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Abstract

Let an Rd-valued random process ξ be the solution of an equation of the kind ξ(t) = ξ(0) +
∫ t

0 A(u)ξ(u)dι(u) + S (t),
where ξ(0) is a random variable measurable w. r. t. some σ-algebra F (0), S is a random process with F (0)-conditionally
independent increments, ι is a continuous numeral random process of locally bounded variation, and A is a matrix-valued
random process such that for any t > 0

∫ t
0 ∥A(s)∥ |dι(s)| < ∞. Conditions guaranteing existence of the limiting, as t → ∞,

distribution of ξ(t) are found. The characteristic function of this distribution is written explicitly.
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1. Introduction

The random processes under consideration are assumed given on a common probability space (Ω,F ,P). It is assumed that
a a filtration F = (F (t), t ∈ R+) on F is given. We consider, without loss generality, that it is right-continuous and each
F (t) contains all P-negligible sets from F (these are so called usual conditions – see (Gikhman & Skorokhod, 1982; Jacod
& Shiryaev, 1987; Liptser & Shiryaev, 1989)). We will consider also the trivial filtration F0 = (F 0(t), t ∈ R+), where
F 0(t) = F (0) for all t. Thus a random process is F0-adapted iff its value at any nonrandom time is an F (0)-measurable
random variable. We introduce the notation: E0 = E (· · · |F (0)); Vc

0 is the class of all starting from zero F0-adapted
continuous random processes; S+ is the class of all nonnegative (in the spectral sense) symmetric d× d matrices with real
entries; M+(C) is the class of all σ-finite measures on a σ-algebra C; l.i.p. signifies the limit in probability. In integrals
with a discontinuous integrator,

∫ b
a means

∫
]a,b]. The indicator of a set {· · · } is denoted by I{· · · }.

All vectors are thought of, unless otherwise stated, as columns; all matrices are meant of size d × d, with real entries. The
unit matrix is denoted by 1I, and the space of all d-dimensional row vectors with real components by Rd∗. We use the
Euclidean norm | · | of vectors and the operator norm ∥ · ∥ of matrices. For symmetric matrices A and B, the inequality
A ≤ B means that B − A ∈ S+ (so that one may speak about increasing S+-valued functions).

The quadratic characteristic of a locally square-integrable Rd-valued martingale Z will be denoted by ⟨Z⟩. This is an
increasing S+-valued random process.

The words “almost surely” are tacitly implied in relations between random variables, including the convergence relation

unless it is explicitly written as the convergence in probability (denoted by
P−→) or in distribution (denoted by

d−→).

The reference books for the notions and results of stochastic analysis used in this paper are (Gikhman & Skorokhod, 1982,
2009; Jacod & Shiryaev, 1987; Liptser & Shiryaev, 1989). A number of more specific definitions and statements relevant
to the topic can be found in (Yurachkivsky, 2013).

The goal of the article is to find the limit, as t → ∞ (which will be tacitly meant in all asymptotic relations), of the
one-dimensional distribution of the solution of the stochastic equation

ξ(t) = ξ(0) +
∫ t

0
A(u)ξ(u)dι(u) + S (t), (1)

where S is a random process with F (0)-conditionally independent increments, ι ∈ Vc
0, and A is a matrix-valued F0-

adapted random process such that for any t > 0 ∫ t

0
∥A(s)∥ |dι(s)| < ∞. (2)
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We call thus defined ξ a generalized Ornstein – Uhlenbeck process. Recall that a classical Ornstein – Uhlenbeck process
is the solution of (1) with d = 1,U = 0, ι(t) = t, constant A and a homogeneous Wiener process as S . For them, the
problem is easy and solved long ago (the limit distribution exists iff A < 0). But even in a seemingly simple case when
S is a homogeneous generalized (i. e., with random jumps) Poisson process the problem is nontrivial. It was solved first
by Zakusilo in 1981 (this result is contained in (Anisimov, Zakusilo & Donchenko, 1987)). A more general theorem, but
also only for the case of homogeneous S and ι(t) = t, was proved in (Sato & Yamazato, 1984). Unlike these authors, we
focus on the described above model. This level of generality requires quite different technique that will be demonstrated
below. The only known to the author work with ι(t) possibly other than t and nonhomogeneous S is (Ivanenko, 2009). But
the proof therein relies on very specific assumptions (for example, A = −c1I) and does not carry over to a more general
situation.

The structure of the article is clear from the titles of its sections: General preliminaries, Special preliminaries and The
main result.

2. General Preliminaries

The following statement is immediate from Lebesgue’s dominated convergence theorem and Lévy’s continuity theorem.

Proposition 2.1. Let ξ be an Rd-valued random process. Suppose that there exists a C-valued random function J on

Rd∗ such that: l.i.p.
z→0

J(z) = 0; for any z ∈ Rd∗ E0eizξ(t) d−→ eJ(z). Then there exists a random variable ξ∞ such that

Eeizξ∞ = eJ(z) and ξ(t)
d−→ ξ∞.

Let us consider the equation

K(t, s) = 1I +
∫ t

s
A(τ)K(τ, s)dι(τ). (3)

The standard convention
∫ t

s = −
∫ s

t entitles us to consider that the variables s and t independently range over R+. The
integral on the r. h. s. of (22) being pathwise, the variable ω ∈ Ω performs in it as a parameter. Thus we may consider this
equation deterministic. Its solution will be an important tool in our study.

Lemma 2.2 (Yurachkivsky, 2013; Lemma 3.10). Let ι be a numeral function of locally bounded variation, and A be a
Borel matrix-valued function satisfying condition (2). Then the solution of equation (3) exists, is unique and has locally
bounded variation in each argument.

In what follows, C is a σ-algebra of subsets of some set Θ.

