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Abstract

In this paper, we shall discuss negatively dependent fuzzy set-valued random variables. And at last, we shall prove the
limit theorems for rowwise negatively dependent fuzzy set-valued random variables in the sense of d∞H , which is the
extension of (Guan & Sun, 2014) and (Guan & Wan, 2016).
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1. Introduction

We all know that strong laws of large numbers are one of the most important theories in probability. For independent
set-valued random variables, many limit results have been obtained (cf. (Artstein & Vitale, 1975), (Cressie, 1978), (Hiai,
1984), (Taylor & Inoue, 1985), (Puri & Ralescu, 1983)). About the convergence theorems of fuzzy set-valued random
variables, Klement et al proved the strong laws of large numbers (SLLN) for independent identically distributed (i.i.d)
fuzzy set-valued random variables in the sense of d1

H . Colubi et al. obtained the SLLN for i.i.d fuzzy set-valued random
variables with respect to d∞H in (Colubi, López-Dı́az, Dominguez-Menchero & Gil, 1999), where the underlying space is
Rd. Li and Ogura proved the same SLLN as in (Colubi, López-Dı́az, Dominguez-Menchero & Gil, 1999) by using a new
embedding method (Li, Ogura & Kreinovich, 2002, Theorem 6.2.6). In 1991, Inoue (Inoue, 1991) extended the SLLN
of set-valued case given by Taylor and Inoue (Taylor & Inoue, 1985) to the case of only independent fuzzy set-valued
random variables in the sense of d1

H . Li and Ogura (Li & Ogura, 2003) proved the SLLN of (Inoue, 1991) in the sense of
d∞H .

In practice, the random variables are not always independent. So it is necessary to discuss the limit theorems for dependent
random variables. Bozorgnia, Patterson and Taylor discussed the properties for negatively dependent random variables in
(Bozorgnia, Patterson, & Taylor, 1993), and proved the laws of large number for negative dependence random variables
in (Bozorgnia, Patterson & Taylor, 1992), where the random variables are single-valued. In (Guan, 2014), Guan and
Sun discussed the property of set-valued random variables in real space R, and proved the weak convergence theorem
for dependent set-vallued random variables in the sense of Hausdorff metric. In (Guan, 2016), Guan and Wan proved the
strong law of large number for set-valued dependent random variables in the sense of Hausdorffmetric. In 2016, Shen and
Guan (Shen & Guan, 2016) proved the strong laws of large numbers for independent fuzzy set-valued random variables,
where the underlying space is Gα space. In this paper, we are concerned with the weak and strong limit theorems for
dependent fuzzy set-valued random variables in the sense of d∞H .

This paper is organized as follows. In section 2, we shall briefly introduce some definitions and basic results of set-valued
random variables and fuzzy set-valued random variables. In section 3, we shall give basic definition and discuss the
properties of fuzzy set-valued negatively dependent random variables. And at last, we shall prove the weak and strong
laws of large numbers for weighted sums of fuzzy set-valued negatively dependent random variables.

2. Preliminaries on Fuzzy Set-Valued Random Variables

Throughout this paper, we assume that (Ω,A, µ) is a complete probability space, (X, ∥ ·∥) is a real separable Banach space,
Kk(X) is the family of all nonempty compact subsets of X, and Kkc(X) is the family of all nonempty compact convex
subsets of X.

Let A and B be two nonempty subsets of X and let λ ∈ R, the set of all real numbers. We define addition and scalar
multiplication by

A + B = {a + b : a ∈ A, b ∈ B}

λA = {λa : a ∈ A}
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The Hausdorff metric on Kk(X) is defined by

dH(A, B) = max{sup
a∈A

inf
b∈B
∥a − b∥, sup

b∈B
inf
a∈A
∥a − b∥}

for A, B ∈ Kk(X). For an A in Kk(X), let ∥A∥K = dH({0}, A).

The metric space (Kk(X),dH) is complete and separable, and Kkc(X) is a closed subset of (Kk(X),dH) (cf. (Li, Ogura
& Kreinovich, 2002), Theorems 1.1.2 and 1.1.3). Concerning the concepts and results of set-valued random variables,
readers may refer to the book (Li, Ogura & Kreinovich, 2002).

A set-valued mapping F : Ω→ Kk(X) is called a set-valued random variable (or a random set) if, for each open subset O
of X, F−1(O) = {ω ∈ Ω : F(ω) ∩ O , ∅} ∈ A. In fact, set-valued random variables can be defined as mappings from Ω
to the family of all closed subsets of X. Concerning its equivalent definitions, please refer to (Castaing & Valadier, 1977)
and (Hiai & Umegaki, 1977).

