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Abstract 

In this paper, we estimate the dependence structure between international stock markets using copulas. Different 

relationships that exist in normal and extreme periods were estimated using Clayton copula.  The Inference Functions for 

Margins method was used in estimating the clayton copula parameter thereby obtaining dependence estimates used in 

estimating Value-at-Risk. Extreme events are likely to alter the dependence structure of financial markets. This could have 

implications for investment decisions and ability to estimate the risk of financial markets crash. Results reveal that during 

the crisis period (2007-2009), maximum possible loss of market value is 75.9% and 77.6% with a confidence interval of 

90% for the Kenya-Nigeria and Kenya-South Africa portfolios respectively. This implies that the Kenya-South Africa 

portfolio has the highest risk.  

Keywords: copula, asymmetric dependence, Value-at-Risk  

1. Introduction 

Dependence structure between random variables is crucial in multivariate analysis. In finance, dependence structure 

between financial markets are critical for investors, policymakers and researchers to make informed decision about 

investing their resources and making correct investment strategies (Ling, 2006). This is because, interest rates and equity 

prices move in opposite directions in normal periods but in periods of financial turmoil, they tend to co-move. 

The extent of interconnectedness and interdependence of the financial system was highlighted during the 2007-2009 

financial crisis (Aloui et al., 2011). The studies of Dennis (2013); Nguyen and Nguyen (2014) suggest and further confirm 

that financial markets are likely to be more correlated in period of burst than periods of booms. When dependence 

structure of financial markets (stock, bond, exchange rates and money markets) are closely related, they tend to be faced 

with a possibility of a market crash. 

Until recently, extreme events (financial crisis) were regarded as outliers and often excluded from statistical analysis of 

financial market (Wu et al., 2012). The financial turmoil has highlighted the importance of analysing extreme events in 

investment decision, pricing of financial assets as well as risk management (Aloui et.al, 2011). Therefore, extreme events 

are likely to alter the dependence structure of financial markets. This could have implications for investment decisions 

and ability to estimate the risk of financial markets crash.  

Market crashes are considered catastrophic events when the values of equity market suddenly decline, exchange rates 

depreciate rapidly and there is a credit default. These rare events could lead to instability of the financial system and 

exposure to systemic risk. In recent times, extreme events in the financial market are no longer considered as outlier with 

negligible probability.  

Analysing extreme events with a normality assumption might be misleading (Chen et al., 2004). Restriction to elliptical 

distributions, implies dealing with measures which only captures dependence in the linear sense (Aloui et.al., 2011). 

Linear correlation models however, from empirical literature have been found not to be appropriate for measuring non 

normal distributions (Nelsen, 2006). Since financial market data exhibit heavy tails as a result, linear correlation models 

cannot capture the structure of dependence (Embrechts et al., 2002). Financial decision based on linear correlation models 

may be misleading as it is not robust in modelling of nonlinear dependence (Boyer et al., 1999).  

Linear correlation models can lead to underestimation of the risks that could be associated with a financial market crash; 

thus it is pertinent to use models which capture financial market non-linearity. The aim of this paper is to estimate 
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dependence structure and estimate the risk of market crash. 

The remainder of the paper is organized as follows: section 2 gives the theoretical framework. Empirical results are 

analysed and discussed in Section 3. Conclusion and policy implications are provided in Section 4. 

2. Theoretical Framework 

Assume a portfolio of two financial market index. The initial value of the portfolio from Carmona (2004) is given as  

𝑃0 = 𝑛1𝐴1 + 𝑛2𝐴2                                                  (1) 

where 𝑛1 𝑎𝑛𝑑 𝑛2 are the number of units of the two financial markets index, which are valued at 𝐴1 𝑎𝑛𝑑 𝐴2 at the 

beginning of a period. We denote 𝐴1
′  𝑎𝑛𝑑 𝐴2

′  their values at the end of the period. The new value of this portfolio at the 

end of the new period is given by 

𝑃1 = 𝑛1𝐴1
′ + 𝑛2𝐴2

′                                                   (2) 

to get log returns on the individual financial market index, we denote 

𝑋 = 𝑙𝑜𝑔 .
𝐴1
′

𝐴1
/                                                                                (3) 

and 

𝑌 = 𝑙𝑜𝑔 .
𝐴2
′

𝐴2
/                                                                           (4) 