We denote by K the class of F-adapted Rd-valued random processes M such that, firstly, E0|M(t)|2 < ∞ for all t ∈ R+,
secondly, E(M(t) − M(s)|F (s)) = M(s) for all t > s ≥ 0 and, thirdly, the process E0|M|2 is continuous (here E0 is the
extended conditional expectation, so we need not assume that E|M(t)| < ∞). This class is contained in the class of
locally square integrable martingales (see, e. g., ( Yurachkivsky, 2013, 2014)).

From this time on we deal with the following particular case of (1):

ξ(t) = ξ(0) +
∫ t

0
A(s)ξ(s)dι(s) + U(t) +

∫ t

0

∫
Θ

f (s, θ)ν(ds dθ) +
∫ t

0

∫
Θ

g(s, θ) (υ − υ̃) (ds dθ) +W(t) (4)

which may be written shortly in the notation of stochastic analysis (see (Gikhman & Skorokhod, 1982; Jacod & Shiryaev,
1987; Liptser & Shiryaev, 1989)) as

ξ = ξ(0) + (Aξ) ◦ ι + U + f ∗ ν + g ∗ (υ − υ̃) +W.

To make it quite definite we impose the assumptions:

1. ξ(0) is an Rd-valued F (0)-measurable random variable.

2. ι is an R-valued random process of classVc
0.

3. A is a matrix-valued F (0) ⊗ B+-measurable in (ω, t) random process satisfying, for all t, condition (2).

4. U is an Rd-valued random process of classVc
0.

5. ν and υ are F-adapted quasicontinuous integer-valued random measures on B+ ⊗ C with F0-adapted compensators ν̃
and υ̃, respectively.
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6. For any random F (0) ⊗B+ ⊗ C-measurable functions q1 and q2 on R+ ×Θ such that |q1| ∗ ν̃(t) + |q2|2 ∗ υ̃(t) < ∞ for all
t, the processes q1 ∗ ν and q2 ∗ (υ − υ̃) have no simultaneous jumps.

7. W is a starting from zero Rd-valued continuous random process of class K with F0-adapted quadratic characteristic.

8. f and g are Rd-valued F (0) ⊗ B+ ⊗ C-measurable random functions on R+ × Θ.

9. (|g|2 ∧ |g|) ∗ υ̃(t) < ∞ for all t.

10. (| f | ∧ 1) ∗ ν̃(t) < ∞ for all t.

11. | f | ∗ ν(t) < ∞ for all t.

Theorem 2.3 (Yurachkivsky, 2013; Corollary 6.2). Let assumptions 1 – 11 be satisfied. Then for any t ∈ R+ and z ∈ Rd∗

E0eizξ(t) = eizK(t,0)ξ(0)+izQt−zRtz⊤/2+Ft(z)+Gt(z),

where

Qt =

∫ t

0
K(t, s)dU(s), (5)

Rt =

∫ t

0
K(t, s)d⟨W⟩(s)K(t, s)⊤, (6)

Ft(z) =
∫ t

0

∫
Θ

(
eizK(t,s) f (s,θ) − 1

)
ν̃(ds dθ), (7)

Gt(z) =
∫ t

0

∫
Θ

(
eizK(t,s)g(s,θ) − 1 − izK(t, s)g(s, θ)

)
υ̃(ds dθ). (8)

Corollary 2.4. Let assumptions 1 – 11 be satisfied, and Qt,Rt, Ft(z) and Gt(z) be defined by (5) – (8). Suppose also that

K(t, 0)
P−→ 0 (9)

and there exist an Rd-valued random variable ϑ, a matrix-valued random variable Υ and a C-valued random function Φ
and Γ on Rd, all given on a common probability space and such that

l.i.p.
z→0
Φ(z) = 0, (10)

l.i.p.
z→0
Γ(z) = 0 (11)

and for all z ∈ Rd∗

(Qt,Rt, Ft(z),Gt(z))
d−→ (ϑ,Υ,Φ(z), Γ(z)). (12)

Then the distribution of ξ(t) weakly converges, as t → ∞, to the distribution with characteristic function Eeizϑ−zΥz⊤/2+Φ(z)+Γ(z).

Lemma 2.5. Let µ be a finite measure on some σ-algebra X of subsets of a set X, and let for each t > 0 ζt be a
nonnegative measurable random function on X. Suppose the following: for any x ∈ X

ζt(x)
P−→ 0; (13)

there exists a measurable random function Z on X such that∫
X

Zdµ < ∞ (14)

and for all t > 0 and x ∈ X
ζt(x) ≤ Z(x). (15)

Then ∫
X
ζtdµ

P−→ 0. (16)
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Proof. In this and the subsequent proofs,
∫

stands for
∫

X .

Denote ZL = ZI{Z > L}. The relations

ζt = ζtI{ζt > L} + ζtI{ζt ≤ L} ≤ ZL + ζt ∧ L,

of which the inequality follows from (15), imply that for any positive ε and L

P
{∫

ζtdµ > 2ε
}
≤ P
{∫

ZLdµ > ε
}
+ P
{∫

ζt(u) ∧ Ldµ > ε
}
. (17)

By construction ZL → 0 as L → for all x ∈ X and ω ∈ Ω. Hence and from (14) we get by the dominated convergence
theorem (DCT) applied at those ω ∈ Ω where (14) holds

lim
L→∞

∫
ZLdµ = 0. (18)

Condition (13) implies by the DCT that E(ζt(x)∧ L)→ 0 for all L > 0 and x ∈ X. Hence by the DCT and due to finiteness
of µ ∫

E(ζt ∧ L)dµ→ 0.

Herein ∫
E(ζt ∧ L)dµ = E

∫
ζt ∧ Ldµ

by the Fubini – Tonelli theorem. This together with the preceding relation and (17) implies that for any positive ε and L

lim
t→∞

P
{∫

ζtdµ > 2ε
}
≤ P
{∫

ZLdµ > ε
}
.

