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Abstract

This article addresses the various properties and different methods of estimation of the unknown parameters of a three-
parameter Dagum distribution from the frequentist point of view. Although, our main focus is on estimation from fre-
quentist point of view, yet, various mathematical and statistical properties of the Dagum distribution (such as quantiles,
moments, moment generating function, hazard rate, mean residual lifetime, mean past lifetime, mean deviation about
mean and median, various entropies, Bonferroni and Lorenz curves and order statistics) are derived. We briefly describe
different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moment estimators,
percentile based estimators, least squares estimators, maximum product of spacings estimators, minimum distances esti-
mators, Cramér-von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling estimators and compare them
using extensive numerical simulations. Monte Carlo simulations are performed to compare the performances of the pro-
posed methods of estimation for both small and large samples. Finally, a real data set have been analyzed for illustrative
purposes.

Keywords: dagum distribution, maximum likelihood estimators; method of moment estimators; least squares estimators;
weighted least squares estimators; percentile estimators; method of maximum product spacing.

1. Introduction

Dagum distribution was introduced by Dagum (Dagum, C., 1977) for modeling personal income data as an alternative
to the Pareto and log-normal models. This distribution has been extensively used in various fields such as, income and
wealth data, meterological data, reliability and survival analysis. The Dagum distribution is also known as the inverse
Burr XII distribution, especially in the actuarial literature. An important characteristic of Dagum distribution is that its
hazard function can be monotonically decreasing, an upside-down bathtub, or bathtub and then upside-down bathtub
shaped, for details see Domma (Domma, F., 2002). This behavior has led several authors to study the model in different
fields. In fact, recently, the Dagum distribution has been studied from a reliability point of view and used to analyze
survival data (Domma, et al., 2011; Domma, et al., 2013). Kleiber and Kotz (Kotz, S., 2003) and Kleiber (Kleiber, C.,
2008) provided an exhaustive review on the origin of the Dagum model and its applications. Domma et al. (Domma, et
al., 2011) estimated the parameters of Dagum distribution with censored samples. Shahzad and Asghar (Shahzad, M. N.,
& Asghar, Z., 2013) used TL-moments to estimate the parameter of this distribution. Oluyede and Ye (Oluyede, B. O.,
& Ye, Y., 2014) presented the class of weighted Dagum and related distributions. Domma and Condino (Domma, F., &
Condino, F., 2013) proposed the five parameter beta-Dagum distribution.

A continuous random variable T is said to have a three-parameter Dagum distribution, abbreviated as T ∼ Dag(β, λ, δ), if
its density probability function (pdf) is given as

f (t; β, λ, δ) = βλδt−δ−1
(
1 + λt−δ

)−β−1
, t > 0, (1)

where λ > 0 is the scale parameter and its two shape parameters β and δ are both positive.

The corresponding distribution function of (1) is given by

F (t; β, λ, δ) =
(
1 + λt−δ

)−β
, t > 0, β, λ, δ > 0. (2)

The main aim of this paper is to consider different estimation methods and study how the estimators behave for different
sample sizes and for different parameter values. We mainly compare; maximum likelihood estimators, moments esti-
mators, L-moment estimators, percentile based estimators, least squares estimators, maximum product of spacings esti-
mators, minimum distances estimators, Cramér-von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling
estimators.
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The maximum likelihood estimation (MLE) and the method of moments estimation (MME) are traditional methods of
estimation. Although MLE is advantageous in terms of its efficiency and its nice theoretical properties, there is evidence
that it does not perform well, especially, for small samples. The method of moments is easily applicable and often gives
explicit forms for estimators of unknown parameters. There are, however, cases where the method of moments does not
give explicit estimators e.g., for the parameters of the Weibull and Gompertz distributions. Therefore, other methods
have been proposed in the literature as alternatives to the traditional methods of estimation. Among them, the L-moments
estimator (LME), the least squares estimator (LSE), the generalized spacing estimator (GSE) and the percentile estimator
(PE) are often suggested. Generally, these methods do not have good theoretical properties but in some cases they can
provide better estimates of the unknown parameters than the MLE and the MME.

The appeal of the methods of estimation varies from user to user and according to the area of application. This paper con-
siders ten different frequentist estimators for the Dagum distribution and evaluates their performance for different sample
sizes and different parameter values. Simulations are used to compare the performance as it is not possible to compare
all estimators theoretically, see Gupta and Kundu (Gupta, R. D. & Kundu, D., 2001; Gupta, R. D. & Kundu, D., 2007).
Comparisons of estimation methods for other distributions have been performed in the literature, for example(Kundu, D.,
& Raqab, M. Z., 2005; Alkasasbeh, M. R., & Raqab, M. Z., 2009; Dey, S., Dey, T.,& Kundu, D., 2014; Teimouri, M., et
al., 2013).

The paper is organized as follows. In Section 2, we study the mathematical and statistical properties of the distribution.
Section 3 deals with parameter estimation; simulation and real data application are presented in Section 4. The paper ends
with a brief conclusion in Section 5.

2. Some Mathematical and Statistical Properties

In this section, we provide some important mathematical and statistical properties of Dagum Distribution like quantiles,
moments, moment generating function, hazard rate and mean residual life functions, conditional moments, mean devia-
tion, Bonferroni and Lorenz curves, Rényi and Shannon entropy.

2.1 Shape of Pdf

The study of shapes is useful to determine if a data set can be modeled by the Dag(β, λ, δ). The limit of Dagum density
as x → ∞ is 0 and the limit as x → 0 is ∞. The following theorem gives simple conditions under which the pdf (1) is
decreasing or unimodel.

Theorem 1. The pdf, f (x), of X ∼ Dag(β, λ, δ) is decreasing (unimodel) function if βδ ≤ 1(βδ > 1).

Proof. The first derivative of ln f (t) is

d ln f (t)
dt

= − (δ + 1)
t
+
λδ(β + 1)t−(δ+1)

(1 + λt−δ)

Now, it is easy to see that for βδ ≤ 1, the function (ln f (x))′ is negative, which implies that the pdf f (x) is decreasing
function with f (0) = ∞ and f (∞) = 0. We consider now the case βδ > 1, the function (ln f (x))′ is increasing for λ > 1/βδ
and decreasing for λ ≤ 1/βδ. 2

Figure 1 shows different shapes of the pdf of the Dagum distribution for various parameter specifications.

2.2 Quantile Function

Let X denote a random variable with the pdf given by (1). The quantile function, denoted by , is

Q(p) = inf{t ∈ R : F(t) ≥ p}, where 0 < p < 1.

From (2), it follows that the quantile function

Q(p; β, λ, δ) =
{

1
λ

[
p−

1
β − 1

]}− 1
δ

. (3)

The first quartile, the median and the third quartile can be obtained simply by applying (3). In particular, for p = 0.5 we
have the median of the Dagum distribution as follows.

