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Abstract

A Monte Carlo simulation was performed for estimating and testing hypotheses of three-way interaction effect in latent
variable regression models. A considerable amount of research has been done on estimation of simple interaction and
quadratic effect in nonlinear structural equation. The present study extended to three-way continuous latent interaction in
structural equation model. The latent moderated structural equation (LMS) approach was used to estimate the parameters
of the three-way interaction in structural equation model and investigate the properties of the method under different
conditions though simulations. The approach showed least bias, standard error,and root mean square error as indicator
reliability and sample size increased. The power to detect interaction effect and type I error control were also manipulated
showing that power increased as interaction effect size, sample size and latent covariance increased.
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1. Introduction

Structural Equation Modeling (SEM) is a statistical method used for building models, making inference and quantify the
relationship among latent variables that are not observable or cannot be measured precisely. But, measurement on the
indicator variable related to those unobservable variables are available. This relationship began its bases as a method
for modeling linear relationship. However, because of many of the models for observable variables in the social and
behavioral sciences involves nonlinearity, its unlikely that linear models are always enough to describe the relationship
between latent variables.

Extending SEM to include nonlinear functions allows researchers meaningfully and accurately model the relationship
underlying their data. (Kenny & Judd, 1984) introduced the first statistical method aimed at producing estimates of
parameters in a nonlinear structural equation model (specifically a quadratic or cross-product structural model with a
linear measurement model). Their method attracted methodological discussions and alterations by a number of papers.
For instances, (Hayduck, 1987) demonstrated how the Kenny-Judd model could be implemented in LISREL.

Generally, most of the available literature were only for the specific quadratic and simple cross-product structural model.
Hence, this study extended the simple cross-product to three-way interaction effect in nonlinear SEM and estimate its
effects using latent moderated structural(LMS) equation method. By Montecarlo simulation,the statistical properties of
the approach(LMS) were discussed.

In empirical research, models such as (1) can be very useful. It covers the situation in which there are two moderator
variables which jointly influence the regression of the dependent variable on an independent variable. In other words, a
regression model that has a significant three-way interaction of continuous variables. For instance, to study the moderating
effect of social support, hardiness on the relationship between stress and depression,one hypothesizes that the effect of
stress on depression was moderated by hardiness and social support. In such cases Model (1) gives a direct test of this
hypothesis.

2. Model

A model with three latent variables with three observed indicators each for both endogenous and exogenous latent vari-
ables was used. For the identification purposes we chose to set a single factor loading to 1 for n, £, & and &3. By three-way
interaction, we mean the interaction of three continuous exogenous latent variables (£1, &>, &3). Following the LISREL
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specification, the structural equation considered was:
=781 +7262 + 7383 + 746162 + ¥56163 + V6283 + 1816283 + 1

The measurement equations for each models were given by

][l 0 0 0] &1
Y2 /lzy 0 0 0 &
y3 /13), 0 0 0 &3
X 0 1 0 O 01
X2 0 /lxz 0 0 n 52
X3|_ 0 /lx3 0 0 fl n (53
X4 0 0 1 0 fg 64
x| |0 0 As 0 |l&] |65
X6 0 0 /lxﬁ 0 66
X7 0 0 0 1 57
X8 0 0 0 /lxg 68
lxog] LO 0 0 Ayl |69 ]

Where x is a gx1 vector of independent indicator variables,and y is a px1 vector of dependent indicator variables. A, is a
regression coefficients predicting x by £ and A, is a regression coefficients predicting y by 7. 7, is vector of x-intercept and
T, is a px1 vector of y-intercept. ¢ is a q x 1 vector of measurements errors of x and ¢ is a p x 1 vector of measurements
error of y.

n is mx1 vector of latent endogenous variables and £ is n x 1 vector of exogenous variables. I is regression coeflicients
predicting n by & and ¢ is a vector of disturbance.

It was assumed that

® £1,6,83,01,02,03,04,05, 06, 07,08, 09, €1, €2, and €3 are multivariate normally distributed.
® 01,02,03,04, 05,06, 07,08, 09, €1, &2, and &3 have expected values of zero and are uncorrelated with £}, &, and &;.

e Finally, £ has an expected value of zero and assumed to be uncorrelated with &1, &, &3, 01, 92, 93, 04, 05, J¢, 07, 08, 09, E1,
&, and &3.