The log return of the portfolio is given from equation 2 is given by  

= 𝑛1𝐴1𝑒
𝑥  + 𝑛2𝐴2𝑒

𝑦                                              

𝑅 = 𝑙𝑜𝑔 (
𝐴

𝐴0
) = log (

𝑛1𝐴1
𝑛1𝐴1 + 𝑛2𝐴2 

𝑒𝑋 +
𝑛1𝐴1

𝑛1𝐴1 + 𝑛2𝐴2 
𝑒𝑌) 

= 𝑙𝑜𝑔(𝜆1𝑒
𝑋 + 𝜆2𝑒

𝑌)                                                                 (5) 

where 𝜆1 𝑎𝑛𝑑 𝜆2  are the individual market index.  

We apply copula model to estimate the structure of dependence since linear correlation models are not capable to model 

dependence structure. In order to apply copula model to estimate the risk of financial market crash, we filter our log 

returns to obtain independent and identically distributed (i.i.d) data using the GARCH (1,1) model. The GARCH filtering 

provides us with a standardized residual of returns series which is use in estimating the marginal distribution. The 

standard GARCH (p,q) model by Bollerslev (1986) is given by  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2  ∑ 𝛽𝑗
𝑝
𝑗=1 𝜎𝑡−𝑗

2                                           (6) 

𝜎𝑡 
 2is conditional variance and 𝜀𝑡  is the innovation or residual returns defined as 𝜀𝑡= 𝜎𝑡𝑒𝑡, 𝑒𝑡~𝑁(0,1)are standardized 

residual returns.   

To measure dependence among the financial market returns, the filtered residuals are joined together applying copula 

function modelling. The joint distribution function of the random variable 𝑋 𝑎𝑛𝑑 𝑌 is given by  

𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃𝑟  (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)                                                  (7) 

Using the theorem of Sklar (1959), gives us a connection between marginal distribution and copulas to the joint 

distribution. In this case, let 𝐹𝑋𝑌 represent a bivariate cumulative distribution function with marginal distribution 𝐹𝑋 and 

𝐹𝑌, then there exist a two dimensional copula cumulative distribution function 𝐶 on ,0,1-2, such that for all (𝑥, 𝑦) 𝜖 ℝ2 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) holds. For continuous 𝐹𝑋 and 𝐹𝑌, 𝐶 is uniquely determined by  

𝐶(𝑢, 𝑣) =    𝐹𝑋𝑌(𝐹𝑥
−1(𝑢), 𝐹𝑌

−1(𝑣))                                             (8) 

the random variables 𝑢 = 𝐹𝑋(𝑥) 𝑎𝑛𝑑 𝑣 = 𝐹𝑌(𝑦),  are obtained by the probability integral transformation uniformly 

distributed on ,0,1-, where 𝐹𝑌
−1(𝑢) 𝑎𝑛𝑑 𝐹𝑋

−1(𝑣) are the generalised inverse distribution functions of marginal.   

The Joint density function of (X Y) from Sklar (1959) is given by  

𝑓(𝑥, 𝑦) = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) 𝑓𝑋(𝑥), 𝑓𝑌(𝑦)                                  (9) 

Literature offers several copulas such as Gaussian, Gumbel and Clayton which can be used in modelling dependence 

structure of a relationship described above (Kjersti, 2004). However, of interest to this study is the Clayton Copula. The 

Clayton copula is an asymmetric copula, exhibiting greater dependence in the negative tail than in the positive. 

Mathematically, the bivariate Clayton copula is expressed as 
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𝐶 (𝑢, 𝑣) = (𝑢
− + 𝑣−  1)−

1

                                                            (10) 

its generator is  

  (𝑋) =
1

 
(𝑥−  1)                                                           (11) 

Where 𝑢 𝑎𝑛𝑑 𝑣 are random variables, 0 < 𝜃 < ∞ is a parameter controlling the dependence. Perfect dependence is 

obtained if 𝜃 → ∞,𝑤𝑕𝑖𝑙𝑒 𝜃 → 0 implies independence. Therefore, markets crashing jointly can be modelled using the 

Clayton approach which is the main focus area of this research as it can tell about market risk in periods of extreme 

financial events. 