It remains to make use of (18). �

Lemma 2.6. Let µ be a σ-finite measure on some σ-algebra X of subsets of a set X, and let for each t > 0 ζt be a
nonnegative measurable random function on X. Suppose the following: for any x ∈ X relation (13) holds; there exists a
nonrandom measurable function Z on X satisfying conditions (14), (15) and, for any r > 0, the condition

µ{x : Z(x) > r} < ∞. (19)

Then relation (16) holds.

Proof. The set {x ∈ X : Z(x) > r} is nonrandom (since in this lemma so is Z), belongs to X (because Z is measurable) and
has, due to (19), finite measure as r > 0. Then it follows from (13) – (15) by Lemma 2.5 that for any r > 0∫

ζtI{Z > r}dµ P−→ 0.

Consequently, for any positive r and ε

lim
t→∞

P
{∫

ζtdµ > 2ε
}
≤ lim

t→∞
P
{∫

ζtI{Z ≤ r}dµ > ε
}
. (20)

Condition (15) implies that Z is nonnegative, whence with account of (14) we get by the DCT

lim
r→0

∫
ZI{Z ≤ r}dµ = 0,

which together with (15) yields

lim
r→0

lim
t→∞

P
{∫

ζtI{Z ≤ r}dµ > ε
}
= 0

for any ε > 0. Now, (16) follows from (20). �
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Let n and d be natural numbers, P and S be n × d-matrices, and B be a d × d matrix. The identity

PBP⊤ − S BS ⊤ = (P − S )BP⊤ + S B(P − S )⊤

yields the estimate ∥∥∥PBP⊤ − S BS ⊤
∥∥∥ ≤ ∥P − S ∥ ∥B∥

∥∥∥P⊤∥∥∥ + ∥S ∥ ∥B∥ ∥∥∥(P − S )⊤
∥∥∥ .

In particular, for any B ∈ S+ (so that ∥B∥ ≤ tr B) and p, q ∈ Rd∗∥∥∥pBp⊤ − qBq⊤
∥∥∥ ≤ (|p| + |q|)|p − q| tr B.

Hence the following conclusion is immediate.

Lemma 2.7. Let V be an increasing S+-valued function on [a, b]. Then for any continuous Rd∗-valued functions φ and
ψ on [a, b] ∣∣∣∣∣∣

∫ b

a
φ(s)dV(s)φ(s)⊤ −

∫ b

a
ψ(s)dV(s)ψ(s)⊤

∣∣∣∣∣∣ ≤
∫ b

a
(|φ(s)| + |ψ(s)|)|φ(s) − ψ(s)| d tr V(s).

Lemma 2.8. For arbitrary z ∈ Rd∗, x, y ∈ Rd |eizx − eizy| ≤ 2(|z| ∨ 2) |x−y|
1+|x−y| .

Proof. For y = 0 this is Lemma 7.1 in (Yurachkivsky, 2013). It remains to note that |eizx − eizy| = |eiz(x−y) − 1|. �

Lemma 2.9. Let K be the solution of equation (3) on R2
+, where ι is a continuous numeral function of locally bounded

variation, and A is a matrix-valued Borel function such that for any t > 0 (2) holds. Then for every Borel function L(·, ·)
that has locally bounded variation in the first argument the solution of the equation

ϕ(t, s) = L(t, s) +
∫ t

s
A(u)ϕ(u, s)dι(u) (21)

is given by the formula

ϕ(t, s) = K(t, s)L(s, s) +
∫ t

s
K(t, τ)dτL(τ, s). (22)

Proof. Without loss of generality s = 0. Then this statement is a particular case of Corollary 3.19 in (Yurachkivsky,
2013). �

Throughout below, the prime does not signify differentiation.

Corollary 2.10. Let ι, A,K be as in Lemma 2.9, and K′ be the solution of the equation

K′(t, s) = 1I +
∫ t

s
A′(τ)K′(τ, s)dι(τ), (23)

on R2
+, where A′ is a matrix-valued measurable function such that for any t > 0∫ t

0
∥A′(u)∥ |dι(u)| < ∞. (24)

Then for all t ≥ s ≥ 0

K(t, s) − K′(t, s) =
∫ t

s
K(t, τ)(A(τ) − A′(τ))K′(τ, s)dι(τ).

Proof. To deduce this statement from Lemma 2.9 it suffices to write, on the basis of (3) and (23),

K(t, s) − K′(t, s) =
∫ t

s
(A(τ) − A′(τ))K′(τ, s)dι(τ) +

∫ t

s
(A(τ)(K(τ, s) − K′(τ, s))dι(τ)

�

Corollary 2.11. Let ι, A, A′,K and K′ be as in Corollary 2.10. Suppose also that

∥K(t, s)∥ ∨ ∥K′(t, s)∥ ≤ eq(t−s)

for some q ∈ R and all t, s ∈ R+. Then for all t ≥ s ≥ 0

∥K(t, s) − K′(t, s)∥ ≤ eq(t−s)
∫ t

s
∥A(τ) − A′(τ)∥ |dι(τ)|. (25)
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3. Special Preliminaries

From now on,
∫
Θ

will be written shortly as
∫

.

We impose two more assumptions:

12. There exists an M+(C)-valued random process π such that the equality∫ t

0

∫
χ(s, θ)̃ν(dsdθ) =

∫ t

0
ds
∫

χ(s, θ)π(s, dθ) (26)

holds for every nonnegative F (0) ⊗ B+ ⊗ C-measurable random function χ on R+ × Θ and all t > 0.

13. There exists an M+(C)-valued random processes ϖ such that the equality∫ t

0

∫
χ(s, θ)̃υ(dsdθ) =

∫ t

0
ds
∫

χ(s, θ)ϖ(s, dθ) (27)

holds for every nonnegative F (0) ⊗ B+ ⊗ C-measurable random function χ on R+ × Θ and all t > 0.

For an M+(C)-valued random process κ we denote by Eκ the class of all C-valued F (0) ⊗ B+ ⊗ C-measurable random
functions χ on R+ × Θ such that ∫ t

0
ds
∫
|χ(s, θ)|κ(s, dθ) < ∞

for all t > 0.

