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Abstract 

This paper studies the effectiveness of the Multivariate Kurtosis in comparing the Clayton Copula and the 

Farleigh-Gumbel-Morgenstern Copula in modeling when the actual populations follow either the bivariate exponential 

distribution or the bivariate normal distribution. The study shows that the Multivariate Kurtosis (as defined by Mardia) 

is a very effective tool in comparing Copulas and that Farleigh-Gumbel-Morgenstern Copula is slightly more accurate 

than the Clayton Copula for modeling.  

Keywords: Multivariate, Kurtosis, Copula   

1. Introduction 

The copulas are used as a general way of formulating a multivariate distribution in such a way that the dependence can 

be infused in a reasonable manner. This is based on the simple idea that the joint distribution can be represented as a 

transformation of the underlying marginal distributions (see Sklar 1959). There are several types of copulas and each 

differ according to the strength of the dependence and the direction of the association. Ali et al (1978) studied the use of 

Copulas to construct the bivariate logistic distribution.  Aas et al (2009) and Low et al (2013) investigated the 

applicability of paired (or “Vine”) Copulas in the context of finance and portfolio management. Schölzel,and 

Friederichs (2008) studied the use of Copulas in climatology. Heinen and Rengifo (2007), Nikoloulopoulos and Karlis 

(2009, 2010), Karlis and Pedeli (2013) constructed bivariate integer-valued autoregressive models based on Copulas. 

For further literature review, the interested readers are referred to Nelson (2006). Due to the availability of many Copula 

models and its applications in many subject fields, there is a lot of  interest in identifying the “best” Copula model. The 

question is “How do you compare these different Copula models ?”. Here in this paper, we want to compare two 

particular copulas namely; Clayton Copula, and Farleigh-Gumbel-Morgenstern Copula. The Clayton Copula belongs to 

the family of Archimedean Copulas while the Farleigh-Gumbel-Morgenstern Copula does belong to the 

non-Archimedean family. We consider these copulas in the context of modeling the bivariate exponential distribution 

and the bivariate normal distribution.   In order to compare these two Copulas, we use kurtosis as a tool. The kurtosis 

has been in use for a long time to study the „peakedness‟ of the probability distributions. In fact, it is used as a measure 

to identify the distributions. For example, for the normal distribution the kurtosis is 3, for the bivariate normal 

distribution the kurtosis is 8, for the exponential distribution the kurtosis is 9, and so on.  

In multivariate statistical analysis, normality of the sample is assumed in many cases. Hence, assessing for multivariate 

normality is an important problem. Similarly, in actuarial models, the bivariate exponential distribution is important and 

so verification of bivariate exponential is equally important. For this purpose, we will use the bivariate kurtosis as 

defined in Mardia (1970). In fact, there are several definitions for the Multivariate kurtosis (See, Mardia (1970), 

Malkovich and Afifi (1973), Srivastava (1984), and Mardia (1970, 1974)). Mardia defined multivariate kurtosis as a 

natural extension of the univariate case. To assess the multivariate normality, multivariate kurtosis has been defined and 

its asymptotic distributions under the multivariate normality have been given in Mardia (1970). Furthermore, Srivastava 

(1984) has considered another definition by using principal component scores and has derived their asymptotic 

distributions under the null hypothesis. Recently, Miyagawa et al (2011) proposed a sample measure of multivariate 

kurtosis of the form containing Mardia (1970) and Srivastava (1984). According to Mardia (1970), the multivariate 

kurtosis can be defined as    
2
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   XXE where X  is the observation vector;   is the mean vector; 
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and  is the variance-covariance matrix. 

In this paper, we propose a method to compare the copulas by using the bivariate kurtosis. We compare the copula 

through numerical calculations and graphs. Moreover, we check the effectiveness of this approach by estimating the 

Euclidean distance between the Copula and the actual distribution. The multivariate kurtosis seems to be a good 

measure for comparing the Copulas. 

2. Methodology 

Copulas: 

According to the theory of probability, every joint probability distribution is a function of the marginal distributions (see 

Sklar (1959) for the details). Copula is a probability model that gives us a way to construct the joint distribution from 

the marginal distributions. In other words, the Copulas are mathematical models that approximate the multivariate 

distribution function. There are two families of Copula; Archimedean family of Copulas and the non-Archimedean 

family of Copulas. Each family consists of several kinds of Copulas.  Some of these Copulas are of the discrete type 

while others are of continuous type. 