Median(T ) =
{

1
λ

[
(0.5)−

1
β − 1

]}− 1
δ

. (4)
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Figure 1. The pdf of the Dagum distribution for various parameter specifications

2.3 Moments

We hardly need to emphasize the necessity and importance of the moments in any statistical analysis especially in applied
work. Some of the most important features and characteristics of a distribution can be studied through moments, e.g.
tendency, dispersion, skewness, and kurtosis.

If the random variable T is distributed as Dag(β, λ, δ), then its kth moment around zero can be expressed as

E[T k] = βλδ
∫ ∞

0
tk−δ−1

(
1 + λt−δ

)−β−1
dt = βλ

k
δ B

(
1 − k

δ
, β +

k
δ

)
, (5)

where B (·, ·) is the complete beta function. From relation (5) we can observe the mean, µ = E[T ], and the variance,
σ2 = V(T ), of T as follows.

E[T ] = βλ
1
δ B

(
1 − 1

δ
, β +

1
δ

)
.

Var[T ] = βλ
2
δ B

(
1 − 2

δ
, β +

2
δ

)
−

{
βλ

1
δ B

(
1 − 1

δ
, β +

1
δ

)}2

.
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2.4 Moment Generating Function

Many of the interesting characteristics and features of a distribution can be obtained via its moment generating function
(mgf) and moments. Let T denote a random variable with the probability density function (1). By definition of moment
generating function of T and using (1), we have

MT (u) = E(eut) = βλδ
∫ ∞

0
eutt−δ−1

(
1 + λt−δ

)−β−1
dt

= βλδ

∞∑
j=0

t j

j!

∫ ∞

0
t j−δ−1

(
1 + λt−δ

)−β−1
dt

= λ
j
δ

∞∑
j=0

t j

j!
Γ(1 − j

δ
)Γ(β + j

δ
)

Γ(β)
. (6)

Consequently, the rth moment of T is

µ′r = E[T r] = λ
r
δ

Γ(1 − r
δ
)Γ(β + r

δ
)

Γ(β)

The coefficient of variation(CV), Skewness(CS) and Kurtosis(CK) are, respectively, given by

CV =
σ

µ
=

[
c
(
Γ2 − cΓ2

1

)] 1
2

Γ1
.

CS =
µ3

σ3 =
E(x3) − 3µE(x2) + 2µ3

σ3 =
Γ3 − 3cΓ1Γ2 + 2c2Γ3

1
√

c
(
Γ2 − cΓ2

1

) .

CK =
µ4

σ4 =
E(x4) − 4µE(x3) + 6µ2E(x2) − 3µ4

σ4 =
Γ4 − cΓ1Γ3 + 6c2Γ1Γ2 − 3c3Γ4

1

c3
[
Γ2 − cΓ2

1

]4 ,

where c = 1
Γ(β) and Γ j = λ

j
δ Γ

(
1 − j

δ

)
Γ

(
β + j

δ

)
.

2.5 Hazard Function

Among the basic tools for studying the ageing and reliability characteristics of a system is the hazard rate (HR) function.
The HR gives the rate of failure of the system immediately after time t. Thus the hazard rate function of the Dagum
distribution is given by

h(t) =
f (t)

1 − F(t)
=
βλδt−(δ+1)(1 + λt−δ)−(β+1)

1 − (1 + λt−δ)−β
. (7)

Using the Glasers lemma (Glaser, 1980), it can be proved that if FX ∼ Dag(β, λ, δ) then F can have upside-down bathtub,
decreasing, and upside-down bathtub and then bathtub shaped, see Domma (Domma, 2002).

Figure 1 gives different shapes of the hrf of the Dagum distribution for various parameter specifications.

2.6 Mean Residual Lifetime

The mean residual life (MRL) is the expected remaining life, T − t, given that the item has survived to time t. Thus, in
life testing situations, the expected additional lifetime given that a component has survived until time t is called the MRL.
Since the MRL function is the expected remaining life, t must be subtracted, yielding

µ(t) = E[T − t|T > t] =
1

F̄(t)

∫ ∞

t
F̄(u)du, t ≥ 0.

Clearly, µ(0) = µ = E[X]. The mean residual lifetime function of T ∼ Dag(β, λ, δ) is given by

µ(t) =
βλδ

∫ ∞
t y−δ(1 + λy−δ)−(β+1)dy

1 − (1 + λt−δ)−β
− t (8)
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Figure 2. The hrf of the Dagum distribution for various parameter specifications

2.7 Mean Past Lifetime (MPL)

In a real life situation, where systems often are not monitored continuously, one might be interested in getting inference
more about the history of the system e.g., when the individual components have failed. Assume now that a component
with lifetime X has failed at or some time before t, t ≥ 0. Consider the conditional random variable t − T |T ≤ t. This
conditional random variable shows, in fact, the time elapsed from the failure of the component given that its lifetime is
less than or equal to t. Hence, the mean past lifetime (MPL) of the component can be defined as

k(t) = E[t − T |T ≤ t] = t −
∫ t

0 F(x)dx

F(t)
= t −

∫ t
0 x f (x)dx

F(t)

= t −
βλ

1
δ

[
t−δλ

]− 1
δ ∑∞

n=0(−1)n
(
β+n+1

n

)
[tλ−

1
δ ]n+1

(n− 1
δ+1)

(1 + λt−δ)−β
.

One can easily show that k(t)→ ∞ as t → 0.

2.8 Conditional Moments

For lifetime models, it is also of interest to know what E(T n|T > t) is. It can be easily seen that

E(T n|T > t) =
1

F̄(t)

∫ ∞

t
tn f (t)dt
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In particular

E(T |T > t) =
1

F̄(t)
βλ

1
δ

(
t−δλ

)− 1
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
t−δλ

)n+1

(n − 1
δ
+ 1)

.

E(T 2|T > t) =
1

F̄(t)
βλ

2
δ

(
t−δλ

)− 2
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
t−δλ

)n+1

(n − 2
δ
+ 1)

.

E(T 3|T > t) =
1

F̄(t)
βλ

3
δ

(
t−δλ

)− 3
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
t−δλ

)n+1

(n − 3
δ
+ 1)

.

E(T 4|T > t) =
1

F̄(t)
βλ

4
δ

(
t−δλ

)− 4
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
t−δλ

)n+1

(n − 4
δ
+ 1)

.

The mean residual lifetime function is E(T |T > t) − t .

