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Abstract

In some survival studies part of the population may be no longer subject to the event of interest. The called cure rate
models take this fact into account. They have been extensively studied for several authors who have proposed extensions
and applications in real lifetime data. Classic large sample tests are usually considered in these applications, especially
the likelihood ratio. Recently a new test called gradient test has been proposed. The gradient statistic shares the same
asymptotic properties with the classic likelihood ratio and does not involve knowledge of the information matrix, which
can be an advantage in survival models. Some simulation studies have been carried out to explore the behavior of the
gradient test in finite samples and compare it with the classic tests in different models. However little is known about the
properties of these large sample tests in finite sample for cure rate models. In this work we performed a simulation study
based on the promotion time model with Weibull distribution, to assess the performance of likelihood ratio and gradient
tests in finite samples. An application is presented to illustrate the results.

Keywords: Survival analysis, Unified model, Promotion time model, Gradient statistic.

1. Introduction

Cure rate models have been extensively studied in the literature for data sets where the event of interest may not occur for
part of the population studied. That is, part of the population studied will never experience the event of interest, being that
recurrence of a disease, product consumption or many other situations. An early approach developed in Boag (1949) and
Berkson and Gage (1952), considers a mixture of two distributions, one representing the survival time of the individuals
in risk, and a degenerated one, allowing infinite time for some fraction of population considered cured. This model is
known as the standard mixture model and the book by Maller and Zhou (1996) presents an up to date review of the main
results on the subject.

Alternatively Yakovlev et al. (1993) and Chen et al. (1999) introduce a class of models involving a competitive risk type
structure. Applications to cancer clinical trials have been specially successful. They are used for modeling time-to-event
data for several types of cancer, including breast cancer, leukemia, prostate cancer and many others. Such models have
been discussed in the statistical literature by many authors. In Tsodikov et al. (2003) this model is refered as bounded
cumulative hazard model. They provided an overview of the development of this cure rate model from both the frequentist
and Bayesian perspectives. In Yin and Ibrahim (2005) this model is refered as promotion time model. A unified approach
that includes standard mixture model and promotion time model as special cases, is pursued in Rodrigues et al. (2009).

In the present paper, the interest lies in testing hypotheses. The commonly used large sample tests are based on the
likelihood ratio statistics (Wilks, 1938), Wald (Wald, 1943) or Rao score (Rao, 1948) tests. Particularly, the likelihood
ratio is usually considered in applications to test parameters in cure rate survival models. There are hardly any works
about finite-sample performance of likelihood ratio under this models. We can mention just Sposto et al. (1992), which
present a small (100 samples) and restrict simulation study to compared the likelihood ratio, Wald, and score tests based
on a mixture model. Although it is known the liberal tendency of the likelihood ratio test when the sample is not large,
they found that the tests keep their asymptotic properties even in small samples, for some specific situations.

Recently the gradient test was proposed in Terrell (2002). As well as the usual classical statistics, the gradient statistic
has asymptotically chi-square distribution. This new statistic was obtained from Rao score and Wald modified statistics
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(Hayakawa and Puri, 1985). A comparison of local power properties of the gradient test with classical tests was studied
in Lemonte and Ferrari (2012) and no uniform superiority was found. Some simulation studies have been conducted
(Lemonte and Ferrari, 2011a, 2012; Ferrari and Pinheiro, 2014) in order to explore the characteristics of this new statistic
and compare the competing tests to different models. Because statistical gradient do not need the computation of the
information matrix (neither observed nor expected), it may be advantageous in problems involving censored samples,
which are often observed in survival studies. Among the studies that consider the statistical gradient in survival models
with censored data, we can cite Lemonte and Ferrari (2011b), that consider samples with right censoring of type II to test
hypotheses about the two parameters of the Birnbaum-Saunders distribution, and Medeiros et al. (2014) that compare the
performance of the gradient and likelihood ratio tests in accelerated failure time models under random censoring. The
book by (Lemonte, 2016) provides a broad survey about results of gradient test in literature. There are no studies involving
the gradient test with cure fraction, with or without the presence of covariates. In this paper we study the performance
of the likelihood ratio and the gradient tests via simulation study, to test coefficients related to cure rate parameter in the
Weibull promotion time cure model.