Based on these assumptions the mean vector and covariance matrix of (£1, &2, &3, €162, €183, E263, €162€3) were derived as
follows:

cov(&1,£162) = E(§1)cov(&1,£2) + E(§2)cov(&1, &) + E[(§1 — E(ED))(& — E(§1))(é2 — E(£2))]

By centering &, and &;, the expected value of both becomes ,E(¢)) = 0 and E(&;) = 0. Hence cov(é1,£162) = E[(€ —
E(D))(é — E(€1))(& — E(&))]. Under multivariate normality all third moments vanish (see Bohnstedt and Goldberger
1969). This indicates that cov(&},£1&,) = E(£1€1&2) = 0. Accordingly, all the covariance of the main effects with their
two-way interaction is zero under normality condition and the given assumptions.

Following the same procedure, cov(£1é, £163) = E(E1)E(E1)cov(ér, &) + E(E1DE(E3)cov(ér, é1) + E(E)E(E1)cov(ér, &3) +
E(&)E(&3)cov(é, &1) + cov(ér, E1)cov(ér, £3) + cov(€r, E3)cov(ér, €r).

Centering &1, &;, &3 the first four terms are zero and we have

cov(é162,£183) = cov(ér, E1)cov(ér, E3) + cov(€r, E3)cov(ér, E1) = d11023 + P13d12 and
cov(é162,6:83) = cov(ér, E)cov(ér, £3) + cov(€r, E3)cov(ér, &) = 1203 + P13

The covariance of the main effects with the product of the three exogenous variables can be found in the similar manner

cov(€1, E16283) = cov(ér, E)cov(ér, &3) + cov(ér, E2)cov(€r, £3) + cov(€r, &)cov(€1€r)
= drds + P12¢13 + P13d12

cov(&r, £162&3) = cov(§r, E1)cov(§r, E3) + cov(éa, §2)cov(€r, §3) + cov(éa, &3)cov(€l, &)
= ¢21023 + $22013 + P32
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cov(&3, £1683) = cov(&s, E1)cov(ér, §3) + cov(&s, E2)cov(€r, §3) + cov(&s, &3 )cov(él, &2)
= ¢31023 + 32013 + 33012

The covariance between two and three product is zero since the covariances involving five variables, for example
cov(€1&2, &16263) = 0 under normality.

Following (Bohnstedt & Goldberger, 1969) and under normality, the variance of the latent product is

var(éiér) = EXEvaré) + EXEIvarén) + 2EEDE(E)cov(ér, &) + var(E)var(€) + cov(ér, £)°

And under the given assumptions it reduces to

var(€,16;) = var(€)var(é) + conéy, &)
= P11 + ¢f2

Similarly,

var(&1&) = var(é)var(&s) + cov(é), £)°
=dnd33 + ¢%3

var(é,63) = var(&)var(és) + covéy, &)
= $oad3s + d3s
For a normally distributed random variables &1, &, &3, €4, &5, £ With mean zero, the fourth and six moment is
E(€16,6384) = cov(€162,E3E4) + cov(€1&3, E2€4) + cov(é1é4,663) and

E(£16:638648586) = cov(€1,E)E(E364E5E6) + cov(€1, E)E(E264E5E6) + cov(Er, E4)E(E26384E5) + cov(é, &5)E(E263648s) +
cov(&1,&6)E(&263€4¢5) (Kendall & Stuart, 1958).

Then we can find var(£,£,£3). That is

var(éé6263) = EG6E) — E(é16H83)
= E(E68)
= var(€)E(EE) + cov(éy, £)EEEE) + cov(ér, £)EE 6E) + cové, &)EEE5E3) + cov(ér, &)EE16E)
= var(&)E(GE) + 2cov(&, £)E(E16E) + 2c0v(E), &)EE 66)

Using the fourth moment, it can be shown that;

E(5&) = var(&)var(&s) + 2cov((&2,£3)
= ¢33 + 2¢23¢23

E(&16:63) = cové, E)var(&3) + 2cov(éy, €3 )cov(Er, &)
= 12033 + 2013023

and

E(&16E) = 2010023 + 1362
Hence,
var(§16:63) = ¢11(d2¢33 + 2¢23¢23) + 2¢12(d12033 + 2¢13¢23) + 2¢13(2h12023 + P13¢22)
The mean vectors for (€1, €183, E263, E162€3)

