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Abstract

The problem addressed is that of developing a sequential procedure for estimating the inverse of the shape parameter of
the Pareto distribution under the squared loss, assuming that the shape parameter is the value of a random variable
having a density function with compact support and that the cost per observation is one unit. A stopping time is
proposed and a second-order asymptotic expansion is obtained for the Bayes regret incurred by the proposed procedure.
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1. Introduction

Let Xy, ..., X, denote independent observations to be taken sequentially from the Pareto distribution with p.d.f.

0 .
F (0 = T if x>1 Q)

0 if not,

where 6 is an unknown positive number. The Pareto distribution was first developed in the late 1800s by the Italian
economist Vilfredo Pareto, who used this distribution to describe the allocation of wealth among individuals. The Pareto
distribution can also be used as the distribution for insurance loss, oil reserve in a oil field, standardized price return on an
individual stock, area burnt in a forest fire and for many other real-life measurements.

A sequential method will be used to estimate the parameter 6 (8) = 1/6, subject to the loss function

L,(0) =a2[5, - 5(6) |+ n, )
where a is a known positive number, §, is the Bayes estimator of 6 (6) and assuming that the cost per observation is
one unit. In a sequential investigation, the sample size n is not chosen in advance; instead, data are analyzed as they
become available and whether to stop taking observations is decided according a stopping time t, say. t is a stopping
time means that t takes on the values 1, 2, ... and has the properties that P{t < «} = 1 and that {t = n} ¢ D, for each
integer n > 1, where D,, is the sigma-algebra generated by Xy, , ..., X,. The advantage of using sequential methods in

estimation or hypothesis testing problems is that procedures can be constructed with a substantially smaller number of
observations compared to equally reliable procedures based on a predetermined sample size.

Throughout this paper, it is assumed that & (the shape parameter) is a value of a random variable ® having (prior)
density function & with compact support in (0, o) and the objective is to determine a stopping time t for which the
Bayes regret (see (5) below) of the procedure (t,5,) is as small as possible for large a. In order to anticipate the nature
of the stopping time t, it is necessary to find the best fixed sample size. So, let E¢ denote expectation with respect to a
probability measure P¢,under which X, X,, ... are independent random variables with conditional p.d.f. as in (1),
given ® = ¢, and @ is a random variable having a (prior) density function & with compact support in (0, ). Lemma 1
below states that if £is continuously differentiable on its compact support, then

é,:li

¢ I e P-((C)
E 50 Y, X =T+ — £ {5@) | X, - X”},

where 3)
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_ 1 - o -
Y =%y with  Yi=InX;i=1..n.
n n;l

LetE,denote conditional expectation, given ® = 6. Since Y;, ..., Y, are conditionally independent with common
distribution the Exponential distribution with parameter &, the risk incurred by estimating & by (3) under the loss (2) is

R,(n,0) =E,[L,(0)]= aZEa[(Vn —5(6’))2]+ n+ o[i] = 8.2[57n(9)]2+ n +o([1]j

as n — oo The approximate risk is minimized by choosing n adjacent to n, =ad(#). The minimum risk is
approximately

R =R, (n,,0) = 2as(0)

for large a > 0. Since n, depends on the unknown value of g, there is no fixed-sample-size procedure that attains the
minimum risk R;in practice. Therefore, we propose to use the sequential procedure (t,6,) which stops the sampling
process after observing Y4, ..., Y; and estimates 5 (&) by 5,, where

t:inf{an:nza&]} (4)

and m > 2 being an initial sample size. The performance of the procedure (t,5,)is measured by the Bayes regret, which
is defined as

r(a) = [r,(0)5(0)do,

for a > 0, where

r(0) = E,[L, (t.O)]-R. = E,[a[5 - 5(0)f +1]-2a5(0)

is the regret incurred by the procedure (t,5,). The Bayes regret can be rewritten as
F(a) = E¢|a2(8, - 5(0)) 2+ t - 2a5(0)| ®)
fora>0.

Bayesian sequential estimation problems were studied by Bickel and Yahav (1969), Alvo (1977), Rasmussen (1980),
Shapiro and Wardrop (1980), Woodroofe (1981, 1985), Tahir (1989), Woodroofe and Hardwick (1990), among others.