Estimating Copula Parameters 

We use the inference function for margins method (IFM) to fit copula and estimate the structure of dependence. The IFM 

is based on the pioneering work of (Joe and Xu, 1996). The estimation method of IFM is presented below: 

Assume we observe 𝑛 independent observations  𝑋𝑡 = (𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑝) from a multivariate distribution, which can be 

constructed with 𝑝  marginal distributions and a copula function 𝐶(𝐹1(𝑥),… , 𝐹𝑛(𝑥); 𝜃)  with parameter 𝜃 . The 

probability distribution function (PDF) of the marginal distributions is defined as 𝑓𝑖(𝑥; 𝜃𝑖) with a cumulative density 

distribution (CDF) as 𝐹𝑖(𝑥; 𝜃𝑖), where 𝜃𝑖 is the parameter of marginal distributions. The IFM method estimates the 

parameters of the marginal distribution in the first step.  

The log-likelihood function of the first step can be written as 

𝐿𝑜𝑔𝑙(𝜃) = ∑𝑛𝑖=1 ∑ 𝑙𝑜𝑔  
𝑝
𝑗=1 𝑓𝑖 (𝑥𝑖𝑗; 𝜃𝑖 )                                            (12) 

The estimation of the parameter 𝜃 = (𝜃1, … , 𝜃𝑛)  of marginal distribution can be made through maximizing the 

log-likelihood function (Joe and Xu, 1996).  

𝜃̂𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥∑
𝑛
𝑖=1 ∑ 𝑙𝑜𝑔  

𝑝
𝑗=1 𝑓𝑖 (𝑥𝑖𝑗; 𝜃𝑖 )                                         (13) 

The parameter 𝜃 of the copula function is estimated in the second step of IFM, with the parameter 𝜃̂ of the p marginal 

distributions.  

𝜃̂ = 𝑎𝑟𝑔𝑚𝑎𝑥∑ 𝑙𝑜𝑔 𝐶 𝑛
𝑡=1 (𝐹1 (𝑥𝑖1; 𝜃̂𝑖 ), … , 𝐹𝑝 (𝑥𝑖𝑝; 𝜃̂𝑝 ); 𝜃)                   (14) 

The IFM is given by a vector 𝜃𝐼𝐹𝑀 = (𝜃̂, 𝜃̂𝐼𝐹𝑀) 

where 𝜃𝐼𝐹𝑀 = (𝜃̂𝑖 , 𝜃̂𝑝, 𝜃) 

Asymptotic Properties of Inference Function for Margin Estimator 

We use theorem 1 (Joe, 2005) to show consistency and asymptotic normality of the IFM estimator 𝜃̂𝐼𝐹𝑀.  

Theorem 1. Let 𝑋1, … , 𝑋𝑛   be independent and identically distributed random vectors with density 𝑓 . Let 𝜃 𝜖 Θ and 

𝑥 𝜖 𝑆 : = 𝑠𝑢𝑝𝑝(𝑓0)  ⊆ 𝑅
2 where 𝑠𝑢𝑝𝑝(𝑓0) is the support of (𝑓0). Assuming the following conditions hold: 

(a) The parameter space Θ ⊆ R is an open interval 

(b) The Support  𝑆 is independent of 𝜃 

(c) 𝑓(𝑥; 𝜃) is three times continuously differentiable with respect to 𝜃  

(d) 𝐸𝑙  (𝑋 𝜃)
2 + 𝐸𝑙   (𝑋 𝜃) = 0 𝑎𝑛𝑑 ∫

 

  𝑠
𝑓(𝑥 𝜃)𝑑𝑥 =

 

  
∫ 𝑓(𝑥 𝜃) 𝑑𝑥 = 0)
𝑠

  

(e) The fisher Information  (𝜃) = 𝐸𝑙 (𝑋 𝜃)
2 =  𝐸𝑙  (𝑋 𝜃) is positive and finite 

(f) For all 𝜃0 𝜖 Θ and  𝜃 𝜖 Θ and 𝜃 𝜖   (𝜃0)  there exists a measurable function     with 𝐸  ( (𝑋 𝜃0)) <

 ∞ such that |𝑙   (𝑦 𝜃)| ≤  (𝑥 𝜃0) for all 𝑥  .  

