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Abstract 

Smeed (1949) provided a regression model for estimating road traffic fatalities (RTFs). In this paper, a modified form of 

Smeed’s (1949) model is proposed for which it is shown that the multiplicative error term is less than that of Smeed’s 

original model for most situations. Based on this Modified Smeed’s model, Bayesian and multilevel methods are 

developed to assess the risk of road traffic fatalities across sub populations of a given geographical zone. These methods 

consider the parameters of the Smeed’s model to be random variables and therefore make it possible to compute variances 

across space provided there is significant intercept variation of the regression equation across such regions. Using data 

from Ghana, the robustness of the Bayesian estimates was indicated at low sample sizes with respect to the Normal, 

Laplace and Cauchy prior distributions. Thus the Bayesian and Multilevel methods performed at least as well as the 

traditional method of estimating parameters and beyond this were able to assess risk differences through variability of 

these parameters in space.  

Keywords: risk, Bayesian, multilevel, road traffic fatalities 

1. Introduction 

Smeed (1949) proposed a model for estimating road traffic fatalities (RTFs) in his paper. He showed that the formula 

 
2
30.0003 ND

N P


  ……………………….………………………...(1) 

(were D = Number of RTFs, P = population size and N = number of vehicles in use) gave a fairly good fit to the data from 

20 countries, including European countries, USA, Canada, Australia and New Zealand. 

Ponnaluri (2012) used data from all states in India to develop seven different models for predicting RTFs and also 

examined if the individual models were more relevant for application. The seven models, including that of Smeed’s, were 

tested for fitness with the actual data. Smeed’s model was found to give the best fit. He showed that the original Smeed 

formulation cannot simply be discounted due to reasons cited by many researchers. This is because Smeed's model is 

parsimonious in parameter usage. According to Ponnaluri (2012), Smeed's model appears to be observation-driven, 

evidence-based, and logically valid in measuring the per vehicle fatality rate. 

The predominant factors affecting RTFs are not the same as those of road traffic accidents (RTAs). Exposures to risk of 

RTFs (such as human error, environmental/weather, nature of the road and condition of vehicle) are predominant factors 

influencing road traffic accidents within a geographical region. However, the rate of RTFs is determined by vulnerability 

to risk (such as insufficient ambulance and emergency medical services, improper pre-hospital care for RTA trauma 

patients, inadequate safety mechanism in vehicles). 

Exposure to risk of RTFs and vulnerability to risk of RTFs are not correlated. Thus, high exposure does not necessarily 

imply high vulnerability. For instance, Greater Accra Region in Ghana, with the highest exposure to the risk of RTF (due 

to high population and vehicular densities), has the lowest RTF rate among all the other 9 regions in Ghana. Whilst the 

three Northern regions of Ghana, with the lowest population density have the highest rate of RTFs (Hesse and Ofosu, 

2015).  Nigeria and Ghana have almost the same vehicular density. However, inhabitants of Nigeria are more vulnerable 
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to die as result of road traffic accidents. Developing countries, with only about 10% of the world motorization, account for 

about 85% of annual RTFs in the world (WHO, 2004, 2009). Thus, developed countries, though have greater exposure to 

risk of RTFs due to high vehicular density, however less vulnerable to RTFs compared to developing countries. 

Two predominant factors that determine risk of RTFs in a geographical region are  

(1) Safety mechanism in vehicles (such as anti-lock braking systems (ABS), air bags and seatbelts),  

(2) Emergency medical services (such as Ambulance service). 

One reason why developing countries are more vulnerable to risk of RTF is due to the fact that a large proportion of road 

traffic accident trauma patients in these regions do not have access to formal emergency medical services (Tiska, et al., 

2002). Secondly, the ages of vehicles and availability of modern safety mechanisms in vehicles plying the roads in these 

regions have significant effect on the consequences of road traffic accidents. It is obvious that if greater attention is paid 

on improving road safety mechanisms (such as anti-lock braking systems (ABS), air bags, better design of cars and 

increased wearing of seatbelts in cars) there could be substantial benefits in reducing injuries and fatalities with respect to 

road traffic accidents in developing countries (Hesse, et al., 2014). 