In Section 2, preliminary results for the analysis of the Bayes regret are obtained. The main result is presented in
Section 3. It provides an asymptotic expansion for the Bayes regret. The proposed procedure can be used to estimate the
mean loss for insurance policyholders or the mean insured value of homes in an optimal fashion. It specifies how many
insurance policyholders or homes should be selected and provides an estimate of the population mean, based on this
number. Note that the estimate of the population mean is

.ut=1_8t

where t is given by (4).

2. Preliminary Results

Lemma 1

Let 2 denote the support of £and let Y_n beasin (3). If &is continuously differentiable on (2, then

5 =7 + 155{5'@) X, e X}
n £(0)

Proof:
Let x;>0, ..., x, >0 denote the observed values of Xy, , ..., X, respectively. Then, the likelihood function is
9,(0) = 0"e """ = exp{nIn 0 —ney, —ny,}or 6 >0,
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where ¥, =n?YInx. Next, let ¢, =[9,(0)é(6)d0. Then,
Q

0@ | 1 = xy ey X, = x, )= Cij;g (0)£(0)d0 = ;jng ©)£0)d0 + 7,

n Q

1 , 1 £(6) _
S i 2,(0)E(0)do + 7, = e i 2,(0) =2 ) E0)dO + 7,

&) B _ _
= nE {5(9) \ X, = x, , X, X”}-t- V.,

using integration by parts. The lemma follows.
Lemma 2
Let ©2 denote the support of £and let Y_n be as in (3). If £is twice continuously differentiable on €2, then

Eé’{ (5@ -Y)

Xl,...,)(”}: %E‘f{[&(@)f | Xl,...,)(,,} Es{‘f(‘g) X, X,,}

&)
forn >1.
Proof:
Let x;>0, ..., x, >0 denote the observed values of Xy, , ..., X,, respectively and let

9,(0) =exp{nInd-ndy, —ny }

denote the likelihood function. Also, let ¢, = I 0,(0)é(6)d0 . Then,
Q

E’:{[S(@)—f,,]z X, =

= } —| [ j 2,(0)&0)do

uQ

1 1 _ , _ daifl
- i (E—yn]gn(e)f(e)de " i 2.(0) K 5 yn]g(e)}de

1 1 1 1 _ ,
[ 5> e.(0)50)d0 f(g - y,,jg,,(@)é (©)do

n Q n Q

1 1
= — g (0)£(0)de -
jgzg,x )E(0)

n Q n Q

— j 2,(0)E0)do

n

"(0)do

n

£"(0)
&)

:,Ei{[g(@)]z\,yl =x,..., X, = x, }+—E{ | X, =x, = X, :Xn}
n n

using integration by parts. The lemma follows.

Let D, denote the sigma-algebra generated by X;, ..., X;. Lemma 1 and Lemma 2 imply that the Bayes regret in (5)
becomes

@) = B [ (U - 6) + £ (L= 8) + 2] (6)

forany a>0, where U, = ES{[§(0)]?|D} and V, = E¢ {i((gﬂ Dt}

Lemma 3
Let t be defined by (4) withm >2. Then,

(i) there exists 6o >0 such that t > a5, w.p.1 (P9 foranya>0and
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(i) L5 50) wpl(P) asa—e
a
Proof:
Let [Bo, 61] denote the support of C. Then,

tzaci zaiza(?o
0,

by definition of t and &,. To establish Assertion (ii), observe that aci <t< ac§t +m-—1for a > 0, by definition of t. It
follows that

5«»smmm§snmwp3sﬂ®) wp.1 (P9

a—w a

since the sequence &,,n>1,isa uniformly integrable martingale such that &,—> &(®) w.p.1 (PY) asn —ccandt — oo
w.p.lasa— o

3. The Main Result
The Bayes regret in (6) can be rewritten as

2 2 ~N\2 2
ﬂ@:Eﬂ%m+%G—&)+%q )

for a >0, where W, = Var{6(0)|D}.
Theorem

Let t be defined by (4) with m > 2 and let 7#(a) be as in (7). If £is continuously differentiable on its compact support,
then

§"(9)