2.9 Mean Deviation

The mean deviations about the mean and the median can be used as measures of spread in a population. Let µ = E(T ) and
M be the mean and the median of the Dagum distribution, respectively. The mean deviations about the mean and about
the median can be calculated as

δ1(T ) =
∫ ∞

0
|t − µ| f (t)dt and δ2(T ) =

∫ ∞

0
|t − M| f (t)dt, (9)

respectively.

E (|T − m|) =

∫ ∞

0
|t − m| f (t)dt

=

∫ m

0
(m − t) f (t)dt +

∫ ∞

m
(t − m) f (t)dt

= 2m
∫ m

0
f (t)dt − m − E(T ) + 2

∫ ∞

m
t f (t)dt

= 2mF(m) + 2
∫ ∞

m
t f (t)dt − E(T ) − m

Therefore, since we have µ = βλ−
1
δ B(1 − 1

δ
, β + 1

δ
) and M =

[
1
λ

[
(0.5)−

1
β − 1

] ]− 1
δ

,

δ1(T ) = 2µF(µ) − 2µ + 2
∫ ∞

µ

t f (t)dt

= 2µ
(
(1 + λµ−δ)−β − 1

)
+ 2βλ

1
δ

(
µ−δλ

)− 1
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
µ−δλ

)n+1

(n − 1
δ
+ 1)

.

δ2(T ) = 2MF(M) − M + 2
∫ ∞

M
t f (t)dt − µ

= 2M(1 + λM−δ)−β − M + 2βλ
1
δ

(
M−δλ

)− 1
δ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
M−δλ

)n+1(
n − 1

δ
+ 1

) − µ.
2.10 Entropies

The concept of entropy is important in different areas such as physics, probability and statistics, communication theory,
economics, etc. Several measures of entropy have been studied and compared in the literature. Entropy of a random
variable T is a measure of variation of the uncertainty. If Thas the probability density function f (t) then the Shannon
entropy (see Shannon (1951)) is defined by
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H(t) = −E[ln f (t)] = −
∫ ∞

0
f (t) ln f (t)dt

= −
∫ ∞

0
f (t) ln(βλδ)dt + (δ + 1)

∫ ∞

0
f (t) ln(t)dt + (β + 1)

∫ ∞

0
f (t) ln(1 + λt−δ)dt

= − ln(βλδ) + (δ + 1)
∫ ∞

0
f (t) ln(t)dt + (β + 1)

∫ ∞

0
f (t) ln(1 + λt−δ)dt

= − ln(βλδ) +
β

δ

ln(λ)
∞∑

k=0

(−1)k
(
n − k − 1

k

) (
λt−δ

)k
+

[
ψ(β) + γ

β

] + 2(β + 1)β
(β − 1)2 ,

where ψ(.) is the digamma function. Rényi entropy (Rényi (1961)) can be expressed as

Hθ(t) =
1

1 − θ ln
(∫ 1

0
f θ(t)dt

)
, θ > 0, θ , 1.

=
1

1 − θ ln


 (βλδ)θλ

1−θ
δ −θ

δ

 1∫
0

zβθ+
1−θ
δ −1 (1 − z)θ−

1−θ
δ −1 dz


=

1
1 − θ ln

 (βλδ)θλ
1−θ
δ −θ

δ

 Γ
(
βθ + 1−θ

δ

)
Γ
(
θ − 1−θ

δ

)
Γ(βθ + θ)

 , (10)

where z = (1 + λt−δ)−1. When θ → 1, the Rényi entropy converges to the Shannon entropy.

2.11 Order Statistics

Suppose T1,T2, . . . Tn is a random sample from (2). Let T1:n ≤ T2:n ≤ . . . ≤ Tn:n denote the the corresponding order
statistics. It is well known that the probability density function of the of rth order statistic, say Tr:n, 1 ≤ r ≤ n, is given by

fr:n(t) =
n!

(r − 1)!(n − r)!
[F(t)]r−1[1 − F(t)]n−r f (t), t > 0

=
n!

(r − 1)!(n − r)!

n−r∑
u=0

(−1)u
(

n − r
u

)
[F(t)]r−1+u f (t), (11)

and the cumulative distribution function

Fr:n(t) =

n∑
l=k

(
n
l

)
[F(t)]l[1 − F(t)]n−l

=

n∑
l=k

n−r∑
u=0

(−1)u
(

n
l

) (
n − r

u

)
[F(t)]l+u (12)

for k = 1, 2, . . . , n. It follows from (1) and (2) that

fr:n(t) =
βλδt−δ−1n!

(r − 1)!(n − r)!

n−r∑
u=0

(−1)u
(
n − r

u

)
(1 + λt−δ)−β

(
r+u+ 1

β

)
(13)

and

Fr:n(t) =
n∑

L=k

n−r∑
u=0

(−1)u
(
n
l

)(
n − r

u

)
(1 + λt−δ)−β(l+u) (14)

The jth moments of Tr:n can be expressed

E[T j
r:n] =

n!βλ1+ j
δ

(r − 1)!(n − r)!

n−r∑
u=0

(−1)u
(
n − r

u

)
B
(
1 − j

δ
,

j
δ
− β

(
r + u +

1
β

)
− 1

)
(15)
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2.12 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are proposed by Bonferroni (1930). These curves have applications not only in economics
to study income and poverty, but also in other fields like reliability, demography, insurance and medicine. They are defined
as

B(p) =
1
pµ

∫ q

0
t f (t)dt (16)

L(p) =
1
µ

∫ q

0
t f (t)dt, (17)

where µ = E[X] and q = F−1(p). By using (1), one can reduce (16) and (17) to

B(p) =
βλ

1
δ

(
q−δλ

)− 1
δ

pµ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
qλ−

1
δ

)n+1(
n − 1

δ
+ 1

)
and

L(p) =
βλ

1
δ

(
q−δλ

)− 1
δ

µ

∞∑
n=0

(−1)n
(
β + n + 1

n

) (
qλ−

1
δ

)n+1(
n − 1

δ
+ 1

) .
3. Methods of Estimation

In this section we describe ten estimation methods for estimating the parameters β , λ and δ of the Dag(β, λ, δ) distribution.
For all methods, we consider the case when all the parameters β, λ and δ are unknown. This is also considered in the
simulation study presented in Section 4.

3.1 Method of Maximum Likelihood

The method of maximum likelihood is the most frequently used method of parameter estimation (see Casella and Berger
(1990)). The method’s success stems no doubt from its many desirable properties including consistency, asymptotic
efficiency, invariance and simply its intuitive appeal. Let t1, . . . , tn be a random sample of size n from the Dag(β, λ, δ)
distribution with parameters β, λ and δ.