Smeed’s model is of the form  

  ,ND
N P

e


  …………………………..........................................(2) 

where D = Number of RTFs, P = population size, N = number of vehicles in use, e = multiplicative error term, and  &  

are parameters to be estimated. Equation (2) can be expressed as  

,Y X e    …………………………..........................................(3) 

where, the predictor variable is X N P  vehicular density and the dependent variable is Y D N   per vehicle 

fatality rate.  

The factors affecting RTAs correspond to exposure X while the factors affecting RTFs correspond to vulnerability given 

the same exposure. In Smeed’s model exposure is measured by the variable X whereas vulnerability for a given X is 

captured by the parameters  and . 

Let 1X  (with 1)Y Y  and 2X  (with 2 )Y Y  be two predictor variables of two geographical regions such that 

1 2.X X  If 1 2 ,Y Y  then the different values of Y  is not based on X but is due to the fact that  and  vary across the 

two geographical regions. It therefore follows that, the parameters of Smeed’s model vary from one geographical region 

to another. Thus, one could use these parameters to assess variability of the risk of RTFs across geographical regions. 

Smeed (1949) and other related studies by Ponnaluri (2012), Ghee et al., (1997), Bener and Ofosu (1991), Jacobs and 

Bardsley (1977), Fouracre and Jacobs (1977) used least squares regression (LSR) method to estimate the parameters.  

However, the LSR approach:  

 does not allow the variability of the parameters, 

 is very sensitive to violation of the normality assumption.  

Thus, we need an estimation method that:  

(1) is robust with respect to the assumptions of the model, 

(2) could be used to estimate the variance of the parameters across geographical regions,  

(3) enables us compare the risk of RTFs across the geographical regions. 

As a general objective, therefore, this study aims at developing statistical methodology, based on Smeed’s model, for 

assessing the risk of RTFs across sub-populations of a given geographical zone. The first specific objective is to develop a 

modified Smeed’s model. Secondly, based on the modified Smeed model, the study seeks to develop and use  

 the Bayesian analysis approach to derive an estimator, based on a prior distribution that is robust with respect to the 

normality assumption,   

 the multilevel analysis approach to compare the risk of RTFs across geographical regions. 

Finally, the study seeks to use data from Ghana to validate the developed method and to assess the robustness of the 

model. 

2. Method 

2.1 A Modified Smeed’s Model 
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Smeed’s model in Equation (2) measures per vehicle fatality rate. Multiplying both sides of (2) by ,N P  we obtain 

   .N ND
P P P

e


    ………………………...........................................(4) 

The modified Smeed’s model of this study, which estimates the per capita fatality rate (also called 1
public health risk 

indicator), is of the form  

  ,ND
P P

u


   ……………..…………………………………………(5) 

where  N
P

u e e   provided .N P   

Table A1, in the Appendix, is an extract from the list of countries with ranks based on the number of road motor vehicles 

per 1,000 inhabitants. For every country in the world, except San Marino, the number of registered vehicles in use, N, is 

less than the population size, P. Since N P  for most situations, it follows that the multiplicative error term u in the 

modified Smeed’s model of this study is less than that of Smeed’s original model, making the modified Smeed’s model 

preferred. 

The modified Smeed’s model is intrinsically linear. Thus, Equation (5) can be transformed to a linear model by a 

logarithmic transformation of the form 

0 1 1 2 2 ,   1, , .i i i k ik iy x x x i n          …................................................(6) 

For example, Equation (5) can be written in the form 

 

0 1 1 2 2

ln ln ln 1 ln ln .
or

,   1,  2,  ,  ,i i i i

D N P u

y x x i n

      



       

 ………………....................................(7) 

where 1 2 0 1 2ln ,  ln ,   ln ,   ln ,   ,   = ln(1 )  and  ln .i i i i iy D x N x P u              Another possible linear 

transformation of Equation (5) is of the form  

   

0 1

ln   ln   ln   ln ,
or

,   1,  2,  ,  ,i i i

D P N P u

y x i n

     



      

 … ………...…………………………...(8) 

where    0 1ln ,  ,  ln ,  ln  and ln ,  1, 2, , .i i i ix N P y D P u i n            

The linear transformation in Equation (8) is preferred to that of Equation (7) because of the following reason. Since D P  

is a risk indicator (known as Public Health Risk indicator) used in epidemiological studies, it follows that any one-to-one 

relation of this indicator, such as  ln( ),Y D P  can also be used as risk indicator of RTF. This is in sync with the general 

objective of this study (see Hesse & Ofosu, 2014). 