75



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 5, No. 6; 2016

Centering &1, &;, &3, the mean for the two products is

E(&16) = cov(ér, &) = ¢

E(§1&3) = cov(é1, &) = d13

E(£263) = cov(§2,83) = ¢a3
E(168)=0

Then the mean and variance of the endogenous latent variable in equation (1) is

Em) = yadi2 + y5013 + Yeh23
and

var(n) = yivar(&)) + yavar(&) + yivar(&) + yivar(é1&) + yavar(£16) + yevar(&6)
+yavar(£16,63) + 2[cov(yi€1, v262) + cov(yi€l, ¥3E3)
+ cov(y262,v3€3) + cov(y1€1, ¥1€16263)
+ cov(y262,¥7€16283) + cov(y3&3, y1616:283)] + var(()
That is

var(n) = oy = Yid1 + vabn + ¥idss + i (@11dn + 61,) + vi(b11¢33 + d1)
+Yg(h22833 + 033) + V3[611(d226833 + 2023¢23)
+ 2¢12(P12033 + 2013¢23) + 2013212623
+ ¢13022)] + 2[y172012 + V173013 + ¥2¥3623
+Y171(911623 + P12613 + P13¢12)
+Y271(921623 + Pd13 + $23012)
+¥3¥71(931023 + P23d13 + d33h12)] + ¢

see (Gerry Gray, 1999)

Hence the variance covarince matrix for the latent variables in the model become:

¢11
$21 é22
#31 $32 #33
o= 0 0 0 P11 + ¢%2
0 0 0 éuds + P13¢12 P33 + ¢,
0 0 0 dndn +di3dn d12d33 +d13¢23  dnd33 + ¢§3
d11¢23 + 2012013 P0d13 + 2023012 P33d12 + 2032013 0 0 0 w

where w stands for
var(§16:263) = d11(922033 + 2023023) + 2012(P12033 + 2¢13¢23) + 2013(2P 12023 + P13¢22)

2.1 Estimation Method

Let f; = (1.£1,62.€3) . Zi = (Y1, Y2, Y3, X1, X2, X3, X4, X5, X6, X7, X3, X9) , € = (£1,&2,€3,01,02,03, 64,65, 56, 67, 08, 69) . Then
the full nonlinear structural equation model can be specified as follows

Zi = Af, + € (2)

Following the notation in (Wall, 2009), let 6,, represent the measurement model parameters (i.e., parameters in A, ® and
6, denote the nonlinear structural parameters (i.e.,y; to y7, V). Where © is varance- covariance matrix for ¢ in equation
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(2). Note that = ((6m)’, (6,)") .

For individual i, the joint distribution of the observed data and the latent variables conditional on the parameter vec-
tor 6 can be written under the nonlinear structural equation model in equation (1) and (2) as follows.

= P(Zilni, €11, 21> E3i5 Om) P €115 €205 €315 05) 3)
= P(Zilni, €11, E2i> E3i5 On) PMilé i €2ix 315 O05)P(E1is €215 €34 O)

Where 6; is describing the distribution of &;. However, the latent variables are not observable. Therefore, one must
integrate the latent variables out of the joint distribution to obtain the marginal density of Z;. That is:

P(Z; 0,05, 0¢) = [ P(Zilni, évis énis €305 Om)P(iléris Enin Ei3 00 P(Evi, Eniy €33 O )
Hence, the likelihood function is

L(®) = 1_[ fP(Zi|77i,§1i,fzi,.fzi;9m)P(77i|§1i,§2i,§3i;Hs)P(fli,fzi,&i;Hg)dfi (€]

Rather than directly approximate the integral in equation (4) (Klein & Moosbrugger, 2000) proposed the latent moderated
structural equation method, which does not require the creation of indicators for the interaction of latent variable. LMS
uses numerical integration methods for approximating the integrals in Equation (4) and uses a finite mixture of normal
distributions to approximate the nonnormal distribution.Then they develop an EM algorithm to find the MLEs of this
distribution(see Klein & Moosbrugger, 2000).