The next statement is obvious.

Lemma 3.1. If assumption 12 is satisfied, then equality (26) holds for all χ ∈ Eπ and t > 0; under assumption 13, equality
(27) holds for all χ ∈ Eϖ and t > 0.

Lemma 3.2. Let assumptions 2, 3, 8 – 10, 12 and 13 be satisfied. Then

Ft(z) =
∫ t

0
ds
∫ (

eizK(t,s) f (s,θ) − 1
)
π(s, dθ), (28)

Gt(z) =
∫ t

0
ds
∫ (

eizK(t,s)g(s,θ) − 1 − izK(t, s)g(s, θ)
)
ϖ(s, dθ). (29)

Proof. Let us fix v > 0, z ∈ Rd∗ and denote φ(s, θ) = eizK(v,s) f (s,θ)−1. By construction and assumptions 2 and 3 the random
process zK(v, ·) is F (0) ⊗ B+-measurable, so by assumption 8 φ is F (0) ⊗ B+ ⊗ C-measurable. Herein

|φ(s, θ)| ≤ (|zK(v, s) f (s, θ)| | f (s, θ)|) ∧ 2 ≤ (|z| ∥K(v, s)∥ ∨ 2)(| f (s, θ)| ∧ 1),

whence ∫ t

0
ds
∫
|φ(s, θ)|π(s, dθ) ≤

(
|z|max

s≤t
∥K(v, s)∥ + 2

) ∫ t

0
ds
∫

(| f (s, θ)| ∧ 1)π(s, dθ). (30)

The random function | f | ∧ 1 is by assumption 8 F (0) ⊗ B+ ⊗ C-measurable, so by assumption 12∫ t

0
ds
∫

(| f (s, θ)| ∧ 1)π(s, dθ) =
∫ t

0

∫
(| f (s, θ)| ∧ 1)̃ν(ds, dθ),

whence in view of 10 and (30) we get
∫ t

0 ds
∫
Θ
|φ(s, θ)|π(s, dθ) < ∞. Now, Lemma 3.1 asserts equality (26). Setting v = t,

we turn it into ∫ t

0

∫ (
eizK(t,s) f (s,θ) − 1

)
ν̃(dsdθ) =

∫ t

0
ds
∫ (

eizK(t,s) f (s,θ) − 1
)
π(s, dθ).

And this is, in view of (7), none other than (28).

Likewise from 2, 3, 8, 9, (27) and the evident inequality

|eip − 1 − ip| ≤ p2 ∧ 2|p|, p ∈ R, (31)

we get by Lemma 3.1∫ t

0

∫ (
eizK(t,s)g(s,θ) − 1 − izK(t, s)g(s, θ)

)
υ̃(dsdθ) =

∫ t

0

∫ (
eizK(t,s)g(s,θ) − 1 − izK(t, s)g(s, θ)

)
ϖ(s, dθ),

which together with (8) proves (9). �
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We continue the list of assumptions:

14. There exist a nonrandom σ-finite measure Π on C and a positive random variable Ξ such that for all t ∈ R+ and
B ∈ C π(t, B) ≤ ΞΠ(B).

15. There exist a nonrandom σ-finite measure Σ on C and a positive random variable Ξ such that for all t ∈ R+ and
B ∈ C ϖ(t, B) ≤ ΞΣ(B).

16. There exists a nonrandom measurable function f on Θ such that (i) | f (s, θ)| ≤ f(θ) and (ii)
∫

ln(1 + f)dΠ < ∞.

17. There exists a nonrandom measurable function g on Θ such that (i) |g(s, θ)| ≤ g(θ) and (ii)
∫ (

g2 ∧ g
)

dΣ < ∞.

In the next two assumptions and four statements, K0 and K are continuous matrix-valued random function on R2
+; the

assumption that K satisfies equation (3) is not used. We assume the following:

18. There exists a positive random variable κ such that for all t > s

∥K0(t, s)∥ ∨ ∥K(t, s)∥ ≤ eκ(s−t).

19. There exists an increasing random process Λ such that for all t > s

∥K(t, s) − K0(t, s)∥ ≤ eκ(s−t)(Λ(t) − Λ(s)),

where κ is the same as in 18.

If assumption 19 is imposed and 18 is not, then κ will signify simply an F (0)-measurable positive random variable.

Throughout below, we tacitly use the fact that the function x 7→ x
1+x increases on R+.

Lemma 3.3. Let assumptions 14, 16 and 19 be satisfied, and let

lim
t→∞
Λ(t) < ∞. (32)

Then for any z ∈ Rd∗ ∫ t

0
ds
∫ (

eizK(t,s) f (s,θ) − eizK0(t,s) f (s,θ)
)
π(s, dθ)→ 0.

Proof. Denote H(t, s) = ∥K(t, s) − K0(t, s)∥, ϵ = lim
t→∞

(Λ(t) − Λ(0)) (< ∞ by condition (32)). It suffices, in view of
Lemma 2.8, the definition of H, the Fubini – Tonelli theorem and assumptions 14 and 16(i), to show that∫

Π(dθ)
∫ t

0

f(θ)H(t, s)
1 + f(θ)H(t, s)

ds→ 0. (33)

Assumption 19 and the definition of ϵ yield

f(θ)H(t, s)
1 + f(θ)H(t, s)

≤ ϵf(θ)eκ(s−t)

1 + ϵf(θ)eκ(s−t) ,

whence for any c ∈ [0, 1] ∫ ct

0

f(θ)H(t, s)
1 + f(θ)H(t, s)

ds ≤ ln
(
1 + ϵe−(1−c)κtf(θ)

)
− ln
(
1 + ϵe−κtf(θ)

)
.