2.2 Bayesian Approach to Estimation of Regression Parameters 

In this Section, we develop, using the modified Smeed model, a Bayesian approach to derive an estimator, based on a 

given prior distribution, that is robust with respect to the normality assumption of the model.  

The multiple linear regression model in (6), with k predictor variables, can be expressed as 

 iy = , 1, 2, ...,i i i n  x           ………….…………………………………….(9) 

where  1 21, , ,..., .i i i kix x x x     It is assumed that the unknown parameter vector  0 1, , ... k    β     is a value of 

some multivariate random variable with a multivariate prior distribution. The range of possible values that the regression 

coefficients 0 1, , ... k      can take is –∞ to +∞. Thus, the largest possible domain of the prior distribution is the set of all 

real numbers. This limits us to distribution which can take both negative and positive values. Therefore, the most suitable 

prior distributions are the bivariate Normal, Laplace and Cauchy distributions. 

Two Bayesian methods were used in estimating the parameters in Equation (9). These are the ‘conjugate prior’ method 

                                                        
1 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI), Road Traffic 

Crashes in Ghana, Statistics 
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and the maximum a posteriori method which are discussed in the following sequel.  

Conjugate Prior 

In this section, we assume that the random variable ,Y  with components ,iy  in Equation (9), has the normal distribution 

with mean β x  and variance 2.  Thus, the likelihood function will also follow a normal distribution. Since the normal 

distribution is conjugate to itself (or self-conjugate) with respect to a normal likelihood function, choosing a bivariate 

normal prior over β  will ensure that the posterior distribution is also normal. The conditional p.d.f. of Y  is then given 

by 

   
21 1

2 2
exp , 0.Y i i if y y y



  
    

  
β β x   

  
  …...............................................(10) 

The likelihood function is given by (see Mettle et al., 2016) 

      
2

2 2

21 1
1 2

2 2 1

exp , ( , , ..., ).

n
n

i i n
i

f y y y y
  

 
    

 
β βY y x   y    ..................  ....................(11) 

It is assumed that β  has a multivariate normal distribution with mean vector  0 1, ,..., k   μ   and covariance matrix 

.Σ Thus, the p.d.f. of β  is 

      
1
21 1 1

2 2
expp

 


   β Σ β μ Σ β μ  ………………………………….……......(12) 

where 

00 01 02 0
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20 21 22 2
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a a a a
a a a a

a a a a



 
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 
 
 
 

Σ  The posterior distribution can therefore be expressed as  

  p β y =    k f pβ βy =      2

21 1 1
22 1

exp .
n

i i
i

k y 

 

          
β β μ Σ β μx  ………… ..….(13) 

The function under the exponent in Equation (13) can be written as 

  22 2

1 12 2 2
00 1 00

1 1 1 1

( ) 2
k n n k

n
jj i l lji j

j i i l

Q a x a y a
  
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   
               
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β    

2 2

1
1 1

1 1 1 0 1 1

2 2
k n k k k n

ji i jl l j ji si js j s
j i l j s j i

x y a x x a v


       

   
           

   
      ….............................(14) 

where v is the constant term, independent of .j Therefore the posterior p.d.f. of β  can be written as  

 
1
2

( )
.

Q
p ke




β
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Hence Equation (13) follows the multivariate normal distribution with mean vector given by 

1
2

, β βμ Σ C  ..…………………………………………………....(16) 

where βΣ  is a ( 1) ( 1)k k    matrix with inverse  1
ijm βΣ  whose elements are given as 

2
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and C is a column vector of order (k + 1) with elements given as 

2

2

1
0 0

1 1

1

1 1

2

2 , 1,2,..., .

n k

i j j
i j

n k

i i li ij j
i j

C y a

C y x a l k

  

  

 

 

 
     

 


       
  

     

 …………………………………..(18) 

Let  0 1
ˆ ˆ ˆ ˆ, , ..., ; 1, 2, 3, ...,l l l kl l n    β          be the thl  jackknife estimate of the regression. Then the estimate of the 

mean vector μ  of the random vector  0 1, , ..., k   β     is given as  0 1ˆ ˆ ˆ ˆ, ,..., ,k
   μ   where 

1

1

ˆ ,     0,  1,  ...,  .
n

j jin
i

j k


      ...........................................................................(19) 

and an estimate of the covariance matrix of β  is given by 

    1
1

1

ˆ ˆˆ ˆ ˆ ˆ .
n

j j i j ijn
j

a





   Σ β μ β μ

  
    ………………...........................................(20) 

The estimate of the standard error of the thi  coefficient, based on the Bayesian estimate is the square root of the thi  

diagonal elements of ˆ .βΣ  

Maximum a Posteriori Method 

The goal here is to find the parameter estimates that maximizes the posterior probability of the parameters given the data. 