Next, we present the definitions and the methodology necessary for the construction of the Copulas. 

Definition: 

A copula is a multivariate joint distribution defined on the k  dimensional unit cube  k1,0  such that every marginal 

distribution is uniform on the interval  1,0 . 

 

In other words,    1,01,0: 
k

C  is a k dimensional copula if 

 

(a).  uC = 0 whenever  ku 1,0  has at least one component equal to 0. 

(b).   iuuC   whenever  ku 1,0  has all the components equal to 1 except the 
thi one which is equal to iu . 

(c).  uC  is k increasing. 

3. Copula Construction 

Archimedean Copula: 

This is a family of copulas and the k dimensional Archimedean Copula is defined as follows. 

   







 




k

i

ik uuuuC
1

1

21 ,.......,,                               1.2  

where  is known as the generator function and iu  is the marginal distribution of the 
thi component.  

Any generator function which satisfies the following properties is the basis for a copula. 

  01  ,  limit    x  ,    0'  x  ,   0"  x                    0x  

Special Case: 

Clayton Copula 

Let the generator function    u  1u  where .1  One can show that the functional inverse, 

 u1  =   /1
1


 u . 

In the bivariate case, the Archimedean formulation yields the Clayton Copula as  

     /1

2121 1,


 uuuuC                              2.2  
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Non-Archimedian Copula: 

The non-Archimedian copulas do not possess a generator function. These copulas are distinctly different from the 

Archimedian copulas. 

Special Case: 

Farleigh-Gumbel-Morgenstern Copula: 

     212121 1.1.1.., uuuuuuC                                  3.2  

where is the dependence parameter and 1 . 

Modeling the Joint Distribution by Copulas: 

Let us suppose that the joint distribution of  YX ,  is  yxF ,  is unknown, but the marginal distributions are known. 

Note that  yxF ,  is the joint distribution. 

Let  XFu 11    and   YFu 22   where 1F  and 2F are the marginal distributions of X and Y respectively. 

Theorem #1 (Sklar): 

If X and Y are continuous random variables then there exists a continuous Copula  21 ,uuC  such that 

   yxFuuC ,, 21  . 

Theorem #2: 

The conditional distribution of Y given X  =  
 

1

21 ,

u

uuC




                                          4.2  

Note:  We will use the above results in Copula modeling. 

Our objective here is to see whether the Copula models nearly resemble the actual populations and to identify the 

populations as either as “normal” or “non-normal” based on the kurtosis. Towards this, we will consider the bivariate 

exponential and the bivariate normal populations in this paper. 

First, we will consider the bivariate exponential population. In other words, the bivariate observations  ii yx , follows 

the bivariate exponential distribution with the cumulative distribution function (cdf) given by 

            yxyxyx
eeeyxF

,min..... 21211,
 

                         5.2      

In the absence of any knowledge about the actual population distribution, we propose to use the Copulas to model this 

population distribution based on the marginal distributions. Here, we assume that the marginal distributions are known. 

Say, that for the X variable, its marginal distribution  xF1  is given by  xF1  = 
x

e
.11


 . Similarly, the 

marginal distribution of the Y variable is given by   y
eyF 2.

2 1


 . 

Modeling Clayton Copula: 

          
1

2121 1,



 uuuuC                                6.2  
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where 1u and 2u are the marginal distributions of X and Y respectively. 

In order to generate the Clayton Copula, we will use Theorem #2. 

For the Clayton Copula, 

         








1

1

21

1

.1 uuu
u

C
 = v   (say)                       7.2  

where v  is the conditional distribution of Y given X . So, v  is uniformly distributed between 0 and 1. 

This means that, 

    2u  yF2  = 
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111ln.
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vuy                                                   10.2  

Also, note that 
x

eu 1.

1 1


  

This means that, 

           1

1

1ln.
1

ux 





                                    11.2   

Note that  is the dependence parameter and it can be estimated by using the relationship that Kendall‟s Tau, 

 2




 . By using equations  10.2  and  11.2  the Clayton copula based samples can be generated. 