And this together with 16(ii) implies by the DCT that for any c ∈ [0, 1[∫
Π(dθ)

∫ ct

0

f(θ)H(t, s)
1 + f(θ)H(t, s)

ds→ 0. (34)

Denote ρ(t, c) = Λ(t) − Λ(ct). It follows from (32) that for any c > 0

lim
t→∞

ρ(t, c) = 0. (35)
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By assumption 19 H(t, s) ≤ eκ(s−t)ρ(t, c) as s ≥ ct, so∫ t

ct

f(θ)H(t, s)
1 + f(θ)H(t, s)

ds ≤ ln (1 + ρ(t, c)f(θ)) − ln
(
1 + ρ(t, c)e−(1−c)κtf(θ)

)
.

And this together with 16(ii) and (35) implies by the DCT that for any c ∈]0, 1]∫
Π(dθ)

∫ t

ct

f(θ)H(t, s)
1 + f(θ)H(t, s)

ds→ 0,

whence with account of (34) relation (33) follows. �

Denote
γ(s, θ, z) = eizg(s,θ) − izg(s, θ) − 1.

Lemma 3.4. Let assumptions 15, 17 – 19 be satisfied and condition (32) be fulfilled. Then for any z ∈ Rd∗∫ t

0
ds
∫

(γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s)))ϖ(s, dθ)→ 0.

Proof. It suffices, in view of assumptions 15 and the Fubini – Tonelli theorem, to show that∫ t

0
ds
∫
|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))|Σ(dθ)→ 0. (36)

Denote Bε = {θ : g(θ) ≤ ε}, Bε = {θ : g(θ) > ε}. Assumption 17(ii) implies, obviously, that for any ε > 0∫
Bε
g2dΣ < ∞ (37)

and ∫
Bε
gdΣ < ∞. (38)

Inequality (31) implies that

|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))| ≤ 2|z|2|g(s, θ)|2(∥K0(t, s)∥2 + ∥K(t, s)∥2),

whence in view of 17(i) and 18∫ t

0
ds
∫

Bε
|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))|Σ(dθ) ≤ 4|z|2

∫ t

0
e2κ(s−t)ds

∫
Bε
g2dΣ.

Hence, writing ∫ t

0
e2κ(s−t)ds =

1 − e−2κt

2κ
and noting that

lim
ε→0

∫
Bε
g2 dΣ = 0

because of (37), we get

lim
ε→0

lim
t→∞

∫ t

0
ds
∫

Bε
|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))|Σ(dθ) = 0. (39)

On the other hand, |eia − ia − (eib − ib)| ≤ 2|a − b| for any a, b ∈ R, so

|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))| ≤ 2|z| |g(s, θ)| ∥K0(t, s) − K(t, s)∥,

which together with 17(i) and 19 yields∫ t

0
ds
∫

Bε
|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))|Σ(dθ) ≤ 2|z|

∫ t

0
eκ(s−t)(Λ(t) − Λ(s))ds

∫
Bε
gdΣ. (40)
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Writing, for an arbitrary c ∈]0, 1[,∫ t

0
eκ(s−t)(Λ(t) − Λ(s))ds =

∫ ct

0
eκ(s−t)(Λ(t) − Λ(s))ds +

∫ t

ct
eκ(s−t)(Λ(t) − Λ(s))ds

and arguing as in the previous proof, we get from (32) and the assumption that Λ increases

lim
t→∞

∫ t

0
eκ(s−t)(Λ(t) − Λ(s))ds = 0. (41)

And this jointly with (40) and (38) implies that for all z ∈ Rd∗ and ε > 0

lim
t→∞

∫ t

0
ds
∫

Bε
|γ(s, θ, zK(t, s)) − γ(s, θ, zK0(t, s))|Σ(dθ) = 0.

Hence and from (39) relation (36) follows. �

Lemma 3.5. Let assumptions 7, 18 and 19 be satisfied and condition (32) be fulfilled. Suppose also that there exists a
positive random variable β such that for all t > s ≥ 0

tr⟨W⟩(t) − tr⟨W⟩(s) ≤ β(t − s). (42)

Then for any t ∈ R+ ∫ t

0
K(t, s)d⟨W⟩(s)K(t, s)⊤ −

∫ t

0
K0(t, s)d⟨W⟩(s)K0(t, s)⊤ → 0.

Proof. By Lemma 2.7∣∣∣∣∣∣
∫ t

0
zK(t, s)d⟨W⟩(s)(zK(t, s))⊤ −

∫ t

0
zK0(t, s)d⟨W⟩(s)(zK0(t, s))⊤

∣∣∣∣∣∣ ≤ |z|2
∫ t

0
(∥K0(t, s)∥ + ∥K(t, s)∥)H(t, s) d tr⟨W⟩(s). (43)

Assumptions 18, 19, condition (42) and the inequality e2p ≤ ep for p ≤ 0 imply that∫ t

0
(∥K0(t, s)∥ + ∥K(t, s)∥)H(t, s) d tr⟨W⟩(s) ≤ 2β

∫ t

0
eκ(s−t)(Λ(t) − Λ(s)) ds,

which together with (41) (emerging from (32)) and (43) proves the lemma. �

Lemma 3.6. Let assumptions 4 and 19 be satisfied and condition (32) be fulfilled. Suppose also that there exists a positive
random variable β such that for all t > s ≥ 0

var
[s, t]

U ≤ β(t − s). (44)

Then ∫ t

0
K(t, s)dU(s) −

∫ t

0
K0(t, s)dU(s)→ 0.

Proof. Writing on the basis of (44) and 19∣∣∣∣∣∣
∫ t

0
K(t, s)dU(s) −

∫ t

0
K0(t, s)dU(s)

∣∣∣∣∣∣ ≤ β
∫ t

0
eκ(s−t)(Λ(t) − Λ(s))ds,

we deduce the desired conclusion from (41) (emerging from (32)). �

4. The Main Result

Theorem 4.1. Let assumptions 1 – 8 and 11 – 17 be satisfied. Suppose also that there exist:
• an Rd-valued random variable ϑ,
• random matrices A0 and Υ,
• random σ-finite measures π0 and ϖ0 on C,
• positive random variables κ, α and β,
• Rd-valued measurable random functions f0 and g0 on Θ,
• a positive number a,
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• an increasing random process Λ with property (32)
— such that:

etA0

∫ t

0
e−sA0 dU(s)