This corresponds to 

MAPβ =  arg max p
β

β y  ……………………………......................................(21) 

We resort to sampling techniques, such as Markov chain Monte Carlo (MCMC), to get samples from the posterior 

distribution. The following algorithm is the description for the multivariate Metropolis Hastings procedure (Steyvers, 

2011): 

1.  Set t = 1 

2.  Generate an initial value for 1 2( ,  ),    0,  1,  ...,  .j j jU u j k     

3.  Repeat  

t = t + 1 

Do a MH step on ,j   

Generate a proposal 2* ( ,  );j j jN     

Evaluate the acceptance probability 
 
 

*

min 1, ;
p

p
a

 
  

 

β y

β y
  

Generate a u from a Uniform(0, 1) distribution 

If ,u a  accept the proposal and set * ,j j    0,  1,  ...,  .j k  

4.  Until t = T. 

2.3 Multilevel Random Coefficient (MRC) Model 

In this Section, we develop a Multilevel Analysis approach to estimate the regional distribution of parameters based on the 

modified Smeed’s model and use them to compare the risk of RTFs across geographical regions. 

Assuming the population is stratified into J geographical regions with jn  observations in each class, Equation (6) 

becomes 

ijy = 0 1 1 2 2 ... ,j j ij j ij kj kij ijx x x        

= 0
1

,
k

j lj lij ij
l

x


          
1,  2,  ...,

1,  2,  ...,  
ji n

j J




  ...............................................(22) 
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Across all geographical regions, 0 1( , , ..., )j j j kj        are assumed to have multivariate normal distribution (Hox, 

2010). Thus, each lj  (l = 0, 1, 2, ..., k)  can be modeled as 

0 00 01 0j j jz u        ………………………………………...….....(23) 

0 1 ,lj l l j ljz u         1,  ...,  and 1,  2,  ...,  l k j J  . ………………….……….(24) 

From Equations (22), (23) and (24), we have 

 00 01 0 0 1
1

,
k

ij j j l l j lj lij ij
l

y z u z u x


                
1,  2,  ...,

1,  2,  ...,  
ji n

j J




 …………………...(25) 

2(0, ),  0,1,...,   and  (0, ).lj l iju N l k N     Y has the normal distribution with mean  

 00 01 0 1
1

k

j l l j lij
l

z z x


          ………………  ...............................(26) 

and variance 

2 2
0

1

2 .
k

lij l lij rij lr
l l r

v x x x
 

          …………………………………………(27) 

The parameters to be estimated are 2
0 1,  ,  ,  ( ) and ,l l l lr l r       l  = 0, 1, …, k, where var( ),l lju   

cov( ,  ),lr lj rju u   and 2var( ) .ij    

If 0 differs significantly from 0, then the parameters of the modified Smeed’s model can be used to compare the risk of 

RTFs across the J geographical regions. 

Equating the partial derivatives of the likelihood function to zero, we obtain the maximum likelihood estimators of the 

parameters 2
0 1,  ,  ,  ( ) and l l l lr l r      as 0ˆ ,l  1ˆ ,l  2ˆ ˆ ˆ,  ( ) and l lr l r    respectively. 

3. Validation of Method Using Data from Ghana 

In this section the study seeks to use data from Ghana to validate the  

(1) Bayesian method and to assess the robustness of the model 

(2) multilevel method and to compare the risk of RTFs across the 10 geographical regions. 

3.1 Validation of Bayesian Method 

(i) Conjugate Prior Method 

Table A2, in the Appendix, gives the estimated population size and the number of motor vehicles and road traffic fatalities 

in Ghana (1991 – 2012). It can be seen that, the distribution of ln( ),D P  with a Shapiro-Wilks normality p-value of 0.201, 

is closer to the normal distribution compared to that of ln( )D  with a corresponding p-value of 0.086. This confirms that 

the logarithmic transformation in Equation (8) is preferred.   