The paper is organized as follows. The unified approach for cure rate model is described in detail in Section 2. Section
3 briefly describes the likelihood ratio and gradient tests, and presents the resulting tests to the model based on marginal
likelihood obtained after eliminating the latent variables. Section 4 presents a simulation study. In Section 5 we illustrate
our results with a real data set about the time to pediatric leukemia recurrence. Some conclusions are reported in Section
6 and some basic results are presented in an Appendix.

2. Cure Fraction Model: Unified Approach

Survival models with cure fraction are models that consider cured (or immune) a fraction of the population. The occur-
rence of a high percentage of censoring at the end of the study in a sufficient follow-up time is an indication of cure fraction
in population (Maller and Zhou, 1996). Considering the unified model, suppose we have n individuals and that for each
individual (i = 1, . . . , n) it is associated a (latent) random variable Mi, representing the number of causes or risk factors
competing for the occurrence of the event of interest, with probability function pθ(m) = Pθ(Mi = m). Given Mi = m,
suppose also that the random variables Zi1,Zi2, . . . ,Zim, are independent and identically distributed (i.i.d.), representing
(unobserved) time-to-event for the i-th individual, due to j-th cause ( j = 1, . . . ,Mi), with common distribution function
F(z|λ) and a survival function S (z|λ) = 1 − F(z|λ), where λ is a vector of parameters and limt 7→∞ S (t|λ) = 0. Let Ti be an
observable random variable representing the time until the occurrence of the event, defined as Ti = min{Zi0,Zi1, . . . , ZiMi }
where the sequence Zi1,Zi2, . . . does not depend on Mi. Besides, Zi0 is set so that P(Zi0 = ∞) = 1. This assumption
permits the occurrence of an infinite lifetime in the immune individuals, because when Mi = 0 there are no causes or risks
for the occurrence of the event.

The common survival function for Ti is given by

S p(t) = P(Ti > t) = P(Ti > t,Mi = 0) + P(Ti > t,Mi ≥ 1)
= P(Ti > t|Mi = 0)Pθ(Mi = 0) + P(Ti > t|Mi ≥ 1)Pθ(Mi ≥ 1)

= pθ(0) +
∞∑

m=1

pθ(m)S (t|λ)m, (1)

since P(Ti > t|Mi = 0) = 1 and Pθ(Mi = 0) = pθ(0).

Hence S p(t) is an improper survival function, i.e., limt 7→∞ S p(t) > 0. This survival function can be interpreted as an infinite
linear combination of Lehmann type II distributions (Rodrigues et al., 2011; Alexandre et al., 2012). The proportion of
cured individuals (cure fraction) is given by limt 7→∞ S p(t) = pθ(0). From (1) we can obtain the sub-density function for
the random variables Ti as

fp(t) = f (t|λ)
∞∑

m=1

mpθ(m) [S (t|λ)]m−1.

2.1 Likelihood for Unified Model

Furthermore, consider that for i = 1, . . . , n, Yi = min{Ti,Ci} is the observable lifetime for individual i, where Ci is right
censoring time (random and uninformative) independent of Ti, and let δi be the censoring indicator, with δi = 1 if Ti ≤ Ci

and δi = 0 if Ti > Ci. Also consider xi = (xi1, xi2, . . . , xip)⊤ the vector of associated covariates.