P−→ ϑ, (45)∫ t

0
e(t−s)A0 d⟨W⟩(s)e(t−s)A⊤0

P−→ Υ; (46)

for any B ∈ C
π0(B) ≤ ΞΠ(B), (47)

ϖ0(B) ≤ ΞΠ(B), (48)

where Π, Σ and Ξ are from assumptions 14 and 15; for all u ∈ R+∥∥∥euA0
∥∥∥ ≤ e−au; (49)

for all t > s ≥ 0
∥K(t, s)∥ ≤ eκ(s−t), (50)∥∥∥K(t, s) − e(t−s)A0

∥∥∥ ≤ eα(s−t)(Λ(t) − Λ(s)) (51)

and inequalities (42) and (44) hold; for any θ ∈ Θ

f (t, θ)
P−→ f0(θ), (52)

g(t, θ)
P−→ g0(θ); (53)

for any z ∈ Rd∗ ∫
(eiz f0(θ) − 1)π(t, dθ)

P−→
∫

(eiz f0(θ) − 1)π0(dθ), (54)∫
(eizg0(θ) − 1 − izg(θ))ϖ(t, dθ)

P−→
∫

(eizg0(θ) − 1 − izg0(θ))ϖ0(dθ). (55)

Then the distribution of ξ(t) weakly converges, as t → ∞, to the distribution with characteristic function

Eeizϑ−zΥz⊤/2+Φ(z)+Γ(z),

where

Φ(z) =
∫ ∞

0
du
∫ (

eizeuA0 f0(θ) − 1
)
π0(dθ), (56)

Γ(z) =
∫ ∞

0
du
∫ (

eizeuA0 g0(θ) − 1 − izeuA0 g0(θ)
)
ϖ0(dθ). (57)

Proof. 1◦. Denote D(u) = euA0 ,K0(t, s) = D(t − s),

ηt(u, z) =
∫ (

eizD(u) f (t−u,θ) − 1
)
π(t − u, dθ), (58)

ψt(u, z) =
∫ (

eizD(u)g(t−u,θ) − 1 − izD(u)g(t − u, θ)
)
ϖ(t − u, dθ). (59)

Rewriting condition (49) in the form
∥D(u)∥ ≤ e−au, (60)

and taking to account (50), (51) and the assumed properties of Λ, we see that K and K0 satisfy assumptions 18 and 19
(with κ ∧ α as the former κ). Hence and from assumptions 14 – 17 we get by Lemmas 3.3 and 3.4

Ft(z) −
∫ t

0
ηt(u, z)du→ 0, (61)

Gt(z) −
∫ t

0
ψt(u, z)du→ 0, (62)
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where Ft(z) and Gt(z) are defined by equalities (28) and (29), respectively.

2◦. Let us show that ∫ t

0
ηt(u, z)du −

∫ t

0
du
∫ (

eizD(u) f0(θ) − 1
)
π(t − u, dθ)

P−→ 0. (63)

Denote δt(u, θ) = | f (t − u, θ) − f0(θ)|. From (58) we have by Lemma 2.8, assumption 14 and the Fubini – Tonelli theorem∣∣∣∣∣∣
∫ t

0
ηt(u, z)du −

∫ t

0
du
∫ (

eizD(u) f0(θ) − 1
)
π(t − u, dθ)

∣∣∣∣∣∣ ≤ (|z| ∨ 2)Ξ
∫
Π(dθ)

∫ t

0

∥D(u)∥δt(u, θ)
1 + ∥D(u)∥δt(u, θ)

du. (64)

On the strength of (60)
∥D(u)∥δt(u, θ)

1 + ∥D(u)∥δt(u, θ)
≤ κt(u, θ), (65)

where

κt(u, θ) =
e−auδt(u, θ)

1 + e−auδt(u, θ)
. (66)

For convenience of the subsequent derivations, we set κt(u, θ) = 0 as u > t.

By construction 0 ≤ κt(u, θ) < 1. By condition (52)

κt(u, θ)
P−→ 0,

whence by Lemma 2.5 for any T > 0 ∫ T

0
κt(u, θ)du

P−→ 0. (67)

By assumption 16(i) | f (t − u, θ)| ≤ f(θ), which together with (52) yields

| f0(θ)| ≤ f(θ). (68)

Hence and (again) from 16(i) we get δt(u, θ) ≤ 2f(θ), whence in view of (66)

κt(u, θ) ≤
2f(θ)e−au

1 + 2f(θ)e−au ,

and therefore for any [a, b] ⊂ R+ ∫ b

a
κt(u, θ)du ≤ ln(1 + 2e−αaf(θ)).

Herein, obviously, ln(1 + 2x) ≤ 2 ln(1 + x). Thus∫ T

0
κt(u, θ)du ≤ 2 ln(1 + f(θ)),

which together with (66) and finiteness (by assumption 16(ii)) of
∫

ln(1 + f(θ))Π(dθ) implies by Lemma 2.6
(
applied to

X = Θ, X = C, µ = Π, ζt(θ) =
∫ T

0 κt(u, θ)du
)

that

l.i.p.
t→∞

∫
Π(dθ)

∫ T

0
κt(u, θ)du = 0. (69)

Further, for any t ≥ T ∫
Π(dθ)

∫ t

T
κt(u, θ)du ≤

∫
ln
(
1 + 2e−αT f(θ)

)
Π(dθ),

which together with 16(ii) and the DCT yields

lim
T→∞

sup
t≥T

∫
Π(dθ)

∫ t

T
κt(u, θ)du = 0.

