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Abstract 

The equiradial designs are studied as alternative second-order N-point spherical Response Surface Methodology designs 

in two variables, for design radius ρ = 1.0. These designs are seen comparable with the standard second-order response 

surface methodology designs, namely the Central Composite Designs. The D-efficiencies of the equiradial designs are 

evaluated with respect to the spherical Central Composite Designs. Furthermore, D-efficiencies of the equiradial 

designs are evaluated with respect to the D-optimal exact designs defined on the design regions of the Circumscribed 

Central Composite Design, the Inscribed Central Composite Design and the Face-centered Central Composite Design. 

The D-efficiency values reveal that the alternative second-order N-point spherical equiradial designs are better than the 

Inscribed Central Composite Design though inferior to the Circumscribed Central Composite Design with efficiency 

values less than 50% in all cases studied. Also, D-efficiency values reveal that the alternative second-order N-point 

spherical equiradial designs are better than the N-point D-optimal exact designs defined on the design region supported 

by the design points of the Inscribed Central Composite Design. However, the N-point spherical equiradial designs are 

inferior to the N-point D-optimal exact designs defined on the design region supported by the design points of the 

Circumscribed Central Composite Design and those of the Face-centered Central Composite Design, with worse cases 

with respect to the design region of the Circumscribed Central Composite Design. 

Keyword: Equiradial designs, Second-Order Response Surface Methodology Designs, Central Composite Designs, 

D-efficiency 

1. Introduction 

Central Composite Designs (CCDs) play a vital role in modelling second-order response functions in the presence of 

curvature. They are particularly useful at the second phase of process optimization. However, some spherical designs 

exist and can serve reasonably well when the standard Central Composite Designs are unavailable and/or cannot be 

employed. One such class of spherical designs is the class of equiradial designs, which according to Myer etal. (2009) 

are some special and interesting two-factor designs for modelling second-order response functions. As the name implies, 

equiradial designs are designs on a common sphere and are rotatable. The class of equiradial designs begins with a 

pentagon of equally spaced points on the sphere with design matrix expressed as 

                       

{                                  };                  

where    and    represent the two controllable variables, ρ is the radius of the design and    represents the number 

of points on the sphere. In addition to the    radial points of the design,  𝑐 center points shall be added to the design. 

As indicated in Myer etal. (2009), the value of   is assumed equal to zero since   has no effect on the information 

matrix, 𝑋𝑇𝑋, of the design. Thus the equiradial designs are such that the information matrix is invariant to design 

rotation. 

Many works have been done using second-order response surface models and designs. They include the construction of 

efficient and optimal experimental designs for second-order response surface models (see for example Onukogu and 

Iwundu (2007)). Concerns about optimality of designs have been investigated for second-order models (see for example 

Dette and Grigoriev (2014)). Optimal choices of design points have been addressed by a number of researchers 

including Chigbu and Nduka (2006) and Iwundu (2015). Lucas (1976) compared the performances of several types of 

second-order response surface designs in symmetric regions on the basis of D- and G-optimality criteria. Graphical 

methods have been employed in studying the response variance property of second-order response surface designs as 
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seen in Myer etal.(1992), Giovannitti-Jensen and Myers (1989), Zahran etal (2003). Chigbu etal. (2009) compared the 

prediction variances of some Central Composite Designs in spherical regions with radius α = √𝑘 where k is the 

number of model controllable variables. Their results showed that Central Composite Designs, Small Composite 

Designs and Minimum-run resolution (MinRes) V designs are not uniformly superior under G- and I-optimality criteria 

as well using Variance Dispersion graphs. Iwundu and Otaru (2014) considered imposing D-Optimality criterion on the 

design regions supported by points of the Central Composite Designs. For the second order polynomial model used, 

results showed that the D-optimal designs defined over the rotatable Circumscribed Central Composite Design region 

had better determinant values than those defined over the Face-centered Central Composite Design region and the 

Inscribed Central Composite Design region.  