7_'(Cl)zl'|'EE W

+0(1)

asa—oo.
The proof of the theorem requires Lemmas 4-6 below.
Lemma 4

Let t be defined by (4) with m > 2. Then

a’/t  .\?
Ef [T (%) ] =o()
as a —oo.
Proof:

By definition of t, ag{ <t< ag{ +m—1; so that

m-—1

t .
OS__(StS
a a

which implies that
2 \2 _2m-1?% _ 2(m—1)?
a_(g_t)s(m)s(m)
t \a t ad,
for some number 8, > 0, by the first assertion of Lemma 3. Thus,
2 2 _ 2
Ef[a_<£_(§t) ] SM—) 0
t \a ad,

asa—oo
Lemma 5
Let t be defined by (4) with m > 2. If &is continuously differentiable on its support, then aW, — §(0) w.p.1 (P%) asa
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—> 0,

Proof:

Let xy, ..., X, denote the observed values of Xj, ..., X,, respectively and let w,, = Var{§(0)|X; = x4, ..., X;, = x,,}.
Also, let 8, denote the maximum likelihood estimate of 6, based on Xy, ..., X,. Then, §(8,) = %, and

wo< 155{[5((9)—?“]2 X =x, e, X, = X”}: lE‘f{[cs(@)]2 X = x, .. X, = xn}
n
+iEf §(®) ‘ X] =x, Xn =x,
n’ &(@)

by Lemma 2. This implies that

foranya>0. Thus,

limsup aw, < limsup 2U, =i[5(®)]2 _5@©) Wpl (P) asa—ax
a—w0 a—o t 5(@)
by the second assertion of Lemma 3 and the facts that U, and V,, are martingales such that U, — [§©)]* and V, —
£"(@)/£(@) w.p.l (P%) asn—c.  Next, a Taylor’s expansion for §©) about © = 8, yields

5(0)=58(6,)+5'(0))©-06,) =Y, +5(6,)©-8),
where o is a random variable between ® and 51 . Thus,

liminf aW, = liminf aVar{é'(Hf)(@—ét) Xy, Xt}
1

i i a ! * 2 —A e
_|.gl.£f?WVar{5(e,)\/f5(at)(® )Xy X, |

N C(O)) PO

~ [se)r

wp.l (P¥) as a —oo, by Fatou’s Lemma, the second assertion of Lemma 3, the facts that (6, — 5(®) and
5'@)—>5©) wpl (P¥) as a —oo and the fact that the posterior distribution of vné(é,)(©-86,) converges to the

Standard Normal distribution as n —<o (see Bickel and Yahav (1969)).
Lemma 6

Let t be defined by (4) with m > 2 and let W, be as in (7). If &is continuously differentiable on its compact support,
then

a—oo

a2
lim E¢ [T Wt] =1.
Proof:

t —5(0) w.p.l (P%) as a —ao, by the second assertion of Lemma 3 and aW, — §(®) w.p.1 (P%) as a —wx, by
a

2
Lemmab5. Thus, aTWt —1wp.l (P%) asa—x. Moreover,

a a a
awts?ut +t7vt :?(ut+vt)

as in the proof of Lemma 5 and this implies that
2

2
a a 1
t W, St:(?] (Ut+vt)g 502 (Ut+vt)
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2
For any a > 0, by the first assertion of Lemma 3. It follows that, aTWt,a > 0, are uniformly integrable since U, and V;

are uniformly integrable martingales. The lemma follows.
4. Proof of the Theorem

The theorem follows by taking the limit as a —«in

2

L o a? a? it . \? a?
r(a)—E TWt +E T<E—5t> +E t_ZVt
and using Lemma 4, Lemma 6 and the fact that

E[azv] _}E[ 1 Eu(@)

[ I IO NG
. t n
asa —oosince — —> 5(O®) wp.l (P°) asa o, V, > % w.p.l (P%) asa—oand
a
2 2
‘z—ZVt, a > 0, are uniformly integrable ( (;—2 < sig and Vi, a > 0, is a uniformly integrable martingale).

5. Conclusions

We have proposed a Bayesian sequential procedure for estimating the inverse of the shape parameter of the type I
Pareto distribution and provided a second-order asymptotic expansion for the regret incurred under the square error loss.
The proposed procedure can be used to estimate the mean loss for insurance policyholders or the mean insured value of
homes in an optimal fashion.
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