From (1) the likelihood is

L (β, λ, δ) = (αβδ)n
n∏

i=1

ti−δ−1(1 + λti−δ)−β−1, (18)

and log-likelihood function is

l (β, λ, δ) = n log β + n log λ + n log δ − (δ − 1)
n∑

i=1

ln ti

−(β + 1)
n∑

i=1

ln(1 + λti−δ). (19)

The maximum likelihood estimators of β̂MLE , λ̂MLE and δ̂MLE of the parameters β, λ and δ, can be obtained numerically
by maximizing, with respect to β, λ and δ, the log-likelihood function (19). In this case, the log-likelihood function is
maximized by solving in β, λ and δ, the non-linear equations are:

∂

∂β
l (β, λ, δ) =

n
β
−

n∑
i=1

ln(1 + λti−δ) = 0, (20)

∂

∂λ
l (β, λ, δ) =

n
λ
− (β + 1)

n∑
i=1

ti−δ

(1 + λti−δ)
= 0, (21)

∂

∂δ
l (β, λ, δ) =

n
δ
−

n∑
i=1

log ti + (β + 1)
n∑

i=1

ti−δ

(1 + λti−δ)
= 0. (22)
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3.2 Method of Moments

The MMEs of the three-parameter Dag(β, λ, δ) distribution can be obtained by equating the first three theoretical moments
of (1) with the sample moments 1

n
∑n

i=1 ti, 1
n
∑n

i=1 t2
i and 1

n
∑n

i=1 t3
i respectively,

1
n

n∑
i=1

ti = βλ
1
δ B

(
1 − 1

δ
, β +

1
δ

)
, (23)

1
n

n∑
i=1

t2
i = βλ

2
δ B

(
1 − 2

δ
, β +

2
δ

)
(24)

1
n

n∑
i=1

t3
i = βλ

3
δ B

(
1 − 3

δ
, β +

3
δ

)
(25)

3.3 Method of L-Moments

In this subsection we provide the L-moments estimators, which can be obtained as the linear combinations of order
statistics. The L-moments estimators were originally proposed by Hosking (1990), and it is observed that the L-moments
estimators are more robust than the usual moment estimators. The L-moment estimators are also obtained along the
same way as the ordinary moment estimators, i.e., by equating the sample L-moments with the population L-moments.
L-moment estimation provides an alternative method of estimation analogous to conventional moments and have the
advantage that they exist whenever the mean of the distribution exists, even though some higher moments may not exist,
and are relatively robust to the effects of outliers (Hosking, 1994).

Let t1:n < · · · < tn:n be the order statistics of a random sample of size n from DAG(β, λ, δ) distribution. From Hosk-
ing(1990), the first, second and third sample L-moments, respectively, are

l1 = t̄

l2 =
2

n (n − 1)

n∑
i=2

(i − 1) ti:n − l1

l3 =
6

n(n − 1)(n − 2)

n∑
i=3

(i − 1)(i − 2)ti:n −
6

n(n − 1)

n∑
i=2

(i − 1) ti:n + l1

Since the quantile function of the Dag(β, λ, δ) distribution is as given in (3), then the first, second and third population
L-moments of θ = (β, λ, δ), respectively, are

λ1(θ) =
∫ 1

0
Q(p|θ)dp = βλ

1
δ B

(
1 − 1

δ
, β +

1
δ

)
λ2(θ) =

∫ 1

0
Q(p|θ)(2p − 1)dp = 2βλ

1
δ B

(
1 − 1

δ
, 2β +

1
δ

)
− λ1(θ),

and

λ3(θ) =

∫ 1

0
Q(p|θ)(6p2 − 6p + 1)dp

= βλ
1
δ

[
6B

(
1 − 1

δ
, 3β +

1
δ

)
− 6B

(
1 − 1

δ
, 2β +

1
δ

)
+B

(
1 − 1

δ
, β +

1
δ

) ]
.

The L-moments estimators β̂LME , λ̂LME and δ̂LME of the parameters β , λand δ can be obtained by solving numerically
the equations

λ1

(̂
βLME , λ̂LME , δ̂LME

)
= l1,

λ2

(̂
βLME , λ̂LME , δ̂LME

)
= l2

λ3

(̂
βLME , λ̂LME , δ̂LME

)
= l3
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3.4 Method of Maximum Product of Spacings

Cheng and Amin (1979, 1983) introduced the maximum product of spacings (MPS) method as an alternative to MLE for
the estimation of parameters of continuous univariate distributions. Ranneby (1984) independently developed the same
method as an approximation to the Kullback-Leibler measure of information.

Let us define the uniform spacings of a random sample from the Dagum distribution distribution as

Di(β, λ, δ) = F (ti:n|β, λ, δ) − F (ti−1:n|β, λ, δ) ,

where F(t0:n|β, λ, δ) = 0, F(tn+1:n|β, λ, δ) = 1, and
∑n+1

i=1 Di(β, λ, δ) = 1.

The maximum product of spacings estimators β̂MPS , λ̂MPS and δ̂MPS of the parameters β, λ and δ are obtained by
maximizing the geometric mean of the spacings with respect to β , λ and δ.

G (β, λ, δ) =

n+1∏
i=1

Di(β, λ, δ)


1

n+1

, (26)

or, equivalently, by maximizing the function

H (β, λ, δ) =
1

n + 1

n+1∑
i=1

ln Di(β, λ, δ). (27)

The estimators θ̂MPS = (̂βMPS , λ̂MPS , δ̂MPS ) of the parameters θ = (β, λ, δ) can also be obtained by solving the nonlinear
equations

∂

∂β
H (θ) =

1
n + 1

n+1∑
i=1

1
Di(θ)

[∆1(ti:n | θ) − ∆1(ti−1:n | θ)] = 0, (28)

∂

∂λ
H (θ) =

1
n + 1

n+1∑
i=1

1
Di(θ)

[∆2(ti:n | θ) − ∆2(ti−1:n | θ)] = 0, (29)

∂

∂δ
H (θ) =

1
n + 1

n+1∑
i=1

1
Di(θ)

[∆3(ti:n | θ) − ∆3(ti−1:n | θ)] = 0, (30)

where

∆1 (ti:n | β, λ, δ) = −(1 + λt−δi:n)−β log(1 + λt−δi:n). (31)
∆2 (ti:n | β, λ, δ) = −β(1 + λt−δi:n)−β−1t−δi:n . (32)
∆3 (ti:n | β, λ, δ) = βλ(1 + λt−δi:n)−β−1t−δi:n log(ti:n). (33)

Cheng and Amin (1983) showed that maximizing H as a method of parameter estimation is as efficient as MLE estimation
and the MPS estimators are consistent under more general conditions than the MLE estimators.

3.5 Methods of Ordinary and Weighted Least-Squares

The least square estimators and weighted least square estimators were proposed by Swain et al. (1988) to estimate the
parameters of Beta distributions. Using the same notations in subsection (3.3), it is well known that

E
[
F (ti:n | β, λ, δ)

]
=

i
n + 1

.