A set-valued random variable F is called integrably bounded (cf. (Hiai & Umegaki, 1977) or (Li, Ogura & Kreinovich,
2002)) if

∫
Ω
∥F(ω)∥Kdµ < ∞. Let L1[Ω,A, µ; Kk(X)] denote the space of all integrably bounded random variables, and

L1[Ω,A, µ; Kkc(X)] denote the space of all integrably bounded random variables taking values in Kkc(X). For F,G ∈
L1[Ω,A, µ; Kk(X)], F = G if and only if F(ω) = G(ω) a.e.(µ).

For each set-valued random variable F, define S F = { f ∈ L1[Ω;X] : f (ω) ∈ F(ω), a.e.(µ)}. The expectation of F, denoted
by E[F], is defined as

E[F] =
{ ∫
Ω

f dµ : f ∈ S F

}
,

where
∫
Ω

f dµ is the usual Bochner integral in L1[Ω,X], the family of integrable X-valued random variables. This integral
was first introduced by Aumann (Aumann, 1965), called Aumann integral in literature.

For each A ∈ K(X), define the support function by

s(x∗, A) = sup
a∈A
< x∗, a >, x∗ ∈ X∗,

where X∗ is the dual space of X.

Let S∗ denote the unit sphere of X∗, C(S∗) the all continuous functions of S∗, and the norm is defined as ∥v∥C = supx∗∈S ∗

From now on, we begin to introduce necessary concepts, notation and basic results on fuzzy set space and fuzzy set-valued
random variables.

Let Fk(X) be the family of all special fuzzy sets: v : X→ [0, 1] satisfying the following conditions:
(1) the 1-level set v1 = {x ∈ X : v(x) = 1} , ∅,
(2) each v is upper semicontinuous, i.e. for each α ∈ [0, 1], the α level set vα = {x ∈ X : v(x) ≥ α} is a closed subset of X,
(3) the support set v0+ = cl{x ∈ X : v(x) > 0} is compact.

A fuzzy set v in Fk(X) is called convex if it satisfies

v(λx + (1 − λ)y) ≥ min{v(x), v(y)}, for any x, y ∈ X, λ ∈ [0, 1].

It is known that v is convex if and only if each level set vα (α ∈ (0, 1]) of v is a convex subset of X. Let Fkc(X) be the
subset of all convex fuzzy sets in Fk(X).

The uniform metric in Fk(X), which is an extension of the Hausdorff metric dH , is often used (cf. Puri & Ralescu, 1986):
for v1, v2 ∈ Fk(X),

d∞H (v1, v2) = sup
α∈(0,1]

dH(v1
α, v

2
α).

Let ∥v∥F =: d∞H (v, I0) = supα>0 ∥vα∥K, where I0 is the function taking value one at 0 and zero for all x , 0. The space
(Fk(X),d∞H ) is a complete metric space (cf. Li, & Ogura, 1996) but not separable (Li, Ogura & Kreinovich, 2002),
Remark 5.1.7). Completeness was first proved by Puri and Ralescu (Puri & Ralescu, 1986) in the case of X = Rd, the
d-dimensional Euclidean space.
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A fuzzy set-valued random variable (or Fk(X)-valued random variable) is a measurable mapping X from the space (Ω,A)
to the space (Fk(X),B(Fk(X))), where B(Fk(X)) is the Borel σ-field of Fk(X) with respect to d∞H .

It is well known that for any fuzzy set v, vα =
∩
β<α vβ, for every α ∈ (0, 1], but usually vα ,

∪
β>α vβ. We denote

vα+ = cl(
∪
β>α vβ), for α ∈ [0, 1) , which will be used later. Obviously, v0+ is the support set of v. Due to the completeness

of (Fk(X),d∞H ), every Cauchy sequence {vn : n ∈ N} has a limit v in Fk(X).

A sequence of set-valued random variables {Fn : n ∈ N} is called to be stochastically dominated by a set-valued random
variable F if

µ{∥Fn∥K > t} ≤ µ{∥F∥K > t}, t ≥ 0, n ≥ 1.

A sequence of fuzzy set-valued random variables {Xn : n ≥ 1} is called to be stochastically dominated by a fuzzy set-
valued random variable X if

µ{∥Xn
α∥K > t} ≤ µ{∥Xα∥K > t}, t ≥ 0, n ≥ 1, α ∈ (0, 1].