Ukaegbu and Chigbu (2015) considered the prediction capabilities of partially replicated rotatable Central Composite 

Designs. Their results showed that the replicated cube designs with higher replications are more efficient and have 

better prediction capabilities than the replicated star designs. Iwundu (2015) studied the optimal partially replicated 

cube, star and center runs on design region supported by points of the Face-centered Central Composite Design, using 

quadratic models. With variations involving replicating the cube points while the star points and center point are held 

fixed, replicating the star points while the cube points and the center point are held fixed and replicating the center point 

while the cube points and the star points are held fixed, results showed that for the quadratic models considered, the 

Face-centered Central Composite Design comprising of two cube portions, one star portion and a center point 

performed better than other variations under D- and G-optimality criteria. When compared with the traditional method 

of replicating only the center point, the variation involving two cube portions, one star portion and a center point was 

relatively better in terms of design efficiencies. Oyejola and Nwanya (2015) studied the performance of five varieties of 

Central Composite Design when the axial portions are replicated and the center point increased one and three times. An 

excellent review of literature on some earlier works involving Central Composite Designs in spherical regions have 

been documented by Chigbu etal.(2009).  

Spherical designs are useful in constructing rotatable designs in the field of combinatorics. However, it is important to 

obtain designs that reflect other important properties. The notions of design optimality and efficiency are paramount in 

assessing the quality of experimental designs. In particular, the D-optimality and D-efficiency play major roles in design 

optimality. They have been most studied and are also available in most statistical software. Atkinson and Donev (1992) 

gave various properties of the D-optimality and D-efficiency of designs under varying design conditions. It is worth 

noting that second-order models serve importantly in process optimization and are very reliable low-order 

approximating polynomials to the true unknown response functions relating a response with several controllable 

variables which may be natural or coded. The second-order response surface model in two controllable variables, 

   and       is given as 

𝑦           𝛽0 + 𝛽   + 𝛽    + 𝛽       + 𝛽    
  + 𝛽    

  + 𝜖           1.1 

and written in matrix notation as 

Y = Xβ + 𝜖                  1.2  

where 

Y is the Nx1 vector of observed values. 

X is the Nxp design matrix 

β is the px1 vector of unknown model parameters which are estimated on the basis of N uncorrelated observations. 

𝜖 is the random additive error associated with Y and is independently and identically distributed with zero mean and 

constant variance.  

2. Methodology 

For the importance of second-order Response Surface Methodology designs, we consider in this work the equiradial 

designs which are alternative second-order spherical Response Surface Methodology designs in two variables. The 

interest here is in comparing the efficiency of the equiradial designs with respect to the standard spherical Central 

Composite Designs. In particular interest is in how the equiradial designs compare with the Circumscribed and 

Inscribed Central Composite designs, which are both spherical and rotatable. We shall further consider the efficiencies 

of equiradial designs with respect to the D-optimal exact designs of Iwundu and Otaru (2014) which were defined on 

the design regions supported by design points of the Circumscribed Central Composite Design, the Inscribed Central 

Composite Design and the Face-centered Central Composite Design. The efficiency of a design provides a measure of 
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the optimality of the design. In comparing two designs, the relative efficiency is seen as the ratio of their separate 

efficiencies. 

We shall employ the D-efficiency criterion as the test criterion. This criterion has been extensively used as a single 

numerical measure of the efficiency of designs. The D-efficiency criterion aims at minimizing the variance-covariance 

matrix associated with the parameter estimates of the model used. By definition, the D-efficiency of a design 𝜉    is 

given as 

 𝐷𝑒𝑓𝑓  = 100 x (det𝑀(𝜉   ))
1
𝑝        2.1 

and the D-efficiency of a design 𝜉    relative to the design 𝜉    is given as  

𝐷𝑒𝑓𝑓  = (
det𝑀(𝜉 1 )

det𝑀(𝜉 2 )
)

1
𝑝

         2.2 

where 𝑀 .   is the information matrix of the design and 𝑝 is the number of model parameters. For an N-point design, 

say 𝜉𝑁 , the information matrix of the design 𝜉𝑁 is  𝑋𝑇𝑋 and normalized as 
𝑋𝑇𝑋

𝑁
 to remove the effect of changing 

design sizes. The (Nxp) matrix, 𝑋, is the design matrix whose columns are built from the model and the design 𝜉𝑁 and 

 .  𝑇 represents transpose. Among other things, D-efficiency values depend on the number of points in the design and 

the number of controllable variables in the model. In comparing designs, the best design is one with the largest 

D-efficiency value. In terms of relative efficiency, the ratio in equation 2.2 exceeds unity if the design 𝜉    is better 

than the design 𝜉   .  