V
[
F(ti:n | β, λ, δ)

]
=

i (n − i + 1)
(n + 1)2 (n + 2)

.

The ordinary least square estimates β̂OLS E , λ̂OLS E and δ̂OLS E of the parameters β, λ and δ are obtained by minimizing the
function:

S (β, λ, δ) =
n∑

i=1

[
F (ti:n | β, λ, δ) −

i
n + 1

]2

. (34)
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These estimates can also be obtained by solving the non-linear equations:

n∑
i=1

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆1 (ti:n | β, λ, δ) = 0,

n∑
i=1

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆2 (ti:n | β, λ, δ) = 0,

n∑
i=1

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆3 (ti:n | β, λ, δ) = 0,

where ∆1(.|β, λ, δ) , ∆2(.|β, λ, δ) and ∆3(.|β, λ, δ) are given by (31), (32) and (33), respectively.

The weighted least-squares estimators β̂WLS E , λ̂WLS E and δ̂WLS E of the parameters β , λ and δare obtained by minimizing
the function:

W (β, λ, δ) =
n∑

i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (ti:n | β, λ, δ) −

i
n + 1

]2

. (35)

These estimators can also be obtained by solving the non-linear equations:

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆1 (ti:n | β, λ, δ) = 0, (36)

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆2 (ti:n | β, λ, δ) = 0, (37)

n∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (ti:n | β, λ, δ) −

i
n + 1

]
∆3 (ti:n | β, λ, δ) = 0, (38)

where ∆1(.|β, λ, δ) , ∆2(.|β, λ, δ) and ∆3(.|β, λ, δ) are given by (31), (32) and (33), respectively.

3.6 Method of Percentiles

The Dagum distribution has an explicit distribution function, therefore in this case the unknown parameters β, λ and δ can
be estimated by equating the sample percentile points with the population percentile points and it is known as the percentile
method. This method was originally suggested by Kao (1958, 1959) and it has been used for Weibull distribution and for
generalized exponential distribution. In this paper, we apply the same technique for the Dagum distribution. If pi denotes
an estimate of F (ti:n | β, λ, δ), then the percentile estimators β̂PCE , λ̂PCE and δ̂PCE of the parameters β, λ and δ can be
obtained by minimizing, with respect to β, λ and δ the function:

P(β, λ, δ) =
n∑

i=1

ti:n − [
1
λ

[
p
− 1
β

i − 1
]]− 1

δ


2

,

where pi =
i

n+1 is the unbiased estimator of F (ti:n | β, λ, δ)(see Mann et al.(1974)). The estimates of β, λ and δ can be
obtained by solving the following nonlinear equations

n∑
i=1

λ
1
δ

ti:n − (
c1λ[ p

− 1
β

i − 1)]
)− 1

δ

 ln(pi)

δβ2
[
(p
− 1
β

i − 1)
1
δ+1

]
p

1
β

i

= 0

n∑
i=1

λ
1
δ−1

ti:n − (
1
λ
[ p
− 1
β

i − 1)]
)− 1

δ


δ
[
(p
− 1
β

i − 1)
1
δ

] = 0

n∑
i=1

λ
1
δ ln λ

ti:n − (
1
λ
[ p
− 1
β

i − 1)]
)− 1

δ

 ln(p
− 1
β

i − 1)

δ2
[
(p
− 1
β

i − 1)
1
δ

] = 0

respectively.
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3.7 Methods of Minimum Distances

In this section we present three estimation methods for β, λ and δ based on the minimization of the goodness-of-fit
statistics with respect to β , λ and δ. This class of statistics is based on the difference between the estimates of the
cumulative distribution function and the empirical distribution function.

3.7.1 Method of Cramér-von-Mises

To motivate our choice of Cramér-von-Mise type minimum distance estimators, MacDonald (1971) provided empirical
evidence that the bias of the estimator is smaller than the other minimum distance estimators. Thus, the Cramér-von Mises
estimates β̂CME , λ̂CME and δ̂CME of the parameters β, λ and λ are obtained by minimizing C(β, λ, δ) with respect to β, λ
and δ

C(β, λ, δ) =
1

12n
+

n∑
i=1

(
F (ti:n | β, λ, δ) −

2i − 1
2n

)2

. (39)

The estimators can be obtained by solving the following non-linear equations
n∑

i=1

(
F (ti:n | β, λ, δ) −

2i − 1
2n

)
∆1 (ti:n | β, λ, δ) = 0,

n∑
i=1

(
F (ti:n | β, λ, δ) −

2i − 1
2n

)
∆2 (ti:n | β, λ, δ) = 0

n∑
i=1

(
F (ti:n | β, λ, δ) −

2i − 1
2n

)
∆3 (ti:n | β, λ, δ) = 0,

where ∆1 (. | β, λ, δ), ∆2 (. | β, λ, δ) and ∆3 (. | β, λ, δ) are given by (31), (32) and (33), respectively.

3.7.2 Methods of Anderson-Darling and Right-tail Anderson-Darling

The Anderson-Darling test was developed by Anderson and Darling (1952, 1954) as an alternative to other statistical tests
for detecting sample distributions departure from normality. Specifically, the AD test converge very quickly towards the
asymptote.

The Anderson-Darling estimates β̂ADE , λ̂ADE and δ̂ADE of the parameters β, λ and δ are obtained by minimizing A(β, λ, δ)
with respect to β, λ and δ.

A(β, λ, δ) = −n − 1
n

n∑
i=1

(2i − 1)
{

log F (ti:n | β, λ, δ)

+ log F̄ (tn+1−i:n | β, λ, δ)
}
. (40)

The estimators can be obtained by solving following the non-linear equations:
n∑

i=1

(2i − 1)
[
∆1(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

− ∆1(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

]
= 0,

n∑
i=1

(2i − 1)
[
∆2(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

− ∆2(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

]
= 0,

n∑
i=1

(2i − 1)
[
∆2(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

− ∆3(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

]
= 0,

where ∆1 (· | β, λ, δ), ∆2 (· | β, λ, δ) and ∆3 (· | β, λ, δ) are given by (31) , (32) and (32), respectively.