The 19 jackknife sample estimates of 0 and 1, based on the national data, derived from the values of iy
 
and ix  in 

Table A2 are given in Table A3. Based on Equations (19) and (20), jackknife estimate of the mean vector and covariance 

of the random vector β  is computed as follows  

ˆ ( 8.3105,  0.3192) μ    and   0.001860 0.000504ˆ .
0.000504 0.000139

  Σ  

Based on Equations (17) and (18),  

 0.0017421 0.0004712ˆ
0.0004712 0.0001297

  βΣ  and   646278.208ˆ .
2353969.324




C  

Thus, the posterior Bayes estimate of β  is given by 

 1
2

8.31048ˆ .
0.319162


  Cβ βμ Σ  …………………….....................................(28) 

Table 1 shows the coefficients estimates and the corresponding standard errors for the least square and the conjugate prior 

methods. 
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Table 1.Comparison of Coefficients of Least Square and Conjugate Prior Methods 

 Methods 

 Least Squares Conjugate Prior 

 Coefficient Standard Error Coefficient Standard Error 

0 = intercept
 

–8.31179 0.17386 –8.31048 0.04174 

1 = coefficient of x 0.31879 0.04555 0.31916 0.01139 

Coefficient of determination 0.7423 0.7423 

It can be seen from Table 2, that the estimated coefficients 0 and 1, are almost the same for the least squares and the 

conjugate prior methods. Both methods also reported the same coefficient of determination 2.R The conjugate prior 

estimates recorded comparatively very small standard errors; making the conjugate prior method preferred. 

(ii) Maximum a posteriori method 

Our objective here is to determine the parameter estimates that maximize the posterior distribution given the data with 

respect to the bivariate Normal, Laplace and Cauchy prior distributions. 

Bivariate Normal prior distribution 

The prior distribution in Equation (12) can be written in terms of  as 

   2

19 21 1
0 1 0 1 22 1

, exp ,i i
i

p k y x q
 

 
       

 
 y  ……………………………...(29) 

where       0 0 0 0 1 1 1 1
2 0 0 1 1

2 2
       1

1

 
2 ,q

           

   

  
    

  
0 1, ,           

2 2
0 10 1var( ),  var( ).        

The Metropolis Hastings algorithm, above, is used to estimate the values of 0  and 1. The MATLAB code for the 

implementation of component-wise Metropolis sampler for the posterior distribution is as given in Listings 1 and 2 in the 

appendix.  

Table 2 shows estimated values of 0  and 1  based on least squares, conjugate prior and maximum a posteriori 

methods. The results show that the estimated coefficients of 0  and 1  are almost the same for the least squares, 

conjugate prior and maximum a posteriori methods of estimates. 

Table 2. Comparison of Coefficients of Least Squares, Conjugate Prior and Maximum a Posteriori Methods 

 Methods 

 Least Square Conjugate prior Maximum a posteriori 

0 

 (Standard error)
 

–8.31179 

(0.17386) 

–8.31048 

(0.04174) 

–8.29094 

(0.03978) 

1 

(Standard error)
 

0.31879 

(0.04555) 

0.31916 

(0.01139) 

0.32460 

(0.01098) 

Laplace Prior Distribution 

It is assumed that  0 1β , ββ  has a bivariate Laplace distribution with mean vector  0 1, .   μ  The joint p.d.f. is 

given by  

1 1
0 0 1 1

0 1

0 1

β       
1

0 1 4
(β , β )  ,

b b

b b
f e

 
      
      …………………………………..(30) 

0 1,  ,  0,  0.b b            Thus, the posterior distribution can be expressed as  

   2
0 1

21 1 1
0 1 0 1 0 1ˆ ˆ2 1

ˆ ˆ, exp .
n

i i
b bi

p k y x
 

 
          

 
 y    …………………….(31) 

Using the above algorithm, the maximum a posteriori estimates of 0 and 1 to be –8.320085 and 0.317051, respectively, 
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with standard errors of 0.039047 and 0.010450. 

