should contain L{d}. The hypothesized parameter value θ0 should not
lie on the boundary of Ω.

With θ̂ as the mode of the joint posterior, let r = ||θ − θ̂|| and change variables θ → (r,d). The Jacobian is proportion-
al to rk−1 dr dd. Conditioning upon d, the resulting conditional distribution pr(r |d) is proportional to the initial joint
distribution up to a multiplicative constant c and is given by

pr|d(r) = c · p(rd + θ̂|y) · rk−1.

In the specific case where p(θ | y) is a rotationally symmetric distribution satisfying the above assumptions then θ̂ will be
the mean of the posterior density.

To assess the global hypothesis H0 : θ = θ0, let r0 = ||θ0 − θ̂||. A conditional tail area in regard to the null hypothesis can
then be defined. This is given by the “Directional Posterior Level of Significance” (DPLS );

DPLS (θ0) =

∫ ∞
r0

p(rd + θ̂| y) rk−1 dr∫ ∞
0 p(rd + θ̂| y) rk−1 dr

(6)

and the ”significance” here reflects the underlying distance measure and can be assessed without reference to a specific
Type I error level. This is the tail area of the conditional distribution for r given the unit directional vector d. DPLS (θ0) is
the (conditional) probability of θ lying at or beyond θ0, in the direction specified by d. Note that this measure of departure
is made in terms of r, a scalar measure of the distance from θ0 to the central value θ̂. It provides a simple summary
measure of the (conditional) weight to be accorded the null hypothesis H0 : θ = θ0.

To further interpret results in terms of the number of standard errors found in the magnitude of departure, the mean and
variance for pr|d(r) are generally available. If we define K(m) =

∫ ∞
0 p(rd + θ̂ | y) rm−1dτ, it follows that E[r | d] =

K(m + 1)/K(m) and Var[r | d] = Var[τ | d] = K(m + 2)/K(m) − (K(m + 1)/K(m))2. The approach has been applied to
multi-parameter testing problems in econometrics (Brimacombe, 1996) and the development of diagnostics for asymptotic
convergence in logistic regression (Brimacombe, 2016).

2.1 Rotational Symmetry

In the specific case of a rotationally symmetric posterior distribution about θ̂, the unit vector d defined above is uniformly
distributed on the unit sphere S k−1 and the DPLS (θ0) value is equivalent to an unconditional Bayes significance level,
namely, ∫

A
p(θ|y) dθ

where A ⊂ Ω is the set of θ values at or beyond θ0. Rotational symmetry implies that the tail area in question is equivalent
in any chosen direction. In general, if p(θ | y) is of the form p(||θ − θ̂||2| y), it is trivial to show that the DPLS (θ0) is
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independent of d. For example, a multivariate normal model with assumed homogeneity and independence has this
property. Note that differences in the DPLS value for various directions out from the posterior mode can be used to assess
the degree of asymmetry in the joint posterior distribution. This is examined in more detail below.

3. Results

2.2 Example 1: Box and Tiao (1973)

We discuss the application of the DPLS measure in the context of an example given in Box and Tiao (1973), p.136. An
experiment is conducted to examine similarity in the variation of three distributions. The summary statistics are given by;

s2
1 = 52.785, s2

2 = 34.457, s2
3 = 66.030, ν1 = ν2 = ν3 = 30, ν = 90.

Assuming normality and locally non-informative priors, the joint posterior distribution of the two contrasts, ψ1 = log σ2
1−

log σ2
3 and ψ2 = log σ2

2 − log σ2
3 can be written;

p(ψ1, ψ2| y) =
Γ(45)

[Γ(15)]3 (.79941e−ψ1 )15(.52184e−ψ2 )15

·(1 + .79941e−ψ1 + .52184e−ψ2 )−45 (7)

where −∞ < ψi < ∞, for i = 1,2. The mode is given by ψ̂ = (ψ̂1, ψ̂2) = (−.2239,−.6504). Approximate 75, 90 and 95
per cent Highest Posterior Density (H.P.D.) regions are given in Box and Tiao (1973), p. 138 with the null hypothesis
ψ0 = (0, 0) lying within the 90% region, providing limited support for the null hypothesis of homogeneity. The joint
posterior density is given in Figure 1.