In comparing the N-point equiradial designs with the Circumscribed Central Composite designs, the 9-point 

Circumscribed Central Composite design comprising of the factorial points { (1,1), (1,-1), (-1,1), (-1,-1)}, the axial 

points {(1.414,0), (-1.414,0), (0,1.414), (0,-1.414)} and the center point {(0,0)} shall be employed. Similarly, in 

comparing the N-point equiradial designs with the Inscribed Central Composite Designs, the 9-point Inscribed Central 

Composite design comprising of the factorial points { (0.7,0.7), (0.7,-0.7), (-0.7,0.7), (-0.7,-0.7)}, the axial points {(1,0), 

(-1,0), (0,1), (0,-1)} and the center point {(0,0)} shall be employed. For comparisons with the D-optimal exact designs, 

the N-point designs generated by Iwundu and Otaru (2014) shall be employed correspondingly with the N-point 

equiradial designs.  

3. Results 

The design measures associated with the N-point equiradial designs for ρ = 1,    = 5, 6, ⋯ , 11 and  𝑐 = 1 are as 

follows; 

𝜉6 = 

(

  
 

  
 .3    .95
  .8    .59
  .8   .59
 .3   .95
  )

  
 

 

𝜉7 = 

(

 
 
 
 

         
    .5      .87
  .5      .87
       
  .5     .87
     .5     .87
               )

 
 
 
 

 

𝜉8 = 

(

 
 
 
 
 

     
 .6     .78
  .      .97
  .9     .43
  .9   .43
  .    .97
  .6      .78
         )
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𝜉9 = 

(

 
 
 
 
 
 

    
 .7     .7 
  

  .7  .7 
   

  .7   .7 
   

 .7       .7 
  )

 
 
 
 
 
 

 

𝜉 0 = 

(

 
 
 
 
 
 
 

       
 .77      .64
 . 7      .98
  .5  .87
  .94  .34
  .94   .34
  .5   .87
 . 7   .98
 .77   .64

        )

 
 
 
 
 
 
 

 

𝜉   = 

(

 
 
 
 
 
 
 
 

  
 .8     .59
 .3     .95
  .3  .95
  .8  .59
   

  .8   .59
  .3   .95
 .3   .95
 .8      .59
  )

 
 
 
 
 
 
 
 

 

𝜉   = 

(

 
 
 
 
 
 
 
 
 

      
 .84        .54
 .4        .9 
  . 4     .99
  .65     .76
  .96     . 8
  .96   . 8
  .65   .76
  . 4   .99
 .4   .9 
 .84   .54
     )

 
 
 
 
 
 
 
 
 

 

For the bivariate quadratic model in equation 1.1, the normalized information matrices and the associated determinant 

values corresponding to the equiradial designs are, respectively, as follows; 

 

 

𝑀 𝜉6  =    

 

 

 

 det 𝑀 𝜉6  =  2.639818966x  −4 

1 0 0 0 0.4174 0.4168 

0 0.4174 0 0 -0.0005 -0.0007 

0 0 0.4168 -0.0007 0 0 

0 0 -0.0007 0.105 0 0 

0.4174 -0.0005 0 0 0.3132 0.105 

0.4168 -0.0007 0 0 0.105 0.3118 
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𝑀 𝜉7  =   

 

 

 

det 𝑀 𝜉7  = 2.67816305x  −4 

 

 

𝑀 𝜉8  =  

  

 

 

det 𝑀 𝜉8  = 2.37557395x  −4 

 

 

 

𝑀 𝜉9  =  

 

 

det 𝑀 𝜉9  = 2.4889799568x  −4 

 

 

 

𝑀 𝜉 0  =  

 

 

det 𝑀 𝜉 0  = 2.298611217x  −4 

  