It is obvious that if {Xn : n ≥ 1} is stochastically dominated by a fuzzy set-valued random variable X, then ∀ α ∈ (0, 1],
{Xn
α : n ≥ 1} is stochastically dominated by the set-valued random variable Xα. And also for any α ∈ (0, 1], {Xn

α+ : n ≥ 1}
is stochastically dominated by the set-valued random variable Xα+ (Guan & Li, 2004).

An Fk(X)-valued random variable X is called integrably bounded if the real-valued random variable ∥X0+(ω)∥K is inte-
grable. Let L1[Ω,A, µ; Fk(X)] be the set of all integrably bounded Fk(X)-valued random variables and L1[Ω,A, µ; Fkc(X)]
be the set of all integrably bounded Fkc(X)-valued random variables. Two Fk(X)-valued random variables X,Y ∈
L1[Ω,A, µ; Fk(X)] are considered to be identical if for any α ∈ [0, 1], Xα(ω) = Yα(ω) a.e.(µ).

A sequence of Fk(X)-valued random variables {Xn : n ∈ N} is called to converge to an Fk(X)-valued random variable X
in the sense of d∞H , if d∞H (Xn(ω), X(ω))→ 0 a.e.(µ) as n→ ∞.

The expectation of an Fk(X)-valued random variables X, denoted by E[X], is an element in Fk(X) such that for every
α ∈ (0, 1],

(E[X])α = cl
∫
Ω

Xαdµ = cl{E( f ) : f ∈ S Xα }

where the closure is taken in X and S Xα = { f ∈ L1[Ω;X] : f (ω) ∈ Xα(ω), a.e.(µ)}. By virtue of the existence theorem (cf.
(cf. Li, & Ogura, 1996), (Li, Ogura & Kreinovich, 2002)), we have an equivalent definition as follows:

E[X](x) = sup{α ∈ (0, 1] : x ∈ E[Xα]}.
Furthermore, (E[coX])α = E[coXα] for any α ∈ (0, 1].

3. Negatively Dependent and Main Results

In this section, we will give the definition of negatively dependent for fuzzy set-valued random variables and discuss
the properties. Then we will prove the weak and strong limit theorem of weighted sums for fuzzy set-valued negatively
dependent random variables in the sense of d∞H .

The following definition is Toeplitz sequence, which will be used later.

Definition 3.1 A double array {ank : n, k = 1, 2, · · · } of real numbers is said to be a Toeplitz sequence, if

(i) lim
n→∞

ank = 0 for each k;

(ii)
∞∑

k=1
|ank | ≤ c for each n.

Now we will recall some concepts of negatively dependent random variables.

Definition 3.2 (cf. Bozorgnia, Patterson & Taylor, 1993)) A finite family of real-valued random variables X1, · · · , Xn is
said to be negatively dependent if for all real x1, x2, · · · , xn,

µ{X1 > x1, · · · , Xn > xn} ≤
n∏

i=1

µ{Xi > xi}
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and

µ{X1 ≤ x1, · · · , Xn ≤ xn} ≤
n∏

i=1

µ{Xi ≤ xi}.

An infinite family of random variables is negatively dependent if every finite subfamily is negatively dependent. The
following results are from (Bozorgnia, Patterson & Taylor, 1993) of Bozorgnia et. al., and we will use them in the later.

Lemma 3.3 (cf. Bozorgnia, Patterson & Taylor, 1993) Let real-valued random variables {Xi : 1 ≤ i ≤ n} be negatively
dependent. Then the following are true:

(i)E[
n∏

i=1
Xi] ≤

n∏
i=1

E[Xi];

(ii)Cov(Xi, X j) ≤ 0, i , j;

(iii) If {gi : 1 ≤ i ≤ n} be all nondecreasing (or all nonincreasing) Borel functions, then random variables g1(X1), g2(X2),
· · · , gn(Xn) are negatively dependent random variables.

Definition 3.4 (cf. (Guan & Wan, 2016) A finite family of set-valued random variables F1, F2, · · · , Fn is said to be
negatively dependent if s(·, F1), · · · , s(·, Fn) is single-valued negatively dependent random variables.

Now we give the definition of fuzzy set-valued random variables and discuss the property.

Definition 3.5 A finite family of fuzzy set-valued random variables X1, X2, · · · , Xn be said to be negatively dependent if
for any α ∈ (0, 1], the set-valued random variables X1

α, X
2
α, · · · , Xn

α are negatively dependent.

From the definition 3.5, we can easily obtain the following result.