Modeling Farleigh-Gumbel-Morgenstern Copula: 

     212121 1.1.1.., uuuuuuC                              12.2         

where is the dependence parameter and 1 . 

Note that    zuuuu
u

C





2

2

111

2

.21..                                                13.2  

where z represents the conditional distribution of X given .yY   

This yields the quadratic equation, 

      0..21.1..21. 12

2

12  zuuuu                           14.2  
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The solution is given by 
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..21..4.21.1.21.1
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                 15.2  

Note that, 
x

eu
.

1
11


  and  
y

eu
.

2
21


                                                   16.2  

Now, let  2.21.1 uA    and      zuuB ..21..4.21.1 2

2

2    

This means, 

 














2

1.2
ln.

1

1 BA

A
x


 and  

 

2

21ln



u
y


                                              17.2  

Note that again  is the dependence parameter and it can be estimated by using the relationship that the Pearson 

Coefficient of Correlation
4


  . By using equation  17.2 , Farleigh-Gumbel-Morgenstern copula based samples 

can be generated. 

Next, in order to simulate the samples directly from the Bivariate Exponential distribution, we will do the following. 

Let us choose a value  such that    min 21 , . Next, simulate random observations 
~

U according to the 

exponential distribution with mean = 
  1

1
. Similarly, simulate random observations 

~

V according to the 

exponential distribution with mean = 
  2

1
. Also, we can simulate 

~

W according to an exponential distribution 

with mean = 


1
 . 

Now, let us define, 









~~~

,min WUX   and  









~~~

,min WVY  . We can easily show that 






 ~~

,YX  jointly 

follow the bivariate exponential distribution as given by  6.2 . We are interested in studying two things in this paper. 

(i).The suitability of the Copula models to study the covariance structure. 

(ii).The use of  kurtosis as a tool to check the validity of the Copula models.   

Kurtosis: 

Let us first introduce the notations that we will use in the context of kurtosis calculation. 

X  Mean of X   

Y  Mean of Y  

∑  = Covariance Matrix of  YX ,  

Next, we present Mardia‟s definition for Kurtosis for the multivariate situation.   
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Kurtosis (Mardia) 

The bivariate kurtosis,  is given by  

       2
1 ,,

T

YXYX YXYXE   
                        18.2  

Next, to derive the kurtosis, let us note that the inverse of the variance-covariance matrix is 

   ∑
1

= 








2221

1211

aa

aa
                                       19.2     

Then, one can easily show that  

         222
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42

22

42

11 ...4.. YXYX YXEaYEaXEa    

         YXYX YXEaaYXEaa   ....4....2
3

1211

22

2211  

                          3

1222 ....4 YX YXEaa                             20.2  

Note that   122

11 1.


  Xa                                                               21.2  

                   122

22 1.


  Ya                                    22.2  

                 
 

YX

a




.

1.
12

12




                                     23.2  

where  is the correlation coefficient between X and Y . 

Next, we present the following results in order to evaluate the kurtosis. The proofs can be found in the Appendix. 

If the joint probability distribution is a bivariate normal then 

Result 1:     22

YX YXE    =   222222
...31.. YXYX    

Result 2:     YX YXE  
3

 = YX  ...3
3

 

Result 3:     33
...3 YXYX YXE    

Result 4: Kurtosis, 8 .  

If the joint distribution is bivariate exponential with the density function 
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then the following results are true. 

Result 5:    
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Result 6:     
 32121
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2
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1
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.
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 YX YXE  

Result 7:     
   32121212
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.3
.














 YX YXE  

Result 8:    
   3212121

3

21

3

..

.6
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.3
.














 YX YXE  

Result 9: Kurtosis, 
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..3.21...2..8

1

.20
20
















  

Note that the kurtosis will be 20 when the components are independent. 

4. Results 

- Numerical Result: 

Kurtosis Calculation (Bivariate Exponential): 

The Kurtosis given by  20.2 is estimated for the data generated from the Morgenstern Copula and the Clayton Copula 

and in addition to the simulated data from the bivariate exponential distribution by using the following parameters. 