1 0 0 0 0.4285 0.4325 

0 0.4285 0 0 0 0 

0 0 0.4285 0 0 0 

0 0 0 0.1081 0 0 

0.4285 0 0 0 0.3214 0.1081 

0.4325 0 0 0 0.1081 0.3273 

1 0 0 0 0.4357 0.4357 

0 0.4357 0 0 -0.0003 0.00095 

0 0 0.4335 0.00095 0 0 

0 0 0.00095 0.1072 0 0 

0.4357 -0.0003 0 0 0.3265 0.1072 

0.4335 0.00095 0 0 0.1072 0.3224 

1 0 0 0 0.4462 0.4462 

0 0.4462 0 0 0 0 

0 0 0.4462 0 0 0 

0 0 0 0.1129 0 0 

0.4462 0 0 0 0.3351 0.1129 

0.4462 0 0 0 0.1129 0.3351 

1 0 0 0 0.451 0.4485 

0 0.451 0 0 0.0011 -0.001 

0 0 0.4485 -0.001 0 0 

0 0 -0.001 0.1123 0 0 

0.451 0.0011 0 0 0.3391 0.1123 

0.4485 -0.001 0 0 0.1123 0.3352 
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𝑀 𝜉    = 

 

 

det 𝑀 𝜉    = 2.224863024x  −4 

 

 

 

𝑀 𝜉    = 

 

 

det 𝑀 𝜉    = 2.149505806x  −4. 

These designs are compared with the Circumscribed Central Composite design and the Inscribed Central Composite 

design whose design points have been listed in Section 2. The respective normalized information matrices 𝑀  and 𝑀  

together with the determinant values are as listed below, where 𝑀  represents the normalized information matrix 

associated with the Circumscribed Central Composite design and 𝑀  represents the normalized information matrix 

associated with the Inscribed Central Composite design. 

 

 

 

𝑀    

 

 

det 𝑀  = 6.158433838x  −4 

 

 

 

𝑀    

 

 

det 𝑀  =  2.224059802x  −4. 

1 0 0 0 0.4553 0.4547 

0 0.4553 0 0 0 0 

0 0 0.4547 0 0 0 

0 0 0 0.1145 0 0 

0.4553 0 0 0 0.3417 0.1145 

0.4547 0 0 0 0.1145 0.3402 

1 0 0 0 0.4594 0.4761 

0 0.4562 0 0 -0.003 -0.016 

0 0 0.4593 -0.0005 0.00089 0.0047 

0 0 -0.0005 0.1134 -0.0008 -0.004 

0.4594 -0.003 0.00089 -0.0008 0.3484 0.1297 

0.4761 -0.016 0.0047 -0.004 0.1297 0.3512 

0.9999 0 0 0 0.8887 0.8887 

0 0.8887 0 0 0 0 

0 0 0.8887 0 0 0 

0 0 0 0.4444 0 0 

0.8887 0 0 0 1.3327 0.4444 

0.8887 0 0 0 0.4444 1.3327 

0.9999 0 0 0 0.44 0.44 

0 0.44 0 0 0 0 

0 0 0.44 0 0 0 

0 0 0 0.1067 0 0 

0.44 0 0 0 0.3289 0.1067 

0.44 0 0 0 0.1067 0.3289 
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The D-efficiency values of the N-point equiradial designs relative to the Circumscribed Central Composite design and 

the Inscribed Central Composite design are as in Table 1. 
 

Table 1. D-Efficiency values of equiradial designs relative to the Circumscribed and the Inscribed Central Composite 

designs 

Design 

size N 

D-Efficiency values of equiradial designs 

relative to the Circumscribed Central 

Composite design 

D-Efficiency values of equiradial designs 

relative to the Inscribed Central 

Composite design 

6 0.4030426836 1.028974504 

7 0.4040125476 1.031450583 

8 0.3960196875 1.011044681 

9 0.3991096601 1.018933432 

10 0.3938518937 1.005510269 

11 0.3917171302 1.001832841 

12 0.3984739855 0.994333398 

 

The equiradial designs are further compared with D-optimal exact designs whose design points are as in Iwundu and 

Otaru (2014). The D-efficiency values of the N-point equiradial designs relative to the N-point D-optimal exact designs 

defined on the design regions supported by design points of the Circumscribed Central Composite design, the Inscribed 

Central Composite design and the Face-centered Central Composite design are as in Tables 2-4. Each table comprises 

the design size N, the determinant values of the normalized information matrices associated with the equiradial designs, 

the determinant values of the normalized information matrices associated with the D-optimal exact designs as well as 

the D-efficiency values. 