The right-tail Anderson-Darling estimates α̂RT ADE and β̂RT ADE of the parameters α and β are obtained by minimizing
R(β, λ, δ) with respect to α and β:

R(β, λ, δ) =
n
2
− 2

n∑
i=1

F (ti:n | β, λ, δ)

−1
n

n∑
i=1

(2i − 1) log F̄ (tn+1−i:n | β, λ, δ) . (41)
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The estimators can also be obtained by solving the following non-linear equations:

−2
n∑

i=1

∆1(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

+
1
n

n∑
i=1

(2i − 1)
∆1(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

= 0,

−2
n∑

i=1

∆2(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

+
1
n

n∑
i=1

(2i − 1)
∆2(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

= 0,

−2
n∑

i=1

∆3(ti:n | β, λ, δ)
F(ti:n | β, λ, δ)

+
1
n

n∑
i=1

(2i − 1)
∆3(tn+1−i:n | β, λ, δ)
F̄(tn+1−i:n | β, λ, δ)

= 0,

where ∆1 (· | β, λ, δ) , ∆2 (· | β, λ, δ) and ∆3 (· | β, λ, δ) are given by (31), (32) and (33), respectively.

4. Numerical computations

4.1 Simulation Study

In this section, we conduct numerical computations to compare the performances of the estimators proposed in the
previous sections. The generation of the Dagum distribution can be easily obtained through the transformation T =[

1
λ

(
U−1/β − 1

)]−1/δ
, where U is a uniform on (0, 1). We consider two choices of the shape parameter, β = 1, 2 and for

sample sizes n = 20, 60, 80 and 100. In both cases considered, we take λ = 1 and δ = 4.

For each estimate θ̂ = (β̂, λ̂, δ̂) we compute the bias and the root mean-squared error (RMSE), respectively, as

Bias(θ̂) =
1
B

B∑
i=1

(θ̂i − θ)

RMSE(θ̂) =

√√√
1
B

B∑
i=1

(θ̂i − θ)2

The following observations can be drawn from the Tables 1 and 2.

1. All the estimators show the property of consistency i.e., the bias and RMSE decreases as sample size increases.

2. The bias of β̂ generally increases with increasing β for any given λ and δ and n and for all methods of estimation.

3. The RMSE of β̂ generally increases with increasing β for any given λ and δ and n and for all methods of estimation

4. Some estimators of the parameters are positively biased and some are negatively biased.

5. In terms of performance of the methods of estimation, we found that maximum product spacing (MPS) estimators,
ordinary least square estimators (OLSE), L-moment estimators (LME) and Cramér-von-Mises estimators (CME)
are equally produces the least biases of the estimates with least RMSE for most of the configurations considered in
our studies.

4.2 Real Application

Here we use one data set that will be used for the purpose of making comparisons between the estimators presented in this
study. The data set is taken from Nichols and Padgett (Nichols Padgett, 2006) consisting of 100 observations on breaking
stress of carbon fibers (in Gba). The data are : 3.7, 2.74, 2.73, 3.11, 3.27, 2.87, 4.42, 2.41, 3.19, 3.28, 3.09, 1.87, 3.75,
2.43, 2.95, 2.96, 2.3, 2.67, 3.39, 2.81, 4.2, 3.31, 3.31, 2.85, 3.15, 2.35, 2.55, 2.81, 2.77, 2.17, 1.41, 3.68, 2.97, 2.76, 4.91,
3.68, 3.19, 1.57, 0.81, 1.59, 2, 1.22, 2.17, 1.17, 5.08, 3.51, 2.17, 1.69, 1.84, 0.39, 3.68, 1.61, 2.79, 4.7, 1.57, 1.08, 2.03,
1.89, 2.88, 2.82, 2.5, 3.6, 1.47, 3.11, 3.22, 1.69, 3.15, 4.9, 2.97, 3.39, 2.93, 3.22, 3.33, 2.55, 2.56, 3.56, 2.59, 2.38, 2.83,
1.92, 1.36, 0.98, 1.84, 1.59, 5.56, 1.73, 1.12, 1.71, 2.48, 1.18, 1.25, 4.38, 2.48, 0.85, 2.03, 1.8, 1.61, 2.12, 2.05, 3.65.

We have fitted the Dagum distribution to the data set using MLE (standard error in parentheses), and compared the
proposed distribution with Marshall-Olkin extended Lomax (MOEL) and Fisk models, see Table 3. The model selection
is carried out using the AIC (Akaike information criterion), the BIC (Bayesian information criterion), the CAIC (consistent
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Table 1. Average bias and RMSE of β, δ and λ for β = 1, λ = 1 and δ = 4

β λ δ
n Method Bias RMSE Bias RMSE Bias RMSE

MLE 0.0763 0.4290 0.1048 0.6226 0.0356 0.3186
MME -0.0166 0.0807 -0.0078 0.0924 0.0036 0.1227
LME -0.0016 0.0188 -0.0073 0.0501 -0.0004 0.0189
MPS 0.0080 0.0873 0.0076 0.0820 0.0066 0.0706

20 OLES 0.0219 0.1225 0.0042 0.0526 0.0174 0.0951
WLES 0.0435 0.2185 0.0103 0.0789 0.0290 0.1574
PCE -0.0137 0.1041 0.0072 0.0616 0.0231 0.1047
CME 0.0172 0.1123 0.0012 0.0486 0.0154 0.0845
ADE 0.0045 0.0999 0.0074 0.0598 -0.0008 0.0910
RTADE 0.0014 0.1374 0.0617 0.2761 -0.1263 0.5648
MLE 0.0076 0.0937 0.0068 0.1186 0.0030 0.0960
MME -0.0050 0.0403 -0.0021 0.0432 0.0003 0.0581
LME -0.0004 0.0048 -0.0030 0.0237 -0.0007 0.0058
MPS 0.0023 0.0479 0.0022 0.0448 0.0019 0.0385

60 OLES 0.0019 0.0245 -0.0003 0.0173 0.0043 0.0345
WLES 0.0065 0.0615 0.0001 0.0251 0.0064 0.0535
PCE -0.0058 0.0521 0.0022 0.0257 0.0050 0.0384
CME 0.0012 0.0202 -0.0007 0.0158 0.0036 0.0294
ADE 0.0012 0.0587 0.0020 0.0353 0.0000 0.0551
RTADE 0.0044 0.0610 0.0185 0.1431 -0.0386 0.2992
MLE 0.0035 0.0597 0.0036 0.0812 0.0019 0.0729
MME -0.0036 0.0334 -0.0012 0.0365 0.0006 0.0511
LME -0.0003 0.0033 -0.0023 0.0206 -0.0005 0.0050
MPS 0.0018 0.0391 0.0017 0.0366 0.0015 0.0315

80 OLES 0.0009 0.0150 -0.0002 0.0144 0.0033 0.0298
WLES 0.0040 0.0446 0.0001 0.0209 0.0047 0.0436
PCE -0.0047 0.0472 0.0019 0.0215 0.0034 0.0302
CME 0.0005 0.0111 -0.0005 0.0126 0.0023 0.0219
ADE 0.0011 0.0511 0.0016 0.0294 -0.0001 0.0467
RTADE 0.0041 0.0486 0.0139 0.1244 -0.0282 0.2526
MLE 0.0021 0.0443 0.0020 0.0601 0.0011 0.0555
MME -0.0028 0.0284 -0.0008 0.0308 0.0007 0.0449
LME -0.0002 0.0025 -0.0018 0.0184 -0.0004 0.0045
MPS 0.0014 0.0351 0.0013 0.0329 0.0011 0.0283