Imposing the regularity conditions from (White 1994 and Patton 2006b) to the marginal likelihood in equation (12), and 

the copula likelihood function, equation (14),  a joint normality condition holds such that as 𝑛 → ∞, 

√𝑛 .( 𝜃̂𝐼𝐹𝑀)  𝜃/  → 𝑁 (0, 𝐺̂) 

where  𝐺̂  is the estimator of the Godambe Information matrix (Joe, 1997).  

G is defined as  𝐺 = (𝐷𝑔
−1 𝐷𝑔

−1)𝑡, where 𝐷𝑔 = 𝐸 .
 𝑔𝑡(𝑋,𝜂)

 𝜂
/ and   𝑔 = 𝐸(𝑔

𝑡(𝑋, 𝜂)𝑔 (𝑋, 𝜂)).  

Estimating Market Risk  

In estimating financial market risk, the literature offers several risk measures. However, we reviewed Value at Risk (VaR).  
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Value-at-Risk measures the minimum loss we would expect over a given time horizon. Carmona (2004) defined 𝑉𝑎𝑅 as 

the 100th percentile of the loss distribution given as: 

𝑞 = ℙ * 𝑅 ≥ 𝑟+ =  ℙ*𝑅 ≤  𝑟+ = 𝐹𝑅( 𝑟)                             (15) 

where 𝑞 is the percentile, ℙ is the probability 𝑅 is the random variable and 𝑟  is the losses. 

From our earlier setting of a portfolio with two financial index and log returns denoted by 𝑋 𝑎𝑛𝑑 𝑌, we solve for 𝑟 in 

equation (15) to get our VaR with our copula parameter inputted in the VAR (Copula –VAR) by computing the CDF of the 

log return 𝑅. The latter can be expressed analytically as 

= ∬ 𝑓(𝑋, 𝑌)(𝑥,𝑦)𝑑𝑥𝑑𝑦     
*(𝑥,𝑦);𝜆1𝑒

𝑥+𝜆2𝑒
𝑦+≤𝑒−𝑟

                   (16) 

where 𝜆1𝑒
𝑥 + 𝜆2𝑒

𝑦 are log returns of the portfolio from equation (5) and 𝑓(𝑋, 𝑌) is the CDF of the returns.   

= ∫ 𝑑𝑥
−𝑟−𝑙𝑜𝑔𝜆1
−∞

∫ 𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))𝑓𝑋(𝑥)
log (𝑒−𝑟/𝜆2− 𝜆1/𝜆2𝑒

𝑥)

−∞
𝑓𝑌(𝑦)𝑑𝑦                 (17) 

= ∫ 𝑑𝑢
𝐹𝑋(−𝑟−𝑙𝑜𝑔𝜆1)

0
∫ 𝑑𝑣 𝑐(𝑢, 𝑣)
𝐹𝑌(log (𝑒

−𝑟/𝜆2− 𝜆1/𝜆2𝑒𝑋
𝐹−1 (𝑢)

))

0
                                (18) 

= ∫ 𝑑𝑢
𝐹𝑋(−𝑟−𝑙𝑜𝑔𝜆1)

0
 
 

 𝑢
𝐶(𝑢, 𝑣)|

𝑣=𝐹𝑌(log (𝑒
−𝑟/𝜆2− 𝜆1/𝜆2𝑒𝑋

𝐹−1 (𝑢)
))   
                           (19) 

The steps for inputting copula parameter into VaR is given in Appendix I.  

In order to estimate the VaR in the given framework, we estimate the copula dependence parameter from a sample of pairs 

of log returns. The estimated parameter is then used to compute the VaR quantiles at different confidence levels which 

gives estimates for VaR.  

3. Empirical Results 

In the analysis of financial market dependence, monthly data were collected from January, 2000 to March, 2016 from 

stock exchange websites of countries namely; Nigeria, Kenya and South Africa. Consideration for proxy is All Share 

Index. Data was divided into three periods; Pre-crisis, crisis and Post crisis periods which captured financial market 

extreme events (2007-2009). We used negative log returns obtained as: 

𝑟𝑡 =    𝑛 .
𝐴𝑡

𝐴𝑡−1
/                                                                                      (20) 

where 𝐴𝑡 is today’s index and 𝐴𝑡−1is the previous day’s index. 