Theorem 3.6 Fuzzy set-valued random variables X1, X2, · · · , Xn are negatively dependent, then for any α ∈ (0, 1],
X1
α+, X

2
α+, · · · , Xn

α+ are negatively dependent set-valued random variables.

Proof. By definition 3.5, we know that for any α ∈ (0, 1], X1
α, X

2
α, · · · , Xn

α are negatively dependent set-valued random
variables. That means for any x∗ ∈ X∗, α ∈ (0, 1], s(x∗, X1

α), s(x∗, X2
α), · · · , s(x∗, Xn

α) are negatively dependent single-valued
random variables. Since Xn

α+ = cl(
∪
β>α Xn

β), take a decreasing sequence α j which converges to α. Then

lim
j→∞

dH(Xn
α j
, Xn
α+) = 0.

So we have
s(x∗, Xn

α j
) −→ s(x∗, Xn

α+), as j→ ∞.

Then by the continuous of probability and lemma 3.3, we have

µ
{
s(x∗, X1

α+) ≤ x1, · · · , s(x∗, Xn
α+) ≤ xn

}
= µ
{

lim
j

s(x∗, X1
α j

) ≤ x1, · · · , lim
j

s(x∗, Xn
α j

) ≤ xn

}
≤ lim

j
µ
{
s(x∗, X1

α j
) ≤ x1, · · · , s(x∗, Xn

α j
) ≤ xn

}
≤ lim

j

n∏
i=1

µ
{
s(x∗, Xi

α j
) ≤ xi

}
=

n∏
i=1

lim
j
µ
{
s(x∗, Xi

α j
) ≤ xi

}
=

n∏
i=1

µ
{

lim
j

s(x∗, Xi
α j

) ≤ xi

}
=

n∏
i=1

µ
{
s(x∗, Xi

α+) ≤ xi

}

Similarly, we can prove
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µ
{
s(x∗, X1

α+) > x1, · · · , s(x∗, Xn
α+) > xn

}
≤

n∏
i=1

µ
{
s(x∗, Xi

α+) > xi

}
.

Then the result was proved. 2

The following limit theorem is a weak convergence result for fuzzy set-valued negatively dependent random variables,
which is the extension of (Guan & Sun, 2014). Here we assume the Banach space X = R.

Theorem 3.7 Let {Xnk : k ≥ 1, n ≥ 1} be an array of fuzzy set-valued random variables in Fk(R+) which are stochastically
dominated by a fuzzy set-valued random variable X, and are pairwise negatively dependent in each row. Let E[Xnk] = I0

for all n and k. Let {ank} be an array of nonnegative real numbers such that
∞∑

n=1
ar

nk ≤ M for all n where 0 < r ≤ 1 and

max
k

ank → 0 as n→ ∞. If E[∥X∥F] < ∞, then

lim
n→∞
µ
{
d∞H
( ∞∑

k=1

ankXnk, {0}
)
> ε
}
= 0.

Proof. From the definition 3.5 and theorem 3.6, we know that {Xnk
α }, {Xnk

α+} ∈ Kk(R+) are all rowwise negatively dependent
set-valued random variables. Then by theorem 4.1 of (Guan & Sun, 2014), for any α ∈ (0, 1], ε > 0, we have

lim
n→∞
µ
{
dH

( ∞∑
k=1

ankXnk
α , {0}

)
>
ε

2

}
= 0,

and

lim
n→∞
µ
{
dH

( ∞∑
k=1

ankXnk
α+, {0}

)
>
ε

2

}
= 0.

Take a finite partition 0 = α0 < α1 < · · · < αM = 1, for αk−1 < α < αk, by virtue of monotone property of level sets and
the formula

(
∞∑

k=1

ankXnk)α =
∞∑

k=1

ankXnk
α ,

it holds that

dH

(
(
∞∑

k=1

ankXnk)α, {0}
)
≤ dH

(
(
∞∑

k=1

ankXnk)αk , {0}
)
+ dH

(
(
∞∑

k=1

ankXnk)αk−1+, {0}
)

= dH

( ∞∑
k=1

ankXnk
αk
, {0}
)
+ dH

( ∞∑
k=1

ankXnk
αk−1+
, {0}
)
.

Consequently, we have

d∞H
( ∞∑

k=1

ankXnk, {0}
)
= sup

α∈(0,1]
dH

(
(
∞∑

k=1

ankXnk)α, {0}
)

≤ max
1≤k≤M

dH

( ∞∑
k=1

ankXnk
αk
, {0}
)

+ max
1≤k≤M

dH

( ∞∑
k=1

ankXnk
αk−1+
, {0}
)
.