To simplify notation, we define the n-dimensional vectors of observations y = (y1, y2, . . . , yn)⊤, δ = (δ1, δ2, . . . , δn)⊤ and
m = (m1,m2, . . . ,mn)⊤ and the covariate matrix X = (x1, x2, . . . , xn)⊤ of dimension n × p. Hence, the complete data set is
denoted byDc = (n, y, δ,m,X) and the data without the latent variables is denoted byD = (n, y, δ, X). The covariates can
be included in the model through some relation θi ≡ θ(x⊤i β), where β = (β1, ..., βp)⊤ is the vector of regression coefficients.
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Thus, the vector of unknown parameters in the model is given by ϕ =
(
β⊤, λ⊤

)⊤ and, to use a better notation, we consider
pθi (mi) = p(mi|β, xi). After some algebraic manipulations it can be shown that the likelihood for the complete data Dc is
given by

L (ϕ;Dc) =
n∏

i=1

[
mi f (yi|λ)

]δi [S (yi|λ)
]mi−δi p(mi|β, xi). (2)

Note that the likelihood (2) is not observable, since it depends on the latent variables. In practice, a marginal likelihood
is used. It is obtained by summing overall possible values for the variables Mi, i = 1, . . . , n, and given below in (3). For
details see Appendix.

L∗(ϕ;D) =
n∏

i=1

[
fp(yi|ϕ)

]δi [
S p(yi|ϕ)

]1−δi
. (3)

Therefore, the logarithm of the marginal likelihood function is given for

ℓ∗(ϕ;D) =
n∑

i=1

δi log[ fp(yi|ϕ)] + (1 − δi) log[S p(yi|ϕ)]. (4)

3. Likelihood Ratio and Gradient Tests

Let ℓ(ϕ) = log L(ϕ) be a log-likelihood function of ϕ a p-vector of unkown parameter, and define U(ϕ) =
∂

∂ϕ
ℓ(ϕ) as the

score function. Considering the partition ϕ = (ϕ1,ϕ2)⊤, where the dimensions of ϕ1 and ϕ2, are q and p − q respectively,
we have a corresponding partition U(ϕ) = (Uϕ1 (ϕ),Uϕ2 (ϕ))⊤. The likelihood (S LR) and gradient (S G) statistics for testing
the composite hypothesis

H0 : ϕ1 = ϕ10 against H1 : ϕ1 , ϕ10 (5)

are respectively given by

S LR = 2
[
ℓ
(
ϕ̂1, ϕ̂2

)
− ℓ

(
ϕ10, ϕ̃2

)]
and S G = U⊤ϕ1

(ϕ̃)(ϕ̂1 − ϕ10),

where ϕ10 is a specified vector, ϕ̂ = (ϕ̂1, ϕ̂2)
⊤

is the (unrestricted) maximum likelihood estimators of ϕ and ϕ̃ = (ϕ̃1, ϕ̃2)
⊤

denote the (restricted) maximum likelihood estimators of ϕ under H0 hypothesis. Asymptotically, S LR and S G have
a central chi-square distribution with q degrees of freedom under H0, and general conditions of regularity. The null
hypothesis is rejected for a fixed nominal level α, if the test statistic exceeds the upper 100(1 − α)% quantile of the
chi-square distribution.

3.1 Tests for Weibull Promotion Time Model

When each random variable Mi follows a Poisson distribution with parameter θ, the unified model comes down to promo-
tion time model (Yakovlev et al., 1993; Chen et al., 1999). From (1) we have

S p(t) = exp {−θ[1 − S (t|λ)]} ,

thus the cure fraction induced by this model is pθ(0) = exp (−θ), and the probability density function is

fp(t) = θ f (t) exp (−θF(t|λ)) .