The summary statistics for each log return index are reported in Table 1. A glance at the results from the Jarque-Bera test, 

reveals none of series returns are normally distributed. Figure 1 gives the trend and log returns of each index.  

Table 1. Monthly Summary Statistics for Each Index 

Index Mean Standard Deviation Skewness Kurtosis Jarque-Bera 

   NSE20 0.0026 0.0404 -0.474 2.502 p < 0.00005 

   NASI 

 N I 

0.0076 0.0719 -0.509 5.360 p < 0.00005 

   JSE 0.0097 0.0490 -0.3149 0.563 p < 0.00005 

 

Table 1 gives a summary statistic for the negative log returns of Kenya, Nigeria and South Africa stock markets. The 

p-values of Jarque-Bera normality test are shown in the last column. The sample period on a monthly basis covers from 

January 2000 to March 2016. Observations are 195, collected from various stock exchange websites. NSE20-Kenya Stock 

Market Index, NASI; Nigerian Stock Market Index and JSE: South African Stock Index.  
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Figure 1. Monthly Stock Market Evolution and Log Returns 

Figure 1 reveals that stock market index for Kenya, Nigeria and South Africa was trending upwards which can be 

described as a pre-crisis period from around 2003 to 2006 for Kenya, 2000 -2006 for Nigeria and 2000-2006 for South 

Africa. Between 2007-2009 a downward trend is seen for all index (crisis) and from 2010-2016 a post crisis period.  

Copula Fitting 

We report results from fitting Clayton copula. Figure 2 gives a visual display of the dependence between market pairs.  

 

Figure 2. Scatter plots of Stock Market Pairs 

The first row gives a scattered plot for the fitted copula, showing patterns of dependence between Kenya and Nigeria 

stock market between 2000-2006 and Kenya and South Africa in the same period. The second row in a similar manner 

shows the scattered plot for Kenya and Nigeria between 2007-2009 and Kenya South Africa Between 2007-2009. The 

observation shows a dependence originating from the low side of the plot. Third row gives the scatter plot for 

Kenya-Nigeria and Kenya-South Africa for the period 2010-2016. 
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Figure 3. Contour Plot of Clayton Copula (Crisis Period) 

Figure 3 gives us a contour plot for Kenya-Nigeria pair on the left and for Kenya-South African pair on the right.  

Table 2 gives estimates from fitting clayton copulas to stock market pairs for a period considered as pre crisis between 

2000-2006. The table reports the parameter of the copula and also the linear parameters estimates of the relationship 

between these pairs.  

Table 2. Empirical Fitting of Copula 2000-2006 (Pre Crisis Period) 

Kenya -Nigeria (Market Pair) 

 

Copula 

Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.1574 

(0.1374) 

0.8471 0.3048 0.0729 0.1670 

Kenya - South Africa (Market Pair) 

 

Copula 

Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.09943 

(0.1259) 

0.36285 0.1673 0.0473 0.0709 

Table 2 gives a summary of copula fit for Kenya-Nigeria stock market index pair and Kenya-South Africa stock market 

index pair. 𝜃 is the dependence parameter for clayton copula during the pre-crisis period. The Kendall’s tau reports a 

dependence of 0.072 and Spearman rho of 0.167 for Kenya-Nigeria stock market pair, while a dependence of 0.0473 and 

0.070 for Kendall’s tau and Spearman are reported for Kenya-South Africa market pair.  

Table 3. Copula Fitting for 2007-2009 (Crisis Period) 

                   Kenya -Nigeria (Market Pair) 

Copula 
Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.2863 (0.2486) 0.9114 0.1771 0.1252 0.1865 

      

                       Kenya - South Africa (Market Pair) 

Copula 
Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.9201 (0.3189) 6.6607 -11.3215 0.3151 0.4542 
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Table 3 gives an overview of fitting clayton copula to stock market pairs in an extreme period considering the 2007-2009 

period. In this period, the dependence parameter 𝜃  between Kenya –Nigeria stock market index is 0.286 and for 

Kenya–South Africa market index is 0.9201. The Kendall’s tau reports a dependence of 0.125 and Spearman rho of 0.186 

for Kenya-Nigeria stock market pair, while a dependence of 0.315 and 0.452 for Kendall’s tau and Spearman are reported 

for Kenya-South Africa market pair.  