Cauchy Prior Distribution 

The bivariate random variable  0 1β , ββ  has the Cauchy distribution if the p.d.f. can be expressed in the form given in 

the following form  

2 2
0 1

1 1
0 1 2 (β   )   (β   )   1

(β , β )  .
a b

f
    

 
  

 
  …………………………………...(32) 

Thus, the posterior distribution can be expressed as 

   2 2 2
0 1

19 21 1
0 1 0 1 ˆˆ2 ( ) ( ) 11

, exp .i i
a bi

p k y x
      

  
       

           
 y  …………………....(33) 

The component-wise Metropolis-Hastings sampler for the posterior distribution based on the MATLAB codes, gave 

maximum a posteriori estimates of 0 and 1 to be –8.312857 and 0.317400, respectively. 

The resulting posterior Bayesian estimates for the Normal, Laplace and Cauchy prior distributions are summarized in the 

Table 3. Given a sample size 19, the posterior Bayes estimate is reasonably consistent for the Normal, Laplace and 

Cauchy prior distributions. 

Table 3. Posterior Bayesian estimates for different priors with a sample size of 19 

 Prior distribution 

 Normal Laplace Cauchy 

 Estimate Standard Error Estimate Standard Error  

0
 

–8.31048 0.04174 –8.32009 0.039047 –8.31286 

1  0.31916 0.01139 0.31705 0.010450 0.31740 

Table 4 shows the posterior Bayesian estimates of 0 and 1 at four different sample sizes (5, 10, 15 and 19) using the 

Normal, Laplace and Cauchy prior distributions. It can be seen that, at sample sizes of 5 and 10, the posterior Bayesian 

estimates of 0 and 1 are not consistent across the three prior distributions used. Thus, the estimated values of 0 and 1 

are said to be sensitive with respect to the prior distribution. At a sample size of 15 or more, the model becomes insensitive 

to the prior distribution. The relative influence of the prior distribution decreases while that of the data increases with a 

sample size of 15 or more. It can also be seen that the posterior Bayesian estimate is reasonably consistent for the Laplace 

prior distribution across all four sample sizes used. Even at a sample size of 5 where the normality assumption was 

violated, the estimates based on the Laplace prior distribution was robust. Thus, the Laplace prior distribution is preferred 

when the sample size is small. 

Table 4. Bayesian estimates with respect to sample size and prior distribution 

 Prior distribution 

Sample size Normal Laplace Cauchy 

n 0 1 0 1 0 1 

5 

(Standard error) 

–5.99608 

(0.67355) 

0. 99041 

(0.02767) 

–8.30608 

(0.61978) 

0. 31923 

(0.02195) 

–5.13317 1.01961 

10 

(Standard error)
 

–8.29381 

(0.44057) 

0.32272 

(0.01629) 

–8.29637 

(0.43884) 

0.32863 

(0.01596) 

–7.72230 0.46478 

15 

(Standard error)
 

–8.31195 

(0.36057) 

0.31647 

(0.01328) 

–8.29288 

(0.35747) 

0.32266 

(0.01298) 

–8.31034 0.31694 

19 

(Standard error) 

–8.31048 

(0.31916) 

0.31916 

(0.01139) 

–8.32009 

(0.31705) 

0.31705 

(0.01045) 

–8.31286 0.31740 

 
3.2 Validation of Multilevel Method 

Table A4, in the Appendix, shows the value of  lni j ij ijx N P  and the corresponding values of  lni j ij ijy D P  

for the ten regions of Ghana. Instead of estimating a separate regression equation for each of the 10 regions in Ghana, 
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we wish to determine a single model for estimating regional distribution of RTFs. The collection of the regression 

parameters {1, 2, …, 10} is assumed to be a random sample of size 10 taken from a population whose distribution 

depends on the parameters 1, 2, 0, 0, 1, 01 and 2, where j = (0j, 1j),  j = 1, 2, …, 10. 