Figure 1. Joint Posterior Density

To derive a directional Bayesian Bartlett test here we initially change variables ψ → (r,d) with Jacobian proportional to
r2−1 dr dd, r > 0 to obtain pr|d(r) as above. We may also further change variables with τ = r2 to obtain a chi-square related
distribution. The resulting conditional distribution pτ(τ |d) in the direction defined by the null hypothesis ψ0 = (0, 0) out
from the mode is given by;

pτ|d(τ) = c · p(τ1/2d + ψ̂) =

= c · (.79941e−τ
1/2d1−ψ̂1 )15(.52184e−τ

1/2d2−ψ̂2 )15

·[1 + .79941e−τ
1/2d1−ψ̂1 + .52184e−τ

1/2d2−ψ̂2 ]−45 · τ2/2−1

This is re-normed and shown in Figure 2.
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Figure 2. Directional Conditional Distribution (H0 : ψ0 = (0, 0))

The direction of departure related to the null is given by d0 = (ψ̂ − 0)/||ψ̂ − 0|| = (0.3255, 0.9455) and the observed
magnitude of departure r0 = ||ψ0 − ψ̂|| = 0.6879 or τ0 = (0.6879)2 = 0.4732. The related local tail area for the null
hypothesis ψ0 = (0, 0) is given by;

DPLS (ψ0) =

∫ ∞
τ0

pτ|d(τ) dτ∫ ∞
0 pτ|d(τ)dτ

= 1 − .9872 = 0.0128

and can be interpreted as providing little support for the null hypothesis of equal variances.

2.3 Example 2: Simulation 1

This example gives a simulated dataset where the Bartlett and Levine tests do not agree. The data and summary statistics
are given in Table 1.

Table 1. Test for Equal Variances. 95% Bonferroni Confidence Intervals for Standard Deviations

Group n Lower Bound Standard 

Deviation 

Upper Bound 

1 24 0.99 1.34 2.04 

2 18 0.89 1.26 2.09 

3 28 1.63 2.18 3.19 

 

Group Data 

Group 1 

(n=24) 

5.37, 5.80, 4.70, 5.70, 3.40, 8.60, 7.48, 5.77, 7.15, 6.49, 4.09, 5.94, 6.38, 9.24, 5.66, 

4.53, 6.51, 7.0, 6.20, 7.04, 4.82, 6.73, 5.26, 5.21  

Group 2 

(n=18) 

3.96, 3.04, 5.28, 3.4, 4.1, 3.61, 6.16, 3.22, 7.48, 3.87, 4.27, 4.05, 2.40, 5.81, 4.29, 2.77, 

4.4, 4.45 

Group 3 

(n=28) 

5.37, 10.6, 5.02, 14.30, 9.9, 4.27, 5.75, 5.03, 5.74, 7.85, 6.82, 7.9, 8.36, 5.72, 6.0, 4.75, 

5.83, 7.3, 7.52, 5.32, 6.05, 5.68, 7.57, 5.68, 8.91, 5.39, 4.4, 7.13  

 

 

 

DPLS Levine Bartlett 

0.722 .202 .014 

2.06 .089 .0001  

2.55 .013 .0001  
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Figure 3. Directional Conditional Distribution (H0 : ψ0 = (0, 0))

Here the Bartlett test has a p-value of 0.015 and the Levine test a p-value of 0.23, providing different inferential conclu-
sions. The direction of departure related to the null is given by d0 = (ψ̂−0)/||ψ̂−0|| = (0.6641, 0.7476) and the magnitude
of departure by r0 = ||ψ0 − ψ̂|| = 0.6305 or τ0 = (0.6305)2 = 0.3975. The conditional distribution pτ(τ |d) for the null
hypothesis ψ0 = (0, 0) is given by;

pτ|d(τ) = c · (a1e−τ
1/2d1−ψ̂1 )23(a2e−τ

1/2d2−ψ̂2 )17

·[1 + a1e−τ
1/2d1+ψ̂1 + a2e−τ

1/2d2+ψ̂2 ]−34

where c is the constant of integration. This is shown in Figure 3. The exact test tail area for this hypothesis is given by;

DPLS (ψ0) =

∫ ∞
τ0

pτ|d(τ) dτ∫ ∞
0 pτ|d(τ)dτ

= 0.03186

which supports mild rejection of the null hypothesis of equal variances, agreeing here with the standard Bartlett test.

2.4 Example 3: Simulation 2

The approach here extends easily into multiple treatment group settings. A simulated example examining variation across
five groups (ni = 20, i = 1, ..., 5) is developed with the fifth group being an increasing outlier across each of three
simulations. This gives a joint posterior density for ψ in four dimensions. Summary statistics and related tail areas are
given in Table 2 (data not shown). Figure 4 shows the three respective conditional densities.

Table 2. Comparison of Five Plasma Groups

 s1 

(95% 

interval) 

s2  

(95% 

interval) 

s3 

(95% 

Interval) 

s4 

(95%  

Interval) 

s5  

(95% 

interval) 

τ0 DPLS Levine Bartlett 

Simulation1 1.19 

(.83,1.98) 

.99  

(.69,1.65) 

.66 

(.46,1.09) 

.75 

(.53,1.26) 

1.23 

(.87, 2.06) 

0.722 .202 .014 .030 

Simulation2 1.19 

(.83,1.98) 

.99 

(.69,1.65) 

.66 

(.46,1.09) 

.75 

(.53,1.26) 

2.79 

(1.96,4.65) 

2.06 .089 .0001 .0001 

Simulation3 1.19 

(.83,1.98) 

.99 

(.69,1.65) 

.66 

(.46,1.09) 