At the promotion time Weibull model, it is assumed that failure times of susceptible individuals follow a Weibull distribu-
tion. Here we use the parametrization for Weibull given in Fonseca et al. (2011), where the probability density function
and survival are given by

f (t) = ρtρ−1 exp (γ − tρeγ) and S (t) = exp (−tρeγ) ,

where ρ > 0 and γ ∈ ℜ. Thus the functions S p(t) and fp(t) are given by

S p(t) = exp
{−θ [1 − exp (−tρeγ)

]}
(6)

and

fp(t) = θρtρ−1 exp (γ − tρeγ) exp
{−θ [1 − exp (−tρeγ)

]}
. (7)
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Now, consider the existence of heterogeneity in the population so that each random variable Mi follows a Poisson distri-
bution with parameter θi. The relation often used between the parameter θi and the covariates in the promotion time model
is given by θi = exp

(
x⊤i β

)
, where β and xi are defined as before. In this case the cure fraction is related to the covariates

through the expression

p(0|β, xi) = exp
[
− exp

(
x⊤i β

)]
. (8)

Considering a sample of n individuals and denoting by ϕ =
(
β⊤, λ⊤

)⊤, the parameter vector where λ is the vector of
parameter of Weibull model. The logarithm of the marginal likelihood function for this model is obtained substituting (6)
and (7) in (4) and including covariates through the relation given above, then we have

ℓ∗(ϕ;D) =
n∑

i=1

δi
[
x⊤i β + γ + log

(
ρyρ−1

i

)
− yρi eγ

]
−

n∑
i=1

exp
(
x⊤i β

) [
1 − exp

(
−yρi eγ

)]
. (9)

For computational reasons, we consider in (9) a reparametrization ρ = eρ
∗

, obtaining ρ∗ ∈ ℜ. Denoting λ⊤ = (γ, ρ∗) and
through the derivative with respect to the parameter vector ϕ, we get the score vector, which can be written as

U(ϕ) =

n∑
i=1

Xisi(ϕ), (10)

where Xi is the matrix

 xi 0 0
0 1 0
0 0 1


(p+2)×3

and si(ϕ) is the vector (si1(ϕ), si2(ϕ), si3(ϕ))⊤ with

si1(ϕ) = δi − θi
[
1 − exp

(
−yeρ

∗

i eγ
)]
,

si2(ϕ) = δi

[
1 + eρ

∗
log(yi)

(
1 − yeρ

∗

i eγ
)]
− θi exp

(
ρ∗ + γ − yeρ

∗

i eγ
)

yeρ
∗

i log(yi)

and si3(ϕ) = δi

(
1 − yeρ

∗

i eγ
)
− θi exp

(
γ − yeρ

∗

i eγ
)

yeρ
∗

i .

Now consider we want to test only a partition ϕ1 with dimension q of the vector ϕ. The likelihood ratio and gradient
statistics for testing the composite hypothesis, as in (5) and considering ϕ10 = 0, are given by

S RV = 2
[
ℓ(ϕ̂) − ℓ(ϕ̃)

]
and S G = U⊤ϕ1

(ϕ̃)ϕ̂1,

where ϕ̂ =
(
ϕ̂1, ϕ̂2

)⊤
and ϕ̃ =

(
0, ϕ̃2

)⊤
are, respectively, the unrestricted and the restricted maximum likelihood estimator

of ϕ = (ϕ1,ϕ2)⊤, under the null hypothesis.

4. Simulation Study

A simulation study was conducted to investigate the finite sample performance of the likelihood ratio and gradien-
t tests to test parameters for a survival model with cure fraction. The simulation results are based on R software
(R Development Core Team, 2010) which use the routine optim to maximize the likelihood function through the opti-
mization algorithms BFGS (Broyden, Fletcher, Goldfarb and Shanno). The model considered was the Weibull promotion
time. Relating the reparametrization used in (10) for ρ = eρ

∗
, with the default in the software R for parameters of Weibull

distribution we found ρ∗ = log(a) and γ = −a log(b), where a > 0 and b > 0 are shape and scale parameters, respectively.