Table 4. Copula Fitting for 2010-2016 (Post Crisis Period) 

Kenya -Nigeria (Market Index Pair) 

Copula 
Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.4307(0.1847) 3.328 -4.657 0.2536 0.3727 

 

 

Kenya - South Africa (Market Index Pair) 

Copula 
Parameter 

𝜃 LogLike AIC Kendall’s Spearman 

Clayton 0.3469 (0.159) 3.1707 -4.3414 0.1478 0.2196 

In table 4, we report the fitting of clayton copula to stock market pairs in the post crisis period. In this period, the 

dependence between Kenya–Nigeria stock market pair is 0.430 and for Kenya –South Africa is 0.346. The Kendall’s tau 

reports a dependence of 0.253 and Spearman rho of 0.37 for Kenya-Nigeria stock market pairs, while a dependence of 

0.147 and 0.219 for Kendall’s tau and Spearman are reported for Kenya-South Africa.  

Estimating Market Risk  

After estimation of copula parameter 𝜃,  we substituted the dependence parameter into the VaR functions to estimate risk 

measures at 90%, 95% and 99% using the corresponding quantiles 0.10. 0.05 and 0.01 respectively. The VaR estimates are 

used in measuring the maximum possible loss of market value over a holding period. The VaR is computed as 0.759 at 

90%, 0.784 at 95% and 0.837 at 99% confidence interval which implies the losses from holding the Kenya-Nigeria 

portfolio is 75.9%, 78.4% and 83.7% at the respective confidence interval as shown in table 5. Simultaneously, VaR 

estimates computed for Kenya – South Africa portfolio reveal a 0.776 at 90%, 0.795 at 95% and 0.855 at 99% confident 

interval which implies the losses from holding the Kenya-South Africa portfolio is 77.6%, 79.5% and 85.5% at the 

respective confidence interval. Since a higher VaR value implies a higher risk, this indicates that holding a Kenya-South 

Africa portfolio is riskier than holding a Kenya-Nigeria portfolio.  

Table 5. Value at Risk Estimates Using Clayton Copula 

Crisis Period: Clayton Copula 

 

NSE20-NASI 

90% VaR VaR 95% VaR99% 

0.759 0.784 0.837 

 

NSE20-JSE 

90% VaR VaR 95% VaR 99% 

0.776 0.795 0.855 

 

4. Discussion and Conclusion  

The study focused on stock markets (Kenya, Nigeria and South Africa) using copula technique which estimates 

dependence structure of stock markets during pre-crisis, crisis and post-crisis periods. Clayton copula dependence 

parameters have been estimated using the Inference function for margins method into the VaR framework. The results 

revealed that during the crisis period, the maximum possible loss of market value is 75.9% and 77.6% with a confident 

interval of 90% for the Kenya-Nigeria and Kenya-South Africa portfolios respectively. This implies that the Kenya-South 

Africa portfolio has the highest risk. A further implication is that dependence during crisis period imply that opportunities 

for portfolio diversification are reduced than at periods of booms. 
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Appendix A  

Copula VaR 

We show how we input 𝜃, the copula parameter into VaR. From the definition of VaR. Carmona (2004) defined 𝑉𝑎𝑅𝑞 as 

the 100𝑞-th percentile of the loss distribution given as: 

𝑞 = ℙ * 𝑅 ≥ 𝑟+ =  ℙ*𝑅 ≤  𝑟+ = 𝐹𝑅( 𝑟)                               (15) 

We solve for 𝑟 in equation (15) to get our VaR, we computing the CDF of the log return 𝑅. The latter can be expressed 

analytically as 

= ∬ 𝑓(𝑋, 𝑌)(𝑥,𝑦)𝑑𝑥𝑑𝑦
*(𝑥,𝑦);𝜆1𝑒

𝑥+𝜆2𝑒
𝑦+≤𝑒−𝑟

                                (16) 

Now for a continuous case, the continuous distribution function (CDF) is given by  
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𝐹(𝑋, 𝑌) = ∫

𝑥

−∞

∫𝑓(𝑎, 𝑏)𝑑𝑎 𝑑𝑏

𝑦

−∞

 

Note: For double integral, we assume that one variable is constant and the other is varying. So here we assume 𝑋 to be the 

only variable and 𝑌 as a constant. The above generates the upper limit of 𝑋 as follows.  