2.2 Simulation Design

The simulation study was designed to examine the performance of the estimation method in terms of parameter bias, root-
mean-square error (RMSE), and standard error. There are twelve observed variables in the model. Nine indicators,x, - - - , Xg,
for the three latent exogenous variables, &1, &, and &;. Three observed indicators , yy, - - - ,ys, for the latent endogenous
variable . The observed variable covariance matrix contains (w = 78) unique elements. The model contains 44
parameters to be estimated : eight of the the twelve factor loading , twelve error variances, eight factor variances , three
covariance between main effects, three covariance betweeen main effects and the product of the latent variables three
way interaction term ,and three covariance between two way interactions term. All variables were simulated to come the
following population parameters

n= 03{:1 + 0452 + 05{:3 + 016162 + 026153 + 0.2‘_{:263 + 775162‘_{:3 + § (5)

Where &,&; and &3 are standard normal variables. The values of | to g paths were chosen based on values used by
Klein and Muthn (2007). The values of y; varied depending on the magnitude of the interaction effect size.

The errors for the 12 indicators in the measurement model were generated with the variances of the errors chosen so that
the reliability of each indicator is 0.64. These population values are chosen so that the variances of the factor indicators
are one which makes the parameter values more easily interpretable. Reliability is calculated as the ratio of the variance
of the factor indicator explained by the factor to the total variance of the factor indicator using the following formula,

A xy
AZxy+0

where A is the factor loading, ¢ is the factor variance, and 6 is the residual variance of the factor indicators. We have used
indicator reliability because of it has been shown to affect power to detect interaction effect in a latent variable interaction
model (Harring et al., 2012). We chose the indicator reliabilities to be equal across the 12 indicator variables. The latent
factor, &, &, &3, were generated under the distributional study conditions with mean 0 and variance 1.

The error term ¢ was generated from a normal distribution with mean 0 and variance 0.4 which is the same value used by
(Klein & Muthn, 2007).

Sample size (n=50 n=100, n=250,n=500) were used in the current study. Past simulation studies investigating interactions
between two latent variables have used similar sample sizes (Klein & Muthn, 2007; Marsh et al., 2004). The loading of
0.8 was selected to represent adequate loading size and is comparable to what has been used in previous studies ( Klein &
Muthn, 2007; Little et al., 2006; Marsh et al., 2004).
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In the first simulation study,the correlation between the two first-order latent variables &1, &, and &3 were set equal to the
values used by (Klein & Muthn, 2007):¢1; = ¢ = ¢33 = 1,12 = 0.3,¢13 = 0.1,¢3, = 0.2 . When first-order latent
variables are strongly related, the standard errors associated with the gamma estimates will become very large (Cohen et
al., 2003). Thus, for the current study a larger value for ¢, ¢13, P32 were selected to investigate the robustness of the
standard errors when the covariance of the latent exogenous factors were high.

The effect size represents the additional variance that the three way interaction effect term explains in 17 above and beyond
that which can be explained by the first-order effects and the other three two way interaction term (Marsh et al., 2004) as
shown below.

R 2 O11(P22¢33 + 2¢23023) + 2¢12(P12033 + 2¢13023) + 2¢13(2P 12032 + d13¢22)
v =7l 0',27

]

(Jaccard & Wan, 1995) did a review of the social science literature and found that interaction effect sizes typically ac-
counted for 0.05 and 0.1 of the variance in the dependent variable in the case of two-way latent interaction effects. In
the case of three-way interaction effects, the current study chose similar effect sizes for interaction effects in which the
proportion of variance in 1 accounted for by the interaction effect was set equal to .0 (to investigate Type I error rates),
.05, and .10 (to investigate power)

The squared multiple correlation R? is

R = yidn +v3dn + 73033 + V(1162 + 671) + V3 (@133 + ¢13)
+Ye($22833 + 833) + V3 [d11(d22¢33 + 2632)
+ 2¢12(P12033 + 2013¢23) + 2613(2¢ 12032
+ $13920)] + 2[y172012 + Y1¥3$13 + Y2 ¥3h23
+71Y71(P11823 + d12013 + $13912)
+72y7(d21823 + d0P13 + $23912)
+y377($31923 + $xadi3 + $33012)] /0,

For the interaction effect size 0,0.05,0.1 and the population variance covariance matrix defined above, squared multiple
correlation is ,65.95%, 71.61%, 74.65%,72.86%,79.93%,and 83.01 respectively.

The design of study is 3(effect size)x 4 (sample size)x 2(indicator reliability)x 2(latent covariance) completely crossed
factorial design resulting in 48 possible combinations (Table 1). Once the data were generated, they were analyzed with
Mplus 7.4.