Table 2. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design regions 

supported by points of the Circumscribed Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 3.1947x  −  0.4496321364 

7 2.67816305x  −4 3.837429233x  −  0.4371523047 

8 2.37557395x  −4 4.6828x  −  0.4145184104 

9 2.488979568x  −4 6.1584x  −  0.3991096601 

10 2.298611217x  −4 6.545687882x  −  0.3898687014 

11 2.224863024x  −4 6.004443063x  −  0.3933734922 

12 2.149505806x  −4 5.782736734x  −  0.3935810684 

Table 3. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design regions 

supported by points of the Inscribed Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 1.166000031x  −4 1.145897918 

7 2.67816305x  −4 1.384704002x  −4 1.116211976 

8 2.37557395x  −4 2.224059802x  −4 1.018933432 

9 2.488979568x  −4 1.713104121x  −4 1.056000521 

10 2.298611217x  −4 2.362949253x  −4 0.9954096679 

11 2.224863024x  −4 2.174265558x  −4 1.003841429 

12 2.149505806x  −4 2.090927535x  −4 1.004615652 
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Table 4. D-Efficiency values of equiradial designs relative to the D-optimal exact designs defined on the design region 

supported by points of the Face-centered Central Composite Design  

Design size N Determinant value (equiradial design) Determinant value 

(D-optimal exact design) 

D-Efficiency value 

6 2.639818966x  −4 5.486968437x  −  0.6030781776 

7 2.67816305x  −4 8.159865377x  −  0.5658382953 

8 2.37557395x  −4 8.7890625x  −  0.5478197267 

9 2.488979568x  −4 9.754610572x  −  0.5425859777 

10 2.298611217x  −4 9.360x  −  0.5391359338 

11 2.224863024x  −4 9.5374x  −  0.5345383641 

12 2.149505806x  −4 1.0154x  −  0.5259570053 

 

3. Discussion of Results 

The equiradial designs have been examined as alternative spherical designs to the rotatable Central Composite Designs 

(CCDs) and the D-optimal exact designs in modelling second-order response functions. These designs are seen 

comparable with the standard second-order Response Surface Methodology designs. The equiradial designs which are 

simple to construct seem to show some appealing optimality properties. A careful look at the D-efficiency values makes 

it interesting to note that equiradial designs are not generally inferior designs. In fact, they appear more optimal than 

some frequently used second-order Response Surface Methodology designs. In particular, the study revealed that 

equiradial designs perform generally better than the Inscribed Central Composite designs and the D-optimal exact 

designs defined on the design region supported by the design points of the Inscribed Central Composite design for the 

design sizes considered. Besides N = 12, the equiradial designs were better than the Inscribed Central Composite design 

under the D-efficiency criterion. Additionally, each N-point equiradial design was better than the corresponding N-Point 

D-optimal exact design defined on the design region supported by the design points of the Inscribed Central Composite 

design, except for N=10 which gave relative efficiency value of 0.9954096679. However, it is clear from the relative 

efficiency value that the 10-point equiradial design is as good the 10-point D-optimal exact design. 

It is further observed that the equiradial designs are not as credible as the Circumscribed Central Composite design in 

terms of D-efficiency. This was seen in the relative efficiency values being less than 50% in all cases considered. The 

observation is not different for N-Point D-optimal exact designs defined on the design region supported by the design 

points of the Circumscribed Central Composite design. However, when compared with the D-optimal exact designs 

defined on the design region supported by the design points of the Face-centered Central Composite design, the 

equiradial designs were not too inferior as the relative efficiency values exceeded 50% in all cases considered.  

Although the equiradial designs could serve as alternatives to the standard Response Surface Methodology designs, they 

should be used with caution especially when design optimality is paramount. 
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