100 OLES 0.0007 0.0124 -0.0002 0.0120 0.0026 0.0267
WLES 0.0048 0.0546 0.0001 0.0204 0.0046 0.0480
PCE -0.0042 0.0454 0.0016 0.0191 0.0020 0.0202
CME 0.0004 0.0096 -0.0003 0.0108 0.0018 0.0187
ADE 0.0007 0.0467 0.0014 0.0282 -0.0002 0.0427
RTADE 0.0034 0.0425 0.0111 0.1114 -0.0225 0.2248

Akaike information criteria) and the HQIC (Hannan-Quinn information criterion), where

AIC = −2l(θ̂) + 2q

BIC = −2l(θ̂) + q log(n)
HQIC = −2l(θ̂) + 2q log(log(n))

CAIC = −2l(θ̂) +
2qn

n − q − 1

where l(θ̂) denotes the log-likelihood function evaluated at the maximum likelihood estimates, q is the number of parame-
ters, and n is the sample size. The model with minimum AIC or (BIC, CAIC and HQIC) value is chosen as the best model
to fit the data. Estimates of the parameters of Dagum distribution, MOEL and Fisk models (standard error in parentheses),
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Table 2. Average bias and RMSE of β, δ and λ for β = 2, λ = 1 and δ = 4

β λ δ
n Method Bias RMSE Bias RMSE Bias RMSE

MLE 0.1475 0.8432 0.1389 0.7943 0.0318 0.2538
MME -0.0431 0.1928 -0.0090 0.1031 -0.0033 0.1168
LME 0.0343 0.2368 0.0673 0.3721 0.0122 0.0751
MPS 0.0148 0.1284 0.0154 0.1344 0.0130 0.1107

20 OLES 0.0111 0.1017 0.0155 0.0844 0.0217 0.1123
WLES 0.0317 0.2019 0.0339 0.1635 0.0256 0.1472
PCE 0.0147 0.1327 0.0059 0.0341 0.0415 0.1879
CME 0.0072 0.1065 0.0124 0.0801 0.0196 0.0983
ADE -0.0077 0.1101 0.0128 0.0842 0.0019 0.1206
RTADE -0.0309 0.1384 0.0565 0.2529 -0.1133 0.5067
MLE 0.0250 0.2701 0.0080 0.1441 0.0025 0.0786
MME -0.0142 0.1098 -0.0028 0.0579 -0.0024 0.0608
LME 0.0208 0.1914 0.0100 0.1176 0.0054 0.0525
MPS 0.0034 0.0605 0.0036 0.0640 0.0029 0.0516

60 OLES 0.0005 0.0199 0.0009 0.0151 0.0038 0.0313
WLES 0.0041 0.0608 0.0047 0.0442 0.0073 0.0631
PCE 0.0003 0.0544 0.0007 0.0112 0.0081 0.0629
CME -0.0002 0.0195 0.0004 0.0124 0.0032 0.0273
ADE -0.0033 0.0677 0.0041 0.0481 0.0010 0.0726
RTADE -0.0102 0.0789 0.0188 0.1460 -0.0378 0.2925
MLE 0.0141 0.1901 0.0045 0.1032 0.0015 0.0608
MME -0.0105 0.0940 -0.0018 0.0498 -0.0016 0.0522
LME 0.0018 0.0451 0.0050 0.0770 0.0020 0.0265
MPS 0.0025 0.0495 0.0027 0.0522 0.0022 0.0424

80 OLES 0.0004 0.0150 0.0006 0.0113 0.0029 0.0268
WLES 0.0028 0.0479 0.0029 0.0329 0.0049 0.0472
PCE -0.0002 0.0373 0.0002 0.0101 0.0060 0.0538
CME -0.0002 0.0124 0.0002 0.0084 0.0018 0.0179
ADE -0.0024 0.0574 0.0033 0.0412 0.0006 0.0628
RTADE -0.0076 0.0683 0.0141 0.1265 -0.0283 0.2533
MLE 0.0096 0.1486 0.0023 0.0754 0.0008 0.0470
MME -0.0084 0.0837 -0.0013 0.0445 -0.0012 0.0468
LME 0.0103 0.0272 0.0052 0.0809 0.0022 0.0300
MPS 0.0020 0.0438 0.0021 0.0463 0.0017 0.0375

100 OLES 0.0002 0.0116 0.0004 0.0084 0.0020 0.0208
WLES 0.0027 0.0477 0.0030 0.0359 0.0044 0.0465
PCE -0.0008 0.0302 0.0000 0.0081 0.0041 0.0418
CME -0.0001 0.0109 0.0001 0.0069 0.0014 0.0151
ADE -0.0020 0.0531 0.0026 0.0382 0.0004 0.0570
RTADE -0.0061 0.0611 0.0113 0.1131 -0.0227 0.2266

AIC, BIC, CAIC and HQIC for remission times data are presented in Table 4.2. We conclude that the Dagum distribution
is comparable to the MOEL and Fisk models.

For an ordered random sample, X1, X2, . . . , Xn, from Dag(β, σ), where the parameters β, and σ are unknown to us, the
Kolmogorov-Smirnov Dn, Cramér-von Mises W2

n , Anderson and Darling A2
n and Watson U2

n tests statistics are computed
and given in Table 4.2. The results show that the test statistics take the smallest values for the data set under Dagum
distribution with regard to the other distribution. Thus, the proposed model offers an attractive alternative to the Marshall-
Olkin extended Lomax and Fisk models. Figure 3 displays the empirical and fitted densities for breaking stress of carbon
fibers data. Estimated survivals for the data are shown in Figure 4. The Dagum distribution approximately provide an
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adequate fit for the data.

Dn = max
i

[
1
n
− F(xi, β̂, δ̂, λ̂), F(xi, β̂, δ̂, λ̂) − i − 1

n

]
·

W2
n =

1
12n
+

n∑
i=1

[
F(xi, β̂, δ̂, λ̂) − 2i − 1

2n

]2

·

A2
n = −n − 1

n

n∑
i=1

(2i − 1)
[
log(F(xi, β̂, δ̂, λ̂)) + log(1 − F(xi, β̂, δ̂, λ̂))

]2 ·

U2
n = W2

n +

n∑
i=1

[
F(xi, β̂, δ̂, λ̂)

n
− 1

2

]2

Table 3. MLEs (standard errors in parentheses) for breaking stress of carbon fibers data.