For each of the 48 possible condition combinations, 500 data sets were generated with Mplus version 7.4. This decision
was based on the number of replications used in previous studies for latent interaction, and factors that are known to
influence the number of necessary replications for Monte Carlo simulations. For instance, (Powell & Schafer, 2001)
conducted a meta analysis of 219 simulation studies in structural equation modeling and reported that the number of
replications used in these studies ranged from 20 to 1,000, with the median number of replications being 200. Similarly,
(Bandalos, 2006) suggested that 500 replications were large for SEM Monte Carlo simulation studies. She argued that
this number of replications would provide stable standard error estimates even when data were generated to come from
a non-normal distribution. To check the stability of the model estimation, we have used different seeds to implement the
same Monte Carlo simulations, and the model results basically remain unchanged. Thus we conclude that Monte Carlo
simulation results are stable.

3. Results
3.1 Bias, Standard Error and RMSE for Main Effects’ Regression Coefficients

While the bias of the y; parameter was the primary interest, bias was also examined for the main effects. Bias of the
main effects,y, 2, and y3, were examined across different conditions (see table 2). With small sample size(i.e, n=50)and
moderate reliability (reliability=0.64), this bias was very high.The resulting overestimation decreased as reliability of the
indicators and sample size increased, but kept increasing as the interaction effect size for the three-way interaction term
((R$7)) and co-variance between latent exogenous variables increased. That is, bias decreased as ¢, @13, ¢23 decreased.
In reference to the criterion of .05, the estimation method in this study (LMS) produced unbiased estimates for sample
size 500 and also for n=250 with high reliability (0.84). Therefore. with moderate reliability and small sample size(i.e,
n=50), the bias estimates for y;,y,, and y3 resulting from LMS approach cannot be trusted.
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The column labeled SE-Bias in table 2 stands for standard error bias for the estimates of 1,7y, and 3. It was found
that, this bias is very large (in absolute value) with small sample size(n=50) and moderate reliability indicators, indicating
that the LMS approach underestimated standard errors. With the same sample size(n=50), the standard error bias for
the estimate of first-order effects decreased as ((R$7)) and reliability increased. For all sample size under study,this bias
increased as the covariance of latent exogenous increased which is consistent with result of (Cohen et al., 2003). In
reference to the criterion of 0.1, the LMS produced unbiased estimates for main effects with sample size 100 and greater
but underestimated standard errors because most values were negatives. However, the standard error estimates were fairly
accurate when the sample size was 500.

3.2 Bias, Standard Error and RMSE for Three-way Interaction Term Regression Coefficients

Table 3 shows the latent moderated structural equations (LMS) approach parameter estimates of y; in the all conditions
understudy. Perhaps not too surprisingly,bias was greatest for sample size 50 coupled with moderate indicator reliability,
but reduced almost by 10% when reliability of the indicators was good (e.g., reliability = 0.84). In the same conditions the
standard error and root mean square error reduced by 8% and 10 % respectively for the increment of indicator reliability
from 0.64 to 0.84. As anticipated, bias across conditions decreased as sample size increased, but there was a pattern
indicative of diminishing returns for sample sizes larger than 500. The increment of interaction effects size resulted
increased bias, standard errors and RMSE at small sample size(i.e,n=50), but showed inconstant pattern for the sample
size greater than 50. Similarly, for the increase of the covariance between latent factors, the bias, standard error and RMSE
reduced for small sample. However, this properties showed inconstant pattern for the others samples size in study.

3.3 Type I Error Rates and Empirical Power

As previously stated, the proportion of variance in 77 accounted for by the three-way interaction effect was set equal to
.00 (to investigate Type I error rates), .05, and .10 (to investigate power).The empirical Type I error rates of the nominal
size = .05 two-sided tests (under the null hypothesis, HO : y; = 0) when using the LMS procedure are given in Table 4.
The Type I error rate was computed as the proportion of converged solutions that had a statistically significant three-way
interaction effect (at the .05 level) in the simulated data when HO was true. In addition, empirical power (probability
of rejecting a false null hypothesis, HO : y; = 0) was represented by the proportion of converged solutions that have a
statistically significant interaction effect in the simulated data when HO was false (Marsh et al., 2004)and tabulated in
table 5 under the 5% and 10% effect size conditions.

Type I error rates.