To assess the effect of number of nuisance parameters in performance of tests, we consider cases with three, four and five
covariates (p = 3, p = 4 and p = 5), generated from Bernoulli distributions. That is, for l = 1, . . . , p, each covariate
xl is drawn from a Bernoulli (νl) where the probabilities of success ν1, . . . , ν5 are set as 0.49, 0.50, 0.51, 0.52 and 0.53,
respectively. We consider samples of size n = 30 and 100. For each individual, values for M were generated as a random
sample of Poisson distribution with mean θi = exp

(
x⊤i β

)
. The values used for the vector β were chosen so that, when

combined with the covariates, the average of cure fractions pθi (0) = exp(−θi), i = 1, . . . , n, were around 10%, 20% or
30%. The values specified for the vector β are given in Table 1.
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Table 1. Values of β = (β1, . . . , βp) used in the simulations, for p = 3, p = 4 and p = 5, according to the cure fraction proportions
(%c. f .), the number of tested parameters (q) and the sample size (n).

n q %c. f . (β1, β2, β3) (β1, β2, β3, β4) (β1, β2, β3, β4, β5)

30

1
10 (0, 0.01, 0.90) (0, 0.20, 0.40, 0.69) (0, 0.20, 0.30, 0.50, 0.40)
20 (0, 0.30, 0.36) (0, 0.14, 0.30, 0.20) (0, 0.10, 0.19, 0.31, 0.10)
30 (0, 0.10, 0.14) (0, 0.07, 0.09, 0.10) (0, 0.09, 0.065, 0.05, 0.09)

2
10 (0, 0, 0.90) (0, 0, 0.50, 0.69) (0, 0, 0.40, 0.50, 0.40)
20 (0, 0, 0.50) (0, 0, 0.44, 0.10) (0, 0, 0.25, 0.30, 0.10)
30 (0, 0, 0.19) (0, 0, 0.12, 0.11) (0, 0, 0.08, 0.09, 0.10)

100

1
10 (0, 0.70, 0.75) (0, 0.50, 0.60, 0.51) (0, 0.50, 0.40, 0.30, 0.30)
20 (0, 0.35, 0.40) (0, 0.31, 0.30, 0.21) (0, 0.191, 0.31, 0.20, 0.10)
30 (0, 0.135, 0.15) (0, 0.10, 0.11, 0.10) (0, 0.07, 0.075, 0.081, 0.091)

2
10 (0, 0, 1.55) (0, 0, 0.85, 0.80) (0, 0, 0.51, 0.55, 0.60)
20 (0, 0, 0.68) (0, 0, 0.40, 0.45) (0, 0, 0.16, 0.20, 0.50)
30 (0, 0, 0.249) (0, 0, 0.11, 0.23) (0, 0, 0.09, 0.145, 0.09)

For the i-th immune individual, (Mi = mi > 0), random samples Zik ∼ Weibull(a, b) of size mi were generated with
parameters a = 2 and b = 4. Hence, the failure time are denoted by ti = min{Zik, k = 1, . . . ,mi}, i = 1, . . . , n. Random
censoring were generated from independent Uniform(0, u) random variable, where the value of u affects inversely the
proportion of censoring in the sample. In order to evaluate separately the effect of increasing the censoring proportion
among cured and not cured on the performance of tests, we consider here the censoring proportion with respect to all units
under risk, that is, susceptible to the event occurrence.

We also considered three nominal levels (α = 1%, 5% and 10%). The tests were performed and the values of the statistics
were compared with the respective quantiles of the chi-square distribution, i.e., 6.635, 3.841 and 2.706 to test the null
hypothesis H00 : β1 = 0 (q = 1) or 9.210, 5.991 and 4.605 to test the hypothesis H01 : β1 = β2 = 0 (q = 2).

Under each combination of parameter configuration we ran 10,000 simulations, and calculated the proportion of times
that the hypotheses H00 and H01 were rejected .

4.1 Results

In Tables 2 and 3 we have estimated null rejection rates of the likelihood ratio and the gradient tests based of the null
hypothesis H00 : β1 = 0 (q = 1) and H01 : β1 = β2 = 0 (q = 2) in each considered situation, for samples of size
n = 30