Estimates
Models α̂ β̂ γ̂ δ̂ λ̂

MOEL 96.3824 0.0434 43.2227
(53.5906) (0.0560) (49.8839)

Dagum 0.3360 7.4247 8379.85
(0.0544) (0.6811) (7937.685)

Fisk 2.4948 4.1156
(0.1053) (0.3438)

Table 4. Goodness-of-fit tests and the measures AIC, BIC, HQIC and CAIC for breaking stress of carbon fibers data.

Statistics Measures
Models Dn W2

n A2
n U2

n AIC BIC HQIC CAIC
Dagum 0.0527 0.0437 0.2896 24.5491 288.28 296.09 291.44 288.53
MOEL 0.0655 0.0625 0.3815 24.5648 290.30 298.11 293.46 290.55
Fisk 0.0916 0.1579 1.0553 24.6613 296.42 301.63 298.53 296.55

Table 5. Estimates of the parameters of Dagum distribution for breaking stress of carbon fibers data.

Estimates Statistics
Method β̂ λ̂ δ̂ Dn W2

n
MLE 0.33605 8379.186 7.42465 0.05265 0.04370
MME 0.34986 8426.464 7.52115 0.05578 0.05567
LME 0.58326 8377.958 7.39817 0.22728 2.26952
MPS 0.30096 8379.185 7.16180 0.05974 0.05605
OLES 0.31897 8379.217 7.30835 0.05207 0.04077
WLES 0.33130 8379.186 7.41441 0.05572 0.04241
PCE 0.31481 8379.180 7.24698 0.05406 0.04479
CME 0.32363 8379.186 7.34435 0.05272 0.04016
ADE 0.32686 8379.186 7.37612 0.05428 0.04063
RTADE 0.09138 8379.191 5.57370 0.42108 6.33107

5. Conclusion

In this article, we provide explicit expressions for the quantiles, moments, moment generating function, conditional mo-
ments, hazard rate, mean residual lifetime, mean past lifetime, mean deviation about mean and median, various entropies,
order statistics and Bonferroni and Lorenz curve. The model parameters are estimated by ten methods of estimation,
namely, maximum likelihood, moments, L-moments, percentile, least squares, weighted least squares, maximum product
of spacing, Cramér-von-Mises, Anderson-Darling and right tailed Anderson-Darling. We have performed an extensive

89



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 2; 2017

Stress of carbon fibres

D
en

si
ty

 F
un

ct
io

n

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Empirical Density
Dagum
Extended Lomax
Fisk

Figure 3. Estimated densities for breaking stress of carbon fibers data.
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Figure 4. Estimated survivals for breaking stress of carbon fibers data.
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simulation study to compare these methods. We have compared estimators with respect to bias and root mean-squared er-
ror. We have also compared estimators using a real data applications. The simulation results show that maximum product
spacing estimators, ordinary least square estimators, L-moment estimators and Cramér-von-Mises estimators are equally
produces the least biases of the estimates with least RMSE for most of the configurations considered in our studies.

Acknowledgment This study is a part of the Master Thesis of the third named author whose work was supervised by the
second named author.

References

Alkasasbeh, M. R., & Raqab, M. Z. (2009). Estimation of the generalized logistic distribution parameters: comparative
study. Statistical Methodology, 6(3), 262–279.

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain” goodness of fit” criteria based on stochastic
processes. The annals of mathematical statistics, 193-212.

Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American statistical association,
49(268), 765-769.

Bonferroni, C. E. (1930). Elementi di statistica generale, Libreria Seber: Firenze.

Casella, G. & Berger, R. L. (1990), Statistical Inference, Wadsworth & Brooks/Cole. Cheng, R. C. H., & Amin, N. A.
K. (1979). Maximum product of spacings estimation with application to the lognormal distribution. Math. Report,
79(1).

Cheng, R. C. H., & Amin, N. A. K. (1983). Estimating parameters in continuous univariate distributions with a shifted
origin. Journal of the Royal Statistical Society. Series B (Methodological), 394-403.

Dagum, C. (1977). A New Model for Personal Income Distribution: Specification and Estimation. Economic Applique,
30(3), 413–437.

Dey, S., Dey, T.,& Kundu, D. (2014). Two-parameter Rayleigh distribution: different methods of estimation. American
Journal of Mathematical and Management Sciences, 33(1), 55-74. Domma, F. (2002). L’andamento della Hazard
function nel modello di Dagum a tre parametri. Quaderni di Statistica, 4, 1–12.

Domma, F., Giordano, S. & Zenga, M. M. (2011). Maximum likelihood estimation in Dagum distribution with censored
sample. Journal of Applied Statistics, 38(12), 2971-2985.

Domma, F., & Condino, F. (2013). The Beta-Dagum distribution: definition and properties.Communications in Statistics-
Theory and Methods, 42(22), 4070-4090.

Gupta, R. D. & Kundu, D. (2001). Generalized exponential distribution: different method of estimations. Journal of
Statistical Computation and Simulation, 69(4) 315-337.

Glaser, R. E. (1980). Bathtub and related failure rate characterizations. Journal of the American Statistical Association,
75(371), 667-672. Gupta, R. D., & Kundu, D. (2007). Generalized exponential distribution: Existing results and
some recent developments. Journal of Statistical Planning and Inference, 137(11), 3537-3547.

Hosking, J. R. (1990). L-moments: analysis and estimation of distributions using linear combinations of order statistics.
Journal of the Royal Statistical Society. Series B (Methodological), 105-124.

Hosking, J. R. (1994). The four-parameter kappa distribution. IBM Journal of Research and Development, 38(3), 251-
258.

Kundu, D., & Raqab, M. Z. (2005). Generalized Rayleigh distribution: different methods of estimations. Computational
Statistics and Data Analysis, 49(1), 187-200.

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. 470. John Wiley & Sons.

Kleiber, C. (2008). A guide to the Dagum distributions. In Modeling Income Distributions and Lorenz Curves, 97-117.
Springer New York.

Macdonald, P. D. M. (1971). Comment on” An estimation procedure for mixtures of distributions” by Choi and Bulgren.
Journal of the Royal Statistical Society. Series B (Methodological), 33, 326-329.

Mann, N. R., Singpurwalla, N. D., & Schafer, R. E. (1974). Methods for statistical analysis of reliability and life data.
Nichols, M. D., & Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and reliability
engineering international, 22(2), 141-151.

91



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 2; 2017

Oluyede, B. O., & Ye, Y. (2014). Weighted Dagum and related distributions. Afrika Matematika, 25(4), 1125-1141.

Ranneby, B. (1984). The maximum spacing method. An estimation method related to the maximum likelihood method.
Scandinavian Journal of Statistics, 93-112.
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