Equations (21), (22) and (23) can be written as 

0 1

0 00 01 0

1 10 1

,

,

.

ij j j ij ij

j j j

j j

y x

x u

u

    


      
    

        
1,  2,  ...,19
1,  2,  ...,  10

i
j



  …………….................................(34) 

Combining the three equations, we obtain 

00 10 01 1 0 = + ,    1,  2,  ...,  10.ij ij j j ij j ijy x x u x u j           ...........................................(35) 

2
0 0 1 1(0, ),  (0, ),  (0, ).j j iju N u N N     Y has the normal distribution with mean 00 10 01+ ij jx x    and 

variance 2 2
0 01 12 .ij ijv x x        Thus, the pdf of Y given ijX x    is   

   
2

1 1
00 10 0122

expY ij ij ij ij jvv
f y X x y x x



 
         

 
………………………………(36) 

Three models are considered in the next section. 

(i) The Unconditional Means Model, M0 

An unconditional means model does not contain any predictors, but includes a random intercept variance term for groups. 

In this section, we examine if there will be significant intercept variation 0( ). If 0  does not differ significantly from 0, 

there may be little reason to use random coefficient  modeling since simpler Ordinary Least Squares (OLS) modeling 

will suffice. Equation (34) therefore becomes  

0

0 00 0

 =   ,

 = 
ij j ij

j j

Y

u

   
   

 …………………………………………..……..(37) 

Therefore 

00 0 =    .ij j ijY u     …… ………………………………………....(38) 

Application of the nlme package in R, using data in Table A3, shows that there is significant intercept variation in terms of 

y scores across the 10 regions. 

(ii) Random Intercept Model, M1 

In this model, it is assumed that the intercept 0 j  vary across the 10 geographical regions whilst the slope 1 j  remain 

constant. Equation (34), therefore, becomes 

0 1

0 00 01 0

1 10

 =     ,

 =     

 = ,

ij j j ij ij

j j j

j

y x

x u

    


     
  

 ……………….…… …………..…………(39) 

Combine the three rows into a single equation,  

00 10 01 0 = ,      1,  2,  ...,10.ij ij j j ijY x x u j          …   ………………………(40) 

The maximum likelihood estimates of the parameters, using data from Table A3 and nlme package in R, are given in Table 

5. 

(iii) Random slope model M2 

In section, we continue our analysis by trying to explain the third source of variation, namely, variation in the slope, 1.

The model that we test is: 

0 1

0

 =     ,

 =     

 =  

ij j j ij ij

j j j

j j

y x

x e

e




    


     
   

 ……………………......................................(41) 

When we combine the three rows into a single equation in the form  

00 10 01 1 0 ,      1,  2,  ...,  10.ij ij j j ij j ijy x x u x u j            ………………………...(42) 

Table 5 presents the parameter estimate and standard errors for the models M0, M1 and M2. All the standard errors of the 

estimated parameters in model M2 are smaller than the corresponding values of model M1. Moreover, the deviance, which 
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measures the model misfit, is much lower in M2 as compare to that of M1 (Hesse, et al., 2014b) Thus, estimate parameters 

based on model M2 is preferred. 

Table 5. Comparison of models M0, M1 and M2 

Model M0: intercept only M1: with predictor M2: with predictor 

Fixed effect Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error 

00 Intercept   
-9.6888 0.1401 -10.0756 0.7426 -9.2341 0.2065 

10 coffiecient of ijx   
  0.4591 0.0374 0.4459 0.0707 

01 coefficient of jx   
  -0.5448 0.1658 -0.3384 0.0516 

Random part Parameter Standard Error Parameter Standard Error Parameter Standard Error 

0 0var( )ju   
0.1891 0.2085 0.2094 0.1447 0.1545 0.1243 

1 1var( )ju   
    0.0382 0.0618 

01 0 1cov( ,  )j ju u   
    0.0766  

2 var( )ij    
0.1389 0.0855 0.0759 0.0632 0.0630 0.0576 

Deviance 198.201  94.554  64.749  

The estimate of regional-level residuals 0ˆ ju  and 1̂ ju  and the corresponding values of   and   for each region are 

given in Table 6. 