When the sample size was 50,100 and indicator reliability 0.64, type I error rates closest to the desired level, but increased
as the covariance between latent factors and indicator reliability increased. Moreover, when sample size 100 and reliability
was 0.84 the approach in this study (LMS)had very high Type I error rates, rejecting 10% of true models. In this condition(
indicator reliability 0.84), the approach under study rejected the null hypothesis (with all the samples) more frequently
than the nominal level would predict, except when coupled with moderate reliability. In general, in this study the type I
error increased as latent factor covariance and indicators reliability increased(see table 4).

Empirical power

Empirical power is represented by the proportion of converged solutions that have a significant interaction effect in the
simulated data when the population interaction effect is not equal to zero. Empirical power rates for effect size R37 =0.05
and R$7 = 0.1 were computed using an level of .05, and are shown in table 5. As anticipated, empirical power increased
as the size of the effect increased from 5% to 10% across methods and conditions. That is, when medium to large three-
way interaction effects exist in the population, the methods were able to detect them with a great deal of certainty for
moderate sample sizes under high reliability. This was the case even when the sample size was extremely small (n = 50)
and the indicators were moderate(reliability = .64). Predictably, power increased as reliability and sample size increased.
Power for the LMS approach under study increased as R§7 increased, sample size increased, and ¢1», @13, ¢»3 increased.

4. Discussion

Although many simulation studies have been conducted to study latent interaction effects in nonlinear SEM, majority of
these studies has focused on two-way latent interactions and quadratic effects. In current study an examination of three-
way continuous latent interaction effects was conducted via monte carlo simulation using latent moderated structural
method. The simulated data were varied as a function of the size of the three-way interaction term effect, sample size,
indicator reliability and the size of the relation between first-order latent variables.

The findings in the Monte Carlo simulation study indicated that, when indicator reliability was moderate and three-way
interaction effect present in the generating population-generating model(i.e, R§7 # 0.00), the LMS method led to biased
estimate of interaction effect. As with past simulation studies in two-way interaction, indicator variable reliability tended
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to have the greatest impact on the ability of the LMS to accurately and precisely estimate the three-way interaction effect
with size of the relation between the first-order latent variable exerting less influence. Moreover,Parameter estimates for
the LMS approach became less biased as the size of the interaction effect and the correlation between the first-order latent
variables decreased. We observed that this result for three-way interaction was similar to previous findings of two -way
interaction in which the LMS approach was found to result in unbiased estimates of the interaction effect across all sizes
of the interaction effect (Klein & Moosbrugger, 2000; Klein & Muthn, 2007).

This finding suggest that the method appeared to control Type I error fairly by reducing the size of the relation between
first-order latent variables. Hence moderate indicator reliability, and small sample sizes appear to have the greatest nega-
tive impact on the estimation accuracy, precision, and deflation of standard errors of the three-way interaction parameter.
Because the method investigated here performed poorly under these circumstances, if data exhibit these characteristics in
practice, statistical conclusions should be made cautiously.

5. Conclusion and Recommendations

It is the conclusion of the authors that the latent moderated structural approach can be used to study three-way continuous
latent interaction in nonlinear structural equation modeling using Mplus software. The approach had no model conver-
gence problems across the conditions in the study and did not produced unrealistic estimates. However, because of the
complexity of the model, it took along time to get monte carlo simulation output.

In the conditions considered in the current study, the method led to the least biased estimates of the interaction effect,
and accurate standard error estimates, particularly when the sample size was 250 or greater and the indicator reliability
was high. Additionally, the latent moderated structural approach accurately estimated first-order effects provided that the
sample size was 250 or greater. For the small size(i.e, n=50), the bias for interaction effects and exogenous regression
coefficients was high. But for the same sample size, the method had less bias (approximately less than 2%) in estimating
the exogenous covariances. This bias increased as the interaction effect size (Rgﬂ) increased and decrease when sample
size increased.

Type I error rates were close to the desired alpha level, particularly when the sample size was 250 or greater. Comparing to
other conditions in the study, when indicator reliability were low and the sample size was 50, the method had low power to
detect true three-way interaction effects and a sample size of at least 250 was necessary to have acceptable power(greater
than 0.8).