And this jointly with (69) entails (63).
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3◦. Let us denote
γt(u, θ, z) = eizD(u)g(t−u,θ) − 1 − izD(u)g(t − u, θ),

γ0(u, θ, z) = eizD(u)g0(θ) − 1 − izD(u)g0(θ)

and show that ∫ t

0
ψt(u, z)du −

∫ t

0
du
∫

γ0(u, θ, z)ϖ(t − u, dθ)
P−→ 0. (70)

Recalling (59), we see that ψt(u, z) =
∫
γt(u, θ, z)ϖ(t − u, dθ), so it suffices, in view of 15, to prove the relation∫ t

0
du
∫
|γt(u, θ, z) − γ0(u, θ, z)|Σ(dθ)→ 0. (71)

Inequalities (31) and (60) imply that

|γt(u, θ, z) − γ0(u, θ, z)| ≤ 2|z|2e−2au(|g(t − u, θ)|2 + |g0(θ)|2).

By assumption 17(i) |g(t − u, θ)| ≤ g(θ), which together with (53) yields

|g0(θ)| ≤ g(θ). (72)

Thus
|γt(u, θ, z) − γ0(u, θ, z)| ≤ 4|z|2e−2aug(θ)2.

Hence and from (37) we get

lim
ε→0

lim
t→∞

∫ t

0
du
∫

Bε
|γt(u, θ, z) − γ0(u, θ, z)|Σ(dθ) = 0. (73)

On the other hand, |eib − ib − (eic − ic)| ≤ 2|b − c| for any b, c ∈ R, so

|γt(u, θ, z) − γ0(u, θ, z)| ≤ 2e−au|z|ht(u, θ),

where
ht(u, θ) = |g(t − u, θ) − g0(θ)|.

Thus ∫ t

0
ds
∫

Bε
|γt(u, θ, z) − γ0(u, θ, z)|Σ(dθ) ≤ 2|z|

∫ t

0
e−auqt(u, ε)du, (74)

where
qt(u, ε) =

∫
Bε

ht(u, θ)Σ(dθ). (75)

Condition (53) means that ht(u, θ)
P−→ 0 for all u and θ; inequality (38) and the definition of Bε show that Π(Bε) < ∞;

assumption 17(i) and inequality (72) imply that
ht(u, θ) ≤ 2g(θ). (76)

Hence and from (38) we get by Lemma 2.5

qt(u, ε)
P−→ 0 (77)

for all positive u and ε. Herein

qt(u, θ) ≤ C ≡ 2
∫

Bε
gdΠ (78)

in view of (75) and (76). Then again by Lemma 2.5∫ T

0
e−auqt(u, ε)du

P−→ 0 (79)

for all positive T and ε. Besides, inequality (78) implies that for any t > T∫ t

T
e−auqt(u, ε)du ≤ Cα−1e−aT
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and therefore

lim
T→∞

sup
t>T

∫ t

T
e−auqt(u, ε)du = 0,

which together with (79) implies ∫ t

0
e−auqt(u, ε)du

P−→ 0.

This relation jointly with (74) and (73) proves (70).

4◦. Lemma 2.8 and inequality (60) yield∣∣∣eizD(u) f0(θ) − 1
∣∣∣ ≤ 2(|z| ∨ 2)

e−au| f0(θ)|
1 + e−au| f0(θ)| ,

whence, using the Fubini – Tonelli theorem, we get∫ ∞
0

du
∫ ∣∣∣eizD(u) f0(θ) − 1

∣∣∣ π0(dθ) ≤ 2(|z| ∨ 2)
∫

π0(dθ)
∫ ∞

0

e−au| f0(θ)|
1 + e−au| f0(θ)|du,

which together with (47), (68) and 16(ii) results in∫ ∞
0

du
∫ ∣∣∣eizD(u) f0(θ) − 1

∣∣∣ π0(dθ) < ∞.

Thus the definition Φ(z) by formula (56) is correct and there holds the estimate

|Φ(z)| ≤ 2Ξ(|z| ∨ 2)
∫

ln(1 + f)dΠ

showing that Φ satisfies condition (10).

Let us show that ∫ t

0
du
∫ (

eizD(u) f0(θ) − 1
)
π(t − u, dθ)

P−→ Φ(z). (80)

This will be done if we establish the relation ∫ ∞
0

ζt(u, z)du
P−→ 0, (81)

where
ζt(u, z) =

1
Ξ

∣∣∣∣∣∫ (eizD(u) f0(θ) − 1
)
π(t − u, dθ) −

∫ (
eizD(u) f0(θ) − 1

)
π0(dθ)

∣∣∣∣∣ ,
and π is defined for negative values of the temporal argument by zero. (The divider Ξ will enable us to construct a
nonrandom majorant for ζt and thereon to apply Lemma 2.6.)

By construction, Lemma 2.8, assumption 14, condition (47) and formula (68)

0 ≤ ζt(u, z) ≤ Z(u, z), (82)

where

Z(u, z) = 4(|z| ∨ 2)
∫

e−auf(θ)
1 + e−auf(θ)

Π(dθ). (83)

By condition (54)

ζt(u, z)
P−→ 0 (84)

for all u ∈ R+ and z ∈ Rd∗. By construction Z(u, z) is nonrandom. Formula (83) and assumption 16(ii) imply that∫ ∞
0

Z(u, z)du < ∞ (85)

and (by the DCT) Z(u, z) → 0 as u → ∞, so that for any r > 0 the Lebesgue measure of the set {u : Z(u, z) > r} is finite.
Now, (81) follows from (82) and (84) by Lemma 2.6.