𝑙𝑜𝑔(𝜆𝑒𝑥 + 𝜆𝑒𝑌) ≤   𝑟 ⇒ 𝜆𝑒𝑥 + 𝜆𝑒𝑌 ≤ 𝑒−𝑟 

When 𝑌 is considered a constant, we then have  

𝜆1𝑒
𝑋 ≤⇒ 𝜆1 ≤

𝑒−𝑟

𝑒𝑥
⇒ 𝜆1 ≤ 𝑒

−𝑟−𝑋 ⟹ 𝑙𝑜𝑔(𝜆1) ≤  𝑟  𝑋 ≤  𝑟  𝑙𝑜𝑔 𝜆1 

Hence, the upper limit for 𝑋 is  𝑟  𝑙𝑜𝑔𝜆1 

Then for 𝑌, we vary both 𝑥 𝑎𝑛𝑑 𝑌.  This is because we cannot assume 𝑋 to be constant as we have already assumed 𝑌 

to be one but now we integrate with respect to X.  

So we have,  

𝜆1𝑒
𝑋 +  𝜆𝑒𝑌 ≤ 𝑒−𝑟 ⇒

𝜆1𝑒
𝑋

𝜆2
+
𝜆2𝑒

𝑋

𝜆2
≤
𝑒−𝑟

𝜆2
 
𝜆1𝑒

𝑋

𝜆2
⇒ 𝑌 ≤ log (

𝑒−𝑟

𝜆2
 
𝜆1
𝜆2
) 

As the upper limit for 𝑌. Which gives of the equation (17 ) below 

= ∫ 𝑑𝑥
−𝑟−𝑙𝑜𝑔𝜆1
−∞

∫ 𝑐(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))𝑓𝑋(𝑥)
log (𝑒−𝑟/𝜆2− 𝜆1/𝜆2𝑒

𝑥)

−∞
𝑓𝑌(𝑦)𝑑𝑦                     (17) 

Change of variables and integration  

Now, we do a change of variables so as to integrate in a mathematically correct way. So recall that for copulas, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) from Sklar Theorem (1959), 

Recall also that  

To bring in 𝑢, we do a transformation, 

𝑢 = 𝑓(𝑋) 
Such that when 𝑋 =  ∞, 𝑢=0 and when 𝑋 =  𝑟  𝑙𝑜𝑔𝜆1,𝑢 = 𝐹𝑋( 𝑟  𝑙𝑜𝑔𝜆1) 

For 𝑣, 𝑣 = 𝑓(𝑌) = 𝐹𝑌(𝑦) such that when 𝑌 =  ∞, 𝑣 = 0 and when  

𝑌 =  
𝑒−𝑟

𝜆2
 
𝜆1𝑒

𝑋

𝜆2
, 

𝑣 = 𝐹𝑌 (
𝑒−𝑟

𝜆2
 
𝜆1𝑒

𝐹𝑋
−1(𝑢)

𝜆2
) 

= ∫ 𝑑𝑢
𝐹𝑋(−𝑟−𝑙𝑜𝑔𝜆1)

0
∫ 𝑑𝑣 𝑐(𝑢, 𝑣)         
𝐹𝑌(log (𝑒

−𝑟/𝜆2− 𝜆1/𝜆2𝑒𝑋
𝐹−1 (𝑢)

))

0
                 (18) 

By integrating equation (18) we  

= ∫ 𝑑𝑢
𝐹𝑋(−𝑟−𝑙𝑜𝑔𝜆1)

0
 
 

 𝑢
𝐶(𝑢, 𝑣)|

𝑣=𝐹𝑌(log (𝑒
−𝑟/𝜆2− 𝜆1/𝜆2𝑒𝑋

𝐹−1 (𝑢)
)) 
                        (19) 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

 