Based on these findings,high indicator reliability and a sample size of 250 or more is recommended for use with the
latent moderated structural method, although it performs fairly well with sample sizes of 100. It also recommended
that,under small sample (i.e,n=50),the method provided sufficient power to detect the three-way interaction effects when
high indicator reliability and the covariance of the exogenous latent variable was increased.
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List of Tables

Table 1. Summary of Manipulated Features

Factor 1 2 3 4

Sample size 50 100 250 500

Indicator reliability 0.64 0.84

Effect size((R§7)) 0.00 0.05 0.10

012, P13, P23 0.3 0.1 0.2 06 04 05
Distribution of &1,&;,,&3  Normal

Factor loading 0.8

Estimation method LMS
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Table 2. Parameter Estimates for the first-order main effects y; to y3; when R§7 = 0.05, 0.1 and with different covarince of
exogenous latent variables

$12 =03 ¢12 = 0.6
¢13 = 0.1 $13 =04
¢33 =02 ¢33 =0.5
R}, =0.05 R, =0.1 R}, =0.05 R, =0.1
Rel. N Par. Bias SE-Bias Bias SE-Bias Bias SE-Bias Bias SE-Bias
0.64 50 v 33.32 -0.929 55.146 -0.90 95.33 -0.968 142.297 -0.969
v 44.115 -0.944 48.110 -0.932 3.482 -0.958 -11.977 -0.962
V3 40.259 -0.948 56.899 -0.940 58.602 -0.943 78.215 -0.939
100 0% 0.182 -0.049 0.183 -0.047 0.207 -0.051 0.212 -0.045
v 0.141 -0.029 0.143 -0.028 0.148 -0.007 0.155 -0.008
V3 0.172 -0.009 0.176 -0.026 0.198 -0.026 0.2 -0.056
250 Y1 0.069 -0.035 0.069 -0.027 0.081 -0.029 0.083 -0.026
v 0.051 -0.055 0.049 -0.058 0.054 -0.059 0.054 -0.063
V3 0.062 -0.015 0.062 -0.017 0.007 -0.029 0.075 -0.025
500 Y1 0.039 -0.024 0.039 -0.025 0.045 -0.033 0.046 -0.037
V2 0.023 -0.017 0.024 -0.016 0.022 -0.023 0.023 -0.024
V3 0.031 -0.008 0.030 -0.009 0.036 -0.019 0.036 -0.018
0.84 50 VY1 0.193 -0.126 0.197 -0.126 0.200 -0.138 0.209 -0.142
V2 0.171 -0.109 0.174 -0.106 0.163 -0.109 0.169 -0.108
V3 0.204 -0.074 0.209 -0.015 0.209 -0.089 0.217 -0.097
100 Y1 0.087 -0.052 0.088 -0.049 0.092 -0.057 0.094 -0.058
V2 0.076 -0.097 0.077 -0.096 0.073 -0.066 0.075 -0.067
V3 0.084 -0.006 0.085 -0.005 0.089 -0.024 0.092 -0.026
250 Y1 0.038 -0.045 0.038 -0.043 0.042 -0.036 0.043 -0.036
V2 0.031 -0.053 0.031 -0.057 0.031 -0.055 0.032 -0.056
V3 0.034 -0.008 0.034 -0.010 0.038 -0.015 0.039 -0.015
500 Y1 0.023 -0.035 0.024 -0.035 0.025 -0.029 0.026 -0.030
V2 0.014 -0.027 0.014 -0.027 0.013 -0.034 0.014 -0.032

V3 0.018 0.011 0.018 0.011 0.021 0.000 0.021 0.000
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Table 3. Parameter Estimates for nonlinear effects 7 across the study conditions