,4.01      3.02     ,     1.0    , 7.0  

       Kurtosis Estimate (simulated bivariate exponential) = 18.036 

       Kurtosis (Actual) = 21.086 

       Kurtosis Estimate (Morgenstern Copula) = 22.585 

       Average distance estimate (of Morgenstern Copula from actual Population) =5.631 

       Kurtosis Estimate (Clayton Copula) = 30.036 

       Average distance estimate (of Clayton Copula from actual Population) =5.927 

- Graphical Result (Bivariate Exponential):  

Here, we present the scatterplots based on the copulas. The blue dots in the scatterplot represent the data that was 

simulated from the bivariate exponential distribution with the sample size = 1000. The red dots in the scatterplot 

represent the data that was generated by using the Morgenstern Copula while the green dots represent the data generated 

from the Clayton Copula.  
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- Kurtosis Calculation (Bivariate Normal): 

The Kurtosis given by  20.2 is estimated for the data generated from the Morgenstern Copula and the Clayton Copula 

and in addition to the simulated data from the bivariate normal distribution by using the following parameters. 

      25.21  , 33.32  ,   175.0 , 25.21  , 33.32   

       Kurtosis Estimate (simulated bivariate normal) = 7.761 

       Kurtosis (Actual) = 8 

       Kurtosis Estimate (Morgenstern Copula) = 7.735 

       Average distance estimate (of Morgenstern Copula from actual Population) =0.515 

       Kurtosis Estimate (Clayton Copula) = 10.165 

       Average distance estimate (of Clayton Copula from actual Population) =5.637 

- Graphical Result (Bivariate Normal):  

Here, we again present the scatterplots based on the copulas. The blue dots in the scatterplot represent the data that was 

simulated from the bivariate normal distribution with the sample size = 1000. The red dots in the scatterplot represent 

the data that was generated by using the Morgenstern Copula while the green dots represent the data generated from the 

Clayton Copula.  

 

5. Discussion and Conclusion 

The Copulas allow us to model the multivariate distributions from the marginal distributions. There are many types of 

Copulas. The Farleigh-Gumbel-Morgenstern Copula is used in Actuarial models and also in Engineering related 

reliability studies. The Clayton Copula is used mostly in Finance and Marketing. This paper is focused on comparing 

the Farleigh-Gumbel-Morgenstern Copula with the Clayton Copula. Note that these two copulas belong to two different 

families with the Clayton Copula coming from the Archiemedian Family and the Farleigh-Gumbel-Morgenstern Copula 

from the Non-Archemedian Family. We chose the parameters so that the mean vector and the variance-covariance 

matrix would be the same for the bivariate exponential and the bivariate normal distributions. Note that from the 

numerical results, it is obvious that the Farleigh-Gumbel-Morgenstern Copula (or simply Morgenstern Copula) is 

slightly more accurate than the Clayton Copula for modeling both the bivariate exponential distribution and the 
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bivariate normal distribution. Also, the scatterplots seemed to support the numerical results based on the Kurtosis. 

Furthermore, from this paper it is evident that the multivariate kurtosis is a reasonable measure to compare these two 

Copulas. 
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Appendix: 

Result 1:      22

YX YXE    =   222222
...31.. YXYX    

Proof: Note that,         2
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Result 2:     33
...3. YXYX YXE    

Proof: Note that,    Y

Y

X
X YYXE 




  ..\    

This implies that 

         YXEYEYXE XYYX \..
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Result 3:      YXYX YXE  ...3.
33

  

Proof: Follows from symmetry. 

Result 4: Kurtosis, 8 . 

Proof: Note that R.H.S of  15.2  can be written as 
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Result 5:    
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Result 6:     
2

2
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1

22

.

1


  YX YXE +

 32121 ..

.8






 

Proof:    

Note that     
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                               222
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                                 222
....2 YXYX XE                                 1.A  

One can easily show that for the bivariate exponential density, 
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By substituting these equations in  1.A , we get Result 6.   

Result 7:     
   32121212
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Proof: 

Note that  
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By substituting the above equations, we get the result.     

Result 8:    
   3212121
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Proof: Follows by interchanging the variables X and .Y   

Result 9: Kurtosis, 
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Proof: Follows from combining all the previous results. 
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