.75 

(.53,1.26) 

3.72 

(2.61,6.20) 

2.55 .013 .0001 .0001 
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Figure 4. Directional Conditional Distributions for Three Simulations (H0 : ψ0 = (0, 0, 0, 0))

The Bartlett and Levine tests here give significant p-values for all three datasets. Standard Bonferroni corrected confidence
intervals shown in Table 2 give a large overlap of the outlier group confidence interval (group 5) with the other four group
intervals in the first two datasets but none in the third. Note that while the sample size per group is relatively small, the
number of groups and overall sample size lead to potential over-sampling. The conditional distribution pτ(τ |d) for the
null hypothesis ψ0 = (0, 0, 0, 0) is given by;

pτ|d(τ) = c · (a1e−τ
1/2d1−ψ̂1 )20(a2e−τ

1/2d2−ψ̂2 )20(a3e−τ
1/2d3−ψ̂3 )20(a4e−τ

1/2d4−ψ̂4 )20

·[1 + a1e−τ
1/2d1+ψ̂1 + a2e−τ

1/2d2+ψ̂2 + a3e−τ
1/2d3−ψ̂3 + a4e−τ

1/2d4−ψ̂4 ]−50 · τ 4/2−1

where again c is the constant of integration. See Table 2 for results. The directional approach here is relatively conserva-
tive, with clear rejection of the null supported only in the third simulated dataset where the outlier group has no overlap
with the other groups in terms of standard Bonferroni corrected confidence intervals.

3. Robustness

3.1 Prior Robustness

Any application of the Bayesian perspective in relation to modeling should discuss potential effects of prior selection. As
the analysis here conditions upon d to obtain the conditional distribution pr(r |d), the robustness of the analysis to choice
of prior density may also be defined directionally. While examining the behavior of p(r|d) for a variety of chosen priors is
a possibility, the directional and one-dimensional nature of the DPLS approach allows for geometric insight. In particular,
a chosen prior will have limited effect on the resulting DPLS value if it is relatively flat in the direction d, directionally
non-informative. This effect can be visualized by plotting the one-dimensional directionally conditioned prior component
p(rd + θ̂) as function of r > 0. These can be compared for a set of potential prior densities.

When selecting a multivariate prior for the covariance matrix Σ several approaches are standard. A basic approach is
to use a normal-gamma distribution for the (µ,Σ) set of parameters and express this as a conditional distribution p(µ|Σ)
times a marginal distribution p(Σ). A simpler approach is to assume prior independence. In the REML setting where we
assume that prior belief regarding µ and Σ are independent, it is possible to use the marginal likelihood based on error
contrasts. Harville (1974) showed that the REML based marginal posterior for Σ is independent of the mean parameter
µ, simplifying the prior selection process. Prior choices can be extended to other multivariate densities. Note that a
hierarchical setting may be useful in modeling variation (Daniels, 1999) but is not considered in detail here.

If the prior density is viewed in isolation, directionalized by applying the polar transformation, then we obtain c · p(rd+ θ̂) ·
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rk−1 as the conditional prior density in the direction d where θ̂ is the prior mode. If a non-informative prior is interpreted
as being fairly constant as a function of the parameter r > 0 we can plot this one-dimensional directionalized prior as a
function of r and examine its behavior. We can express this more directly as;

c · p(rd + θ̂) · rk−1 = C

(c/C) · p(rd + θ̂) · rk−1 = 1
log(c/C) + log p(rd + θ̂) + log rk−1 = 0

− log p(rd + θ̂) = [log(c/C) + (k − 1) log r]

Plotting − log p(rd + θ̂) versus log r allows us to see if a straight line regression with slope (k − 1) is obtained. If yes, the
chosen prior p(·) may be viewed as directionally non-informative. This can be examined in relation to other directions d if
required and across a set of potential prior densities. A similar directional examination of the posterior density comparing
actual and large sample likelihood functions can be found in Brimacombe (2016).

4. Discussion

A directional Bayesian pure significance test procedure is developed here for testing the hypothesis of equal variances.
It is based on the tails areas of a conditional Bayesian directional distribution defined in relation to the specified null
hypothesis and reflects the departure of the null value from the observed posterior mode. The approach does not require
an assumption of normality. Where non-informative priors are employed, the approach reflects local properties of the
likelihood function. Note that issues related to the power of the pure significance test are not addressed here.

The use of a directional approach allows for a unique perspective regarding prior selection and prior related robustness.
The stability of the posterior can be assessed in the specific direction of the null hypothesis, examining how the prior
is affecting the relevant directional properties of the posterior density. While related here to the Bartlett test, the direc-
tional approach can be applied more widely and provides a one-dimensional conditional approach to higher dimensional
multiparameter significance testing problems in general. Applications to MANOVA and generalized linear models will
be found elsewhere. Note that standard Markov Chain Monte Carlo based methods may be applied to determining the
required tail area in more detailed settings especially where nuisance parameters must initially be averaged out.
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