$12=0.3 12 =06
¢13 = 0.1 ¢13=04
¢23 =02 ¢$23=0.5
Rel. R§7 N  Parameter Bias SE-Bias RMSE Bias SE-Bias RMSE
0.64 0.0 50 V7 2.0698 -0.924 84.206 -0.471 -0.853 53911
100 V7 -0.0154  -0.089 0.150 -0.014 -0.120 0.117
250 V7 -0.007 -0.029 0.069 -0.007 -0.079 0.055
500 V7 -0.0003  -0.026 0.047 -0.003 -0.092 0.037
0.05 50 0% 58.87 -0.96 138.74 35.704 -0.901 62.404
100 V7 -0.025 -0.158 0.173 -0.004 -0.208 0.152
250 V7 -0.033 -0.068 0.079 -0.029 -0.096 0.069
500 V7 0.002 -0.019 0.053 -0.006 -0.060 0.045
0.1 50 V7 73.838 -0.965 249.624 46.579 -0.925 107.664
100 V7 0.004 -0.186 0.202 0.036 -0.323 0.216
250 V7 -0.02 -0.079 0.092 -0.013 -0.102 0.081
500 V7 0.003 -0.017 0.059 0.000 -0.032 0.052
0.84 0.0 50 Y7 0.003 -0.171 0.182 0.002 -0.189 0.151
100 V7 -0.004 -0.187 0.104 -0.003 -0.158 0.081
250 V7 -0.003 -0.080 0.053 -0.004 0.088 0.041
500 V7 0.000 -0.065 0.036 -0.0016 -0.077 0.028
0.05 50 0% 0.088 -0.174 0.198 0.102 -0.179 0.171
100 V7 -0.005 -0.176 0.114 0.000 -0.126 0.093
250 V7 -0.012 -0.089 0.060 -0.016 -0.080 0.051
500 V7 0.004 -0.042 0.040 -0.002 -0.041 0.035
0.1 50 V7 0.085 -0.175 0.214 0.102 -0.176 0.193
100 V7 0.002 -0.169 0.125 0.007 -0.114 0.106
250 V7 -0.006 -0.091 0.068 -0.008 -0.075 0.060
500 V7 0.005 -0.029 0.045 0.002 -0.020 0.040

Table 4. Type I error rates for R§7 = 0 and with different covarince of exogenous latent variables and reliability of the
latent indicators

¢12 =03 ¢12 =0.6
$13=0.1 $13=04
$23 =0.2 ¢23 =0.5
Reliability N Type I error type I error
0.64 50 0.029 0.034
100 0.064 0.068
250 0.070 0.070
500 0.066 0.082
0.84 50 0.080 0.092
100 0.100 0.108
250 0.082 0.076
500 0.080 0.080
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Table 5. Type I error rates for R§7 = 0 and with different covarince of exogenous latent variables and reliability of the
latent indicators

$12=0.3 12 =0.6
¢13 =0.1 ¢l3 =04
¢33 =02 ¢33 =05
Power Power
Reliability N R, =005 R, =0.1 R, =005 R, =01
0.64 50 0.099 0.162 0.151 0.238
100 0.344 0.526 0.468 0.666
250 0.746 0.942 0.884 0.982
500 0.972 1.000 0.996 1.000
0.84 50 0.302 0.507 0.414 0.612
100 0.602 0.832 0.704 0.908
250 0.940 0.994 0.982 1.000
500 1.000 1.000 1.000 1.000
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Appendix
Simulation code using Mplus version 7.4

TITLE: Monte Carlo simulation for three-way continuous latent interaction
MONTECARLO: NAMES=x1-x9 y1-y3;
NOBSERVATIONS = 250; ! for sample size 250
NREPS = 500;

SEED = 12345;

ANALYSIS: ESTIMATOR = MLR;
TYPE = RANDOM,;
ALGORITHM = INTEGRATION;
MODEL POPULATION:

[x] = x9@0yl — y3@0];

xil BY x1-x3@0.8;

xi2 BY x4-x6@0.8;

xi3 BY x7-x9@0.8;

eta BY yl-y3@0.8;

xil@1;

xi2@1;

xi3@1;

eta@0.4;! we set the var(zeta)=0.4
D —xil XWITH xi2;

E — xil XWITH xi3;

F — xi2 XWITH xi3;

G —xil XWITHF;

eta ON xil @0.3 xi2@0.4 xi3@0.5 D@0.1 E@0.2 F@0.2 G@(.3;

x1-x9@0.36; y1-y3@0.36;
xil WITH xi2@0.3 xi3@0.1;! for the first variance covariance condition
xi2 WITH xi3@0.2;
MODEL:
[x1 = x9 % 0yl — y3 = 0];
xil BY x1-x3*0.8;
xi2 BY x4-x6*0.8;
xi3 BY x7-x9*0.8;
eta BY y1-y3*0.8;
xil@1;
xi2@1;
xi3@1;
eta@0.4;
D —xil XWITH xi2;
E — xil XWITH xi3;
F — xi2 XWITH xi3;
G —xil XWITHF,;
eta ON xi11*0.3 xi2*0.4 xi3*0.5 D*0.1 E*0.2 F*0.2 G*0.3;

x1-x9%0.36; y1-y3*0.36;
xil WITH xi2*0.3 xi3*0.1;
xi2 WITH xi3*0.2;
OUTPUT: TECHY;
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