5◦. Inequalities (31) and (60) yield∣∣∣eizD(u)g0(θ) − 1 − izD(u)g0(θ)
∣∣∣ ≤ 2(|z|2 ∨ |z|)e−au(|g0(θ)|2 ∧ |g0(θ)|),
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whence, using the Fubini – Tonelli theorem, we get∫ ∞
0

du
∫ ∣∣∣eizD(u)g0(θ) − 1 − izD(u)g0(θ)

∣∣∣ϖ0(dθ) ≤ 2(|z|2 ∨ |z|)a−1
∫

(|g0|2 ∧ |g0|)dϖ0,

which together with (48), (72) and 17(ii) results in∫ ∞
0

du
∫ ∣∣∣eizD(u)g0(θ) − 1 − izD(u)g0(θ)

∣∣∣ϖ0(dθ) < ∞. (86)

Thus the definition Γ(z) by formula (57) is correct and there holds the estimate

|Γ(z)| ≤ 2(|z|2 ∨ |z|)a−1
∫

(g2
0 ∧ g0)dΣ

showing that Γ satisfies condition (11).

Let us show that ∫ t

0
du
∫ (

eizD(u)g0(θ) − 1 − izD(u)g0(θ)
)
ϖ(t − u, dθ)

P−→ Γ(z). (87)

This will be done if we establish relation (81), where this time (unlike item 4◦)

ζt(u, z) =
1
Ξ

∣∣∣∣∣∫ (eizD(u)g0(θ) − 1 − izD(u)g0(θ)
)
ϖ(t − u, dθ) −

∫ (
eizD(u)g0(θ) − 1 − izD(u)g0(θ)

)
ϖ0(dθ)

∣∣∣∣∣ ,
and ϖ is defined for negative values of the temporal argument by zero.

The above expression, assumption 15, condition (48) and formulas (72), (31) imply (82), where this time (unlike item 4◦)

Z(u, z) = 4(|z|2 ∨ |z|)e−au
∫

(g2 ∧ g)dΣ. (88)

By condition (55) relation (84) holds for all u ∈ R+ and z ∈ Rd∗. Obviously, Z(u, z) → 0 as u → ∞, so that for any r > 0
the Lebesgue measure of the set {u : Z(u, z) > r} is finite. Now, (81) follows from (82) and (84) by Lemma 2.6.

6◦. Obviously, condition (50) entails (9).

Conditions (51) amounts to assumption 19 for the K0 defined in item 1◦. So Lemma 3.6 whose other conditions are
retained in this theorem asserts that ∫ t

0
K(t, s)dU(s) − etA0

∫ t

0
e−sA0 dU(s)

P−→ 0,

hereon (45) implies that ∫ t

0
K(t, s)dU(s)

P−→ ϑ. (89)

Likewise from (51) and (44) we deduce by Lemma 3.5 that∫ t

0
K(t, s)d⟨W⟩(s)K(t, s)⊤ −

∫ t

0
e(t−s)A0 d⟨W⟩(s)e(t−s)A⊤0

P−→ 0,

hereon (46) implies that ∫ t

0
K(t, s)d⟨W⟩(s)K(t, s)⊤

P−→ Υ. (90)

From (61), (63) and (80) we have

Ft(z)
P−→ Φ(z), (91)

where Φ(z) is defined by (56). It follows from (62), (70) and (87) that

Gt(z)
P−→ Γ(z), (92)

where Γ(z) is defined by (57). Properties (10) and (11) of these Φ and Γ were verified in items 4◦ and 5◦.

Relations (89) – (92) entail (12) (even in a stronger form — with
P−→ instead of

d−→). Now, noting that assumptions 9 and
10 are satisfied because of 14 – 16 and the evident inequality p ∧ 1 ≤ 2 ln(1 + p) (p > 0), we deduce the conclusion of
the theorem from Corollary 2.4. �
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Conditions (50) and (51) (the latter accompanied by (32)) of the theorem, unlike the others, involve the function K that
is not pre-specified. Its explicit expression is available only in very special cases, so to finalize the main result we must
give more elementary conditions guaranteing the fulfilment of (51), (32) and (50). In the next statement, (50) is still an
assumption.

Proposition 4.2. Let condition (50) be fulfilled. Suppose also that there exists random variables ϱ, ς and an increasing
random process H such that for all t > s ≥ 0

∥e(ι(t)−ι(s))A0∥ ≤ eϱ(s−t), (93)

∥e(ι(t)−ι(s))A0 − e(t−s)A0∥ ≤ eς(s−t)(H(t) − H(s)). (94)

Then: (i) inequality (51) holds with α = κ ∧ ϱ ∧ ς, Λ = H + V,

V(t) =
∫ t

0
∥A(u) − A0∥ |dι(u)|; (95)

(ii) if, moreover, lim
t→∞

H(t) < ∞ and ∫ ∞
0
∥A(u) − A0∥ |dι(u)| < ∞,

then lim
t→∞
Λ(t) < ∞.

Proof. Denote K′(t, s) = e(ι(t)−ι(s))A0 . From (50), and (93) and (95) we get by Corollary 2.11

∥K(t, s) − K′(t, s)∥ ≤ e(κ∧ϱ)(s−t)(V(t) − V(s)),

which together with (94) completes the proof. �

It remains to find elementary sufficient conditions for (50).

Lemma 4.3. Let K be the solution of equation (3) on R2
+, where ι is a continuous increasing function, and A is a matrix-

valued Borel function such that for any t > 0 ∫ t

0
∥A(u)∥dι(u) < ∞.

Suppose that there exists a nonnegative Borel function a such that

x⊤A(t)x ≤ −a(t)|x|2 (96)

for all t > 0 and x ∈ Rd. Then for all t > s ≥ 0

∥K(t, s)∥ ≤ exp
{
−
∫ t

s
a(u)dι(u)

}
. (97)

Proof. Fix x and denote X(t, s) = K(t, s)x. By construction X satisfies the equation

X(t, s) = x +
∫ t

s
A(s)X(u, s)dι(u).

Then it follows from (96) by Theorem 3.1 in (Yurachkivsky, 2014) (actually, by its very special particular case) that

|X(t, s)| ≤ |x| exp
{
−
∫ t

s
a(u)dι(u)

}
,

which together with the definition of the operator norm implies (97). �
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