Then we have

lim
n→∞
µ
{
d∞H
( ∞∑

k=1

ankXnk, {0}
)
> ε
}
≤ lim

n→∞
µ
{

max
1≤k≤M

dH

( ∞∑
k=1

ankXnk
αk
, {0}
)
>
ε

2

}
+ lim

n→∞
µ
{

max
1≤k≤M

dH

( ∞∑
k=1

ankXnk
αk−1+
, {0}
)
>
ε

2

}
= 0.
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The result was proved. 2

Next, we shall prove the strong convergence theorem, which is the extend of theorem 4.1 of (Guan & Wan, 2016). In
(Guan & Wan, 2016), the authors proved the convergence theorem of set-valued random variables in the sense of dH . Here
we extend their result to fuzzy set-valued random variables, and the metric is d∞H .

Theorem 3.8 Let {Xnk} ∈ Fk(R+) be an array of rowwise negatively dependent fuzzy set-valued random variables with
E[Xnk] = I0 and stochastic dominated by a fuzzy set-valued random variable X. If max

k
ank = O(n−r), r > 0, then

E[∥X∥1+1/r
F ] < ∞ implies that

∞∑
k=1

ankXnk → 0 a.e.

with respect to the Hausdorff metric d∞H .

Proof. From the definition 3.5 and theorem 3.6, we know that {Xnk
α }, {Xnk

α+} ∈ Kk(R+) are all rowwise negatively dependent
set-valued random variables. Then by theorem 4.1 of (Guan & Wan, 2016), we have

∞∑
k=1

ankXnk
α → 0 a.e.

with respect to the Hausdorff metric dH . And
∞∑

k=1

ankXnk
α+ → 0 a.e.

with respect to the Hausdorff metric dH .

We can find a finite partition 0 = α0 < α1 < · · · < αM = 1, for αk−1 < α < αk. By virtue of monotone property of level
sets and the formula

(
∞∑

k=1

ankXnk)α =
∞∑

k=1

ankXnk
α ,

it holds that

dH

(
(
∞∑

k=1

ankXnk)α, {0}
)
≤ dH

(
(
∞∑

k=1

ankXnk)αk , {0}
)
+ dH

(
(
∞∑

k=1

ankXnk)αk−1+, {0}
)

= dH

( ∞∑
k=1

ankXnk
αk
, {0}
)
+ dH

( ∞∑
k=1

ankXnk
αk−1+
, {0}
)
.

Consequently, we have

sup
α∈(0,1]

dH

(
(
∞∑

k=1

ankXnk)α, {0}
)
≤ max

1≤k≤M
dH

( ∞∑
k=1

ankXnk
αk
, {0}
)

+ max
1≤k≤M

dH

( ∞∑
k=1

ankXnk
αk−1+
, {0}
)
.

Since the two terms on the right hand converge to 0 in the sense of dH , then we can have

lim sup
n→∞

sup
α∈(0,1]

dH

(
(
∞∑

k=1

ankXnk)α, {0}
)
= 0

The result was proved. 2

From theorem 3.8, we can easily get the following two corollaries.

Corollary 3.9 If {Xn} is a sequence of independent identical distributed fuzzy set-valued random variables in Fk(R+) with
E[X1] = I0 and max

k
|ank | = O(n−γ), γ > 0, then E[∥X1∥1+1/γ

F ] < ∞ implies that

∞∑
k=1

ankXnk → 0 a.e.
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with respect to the Hausdorff metric d∞H .

Corollary 3.10 If {Xn} is a sequence of independent fuzzy set-valued random variables in Fk(R+) with E[Xk] = I0 for
k = 1, 2, · · · and stochastically dominated by a fuzzy set-valued random variable X. If max

k
|ank | = O(n−γ), γ > 0, then

E[∥X∥1+1/γ
F ] < ∞ implies that

∞∑
k=1

ankXnk → 0 a.e.

with respect to the Hausdorff metric d∞H .

4. Discussion

In this paper, we mainly proved the limit theorems for negatively dependent fuzzy set-valued random variables, where
underlying space is R+. When the underlying space is {x ≤ 0 : x ∈ R}, then the above results are also true. Since the
K(X) are not linear space, even the Kkc(X) are not linear space, the difference of sets do not have good properties. So it is
not easy to discuss the properties of negatively dependent and obtain the convergence theorems in general Banach space.
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