Table 6. Estimate of regional-level residuals and the values of  and   

Regions 0ˆ ju  1̂ ju  
0̂  ˆ

j  0
ˆ

ˆ j e


   

Greater Accra    -0.273 -0.138 -8.709877 0.3083572 0.0001649 

Ashanti          -0.168 -0.084 -8.073562 0.3614688 0.0003117 

Western          -0.085 -0.041 -7.677551 0.4053849 0.0004631 

Eastern          -0.470 -0.235 -7.930339 0.2109577 0.0003597 

Central          -0.342 -0.170 -7.743066 0.2758323 0.0004337 

Volta            -0.037 -0.020 -7.397244 0.4259363 0.0006129 

Northern         0.427 0.214 -7.251897 0.6594775 0.0007088 

Upper  East      0.395 0.198 -7.400873 0.6439825 0.0006107 

Upper West       0.703 0.353 -7.206664 0.7993004 0.0007416 

Brong Ahafo      -0.152 -0.077 -7.694218 0.3686119 0.0004555 

According to National Road Safety Commission (NRSC)2 of Ghana 2011 report, two key national road traffic fatality 

indices required for characterization and comparison of the extent and risk of traffic fatality across the ten geographical 

regions of Ghana are RTFs per 100 accidents and RTF per 100 casualties.  

The last two columns of Table 7 give the means of RTFs per 100 accidents and RTFs per 100 casualties for each region 

from 1991 – 2009. This implies that the risk of dying as a result of road traffic fatality in Greater Accra is relatively low, 

recording an average rate of 5.7 road traffic fatalities per 100 accidents. Thus, out of every 100 road traffic accidents in the 

                                                        
2 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI), Road Traffic 

Crashes in Ghana, Statistics 
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Greater Accra, about 6 of the victims are likely to die (Hesse and Ofosu, 2015). 

Table 7. Parameter estimates and Fatality indices 

Regions 5ˆ 10  2ˆ 10  
RTF per 100 

Accident 

RTF per 100 

Casualties 

Greater Accra 16.5 30.836 5.7 7.7 

Ashanti 31.2 36.147 17.8 12.2 

Western 46.3 40.538 16.9 10.7 

Eastern 36.0 21.096 19.9 9.7 

Central 43.4 27.583 21.8 11.4 

Volta 61.3 42.594 23.6 11.2 

Northern 70.9 65.948 40.9 18.1 

Upper East 61.1 64.398 27.3 17.0 

Upper West 74.2 79.930 28.3 14.6 

Brong-Ahafo 45.6 36.861 28.6 14.5 

We wish to determine if strong positive correlation exist between the parameter estimates of the modified Smeed’s model 

and the fatality indices based on NRSC definition of risk. The p-values in Table 8 show that there is strong positive 

correlation between the parameter estimates of the modified Smeed’s model and the fatality indices. Thus, the parameter 

estimates ̂ and ̂ of the modified Smeed’s model can be used as risk indicators of RTFs in Ghana.  

Table 8. Correlations coefficients 

 

̂  ̂  
RTF per 100 

Accident 

RTF per 100 

Casualties 

̂  1 

   
̂  

0.8312 (0.003) 1 

  RTF per 100 Accident 0.8424 (0.002) 0.6341 (0.049) 1 

 RTF per 100 Casualties 0.7708 (0.009) 0.7610 (0.010) 0.9011 (0.000) 1 

 

4. Conclusion 

A modified Smeed’s model,  

  ,D
P

N P u


   

has been developed. The multiplicative error term u in the modified Smeed’s model of this study was found to be less than 

that of Smeed’s, making the modified Smeed’s model preferred. Using data from Ghana, it was confirmed that the 

modified Smeed’s model for this studies, is relatively more accurate in estimating RTFs in Ghana than the Smeed 

equation. 

Based on the modified Smeed’s model of this study, the developed Bayesian method with respect to the Laplace prior 

distribution was found to be robust to violation of the normality assumption of the model. Using data from Ghana, the 

sensitivity of the Bayesian estimates at different sample sizes with respect to the Normal, Laplace and Cauchy prior 

distributions was assessed. At a sample size of 15 or more, the model becomes insensitive to the prior distribution. The 

posterior Bayesian estimate is consistent for the Laplace prior distribution across all four sample sizes. At a sample size 

of 5, the estimates based on Laplace prior distribution were robust with respect to violation of the normality assumption 

of the model.   

The parameter estimates of modified Smeed’s model can be used as risk indicator of RTFs across geographical regions 

provided there is significant intercept variation 0  of the regression equation across geographical regions. Using data 

from Ghana, it was shown that the parameter estimates ̂  and ̂  across the 10 geographical regions can be used as risk 

indicators of RTFs in Ghana. Thus, the three Northern regions and the Brong-Ahafo region have the highest risk of RTFs. 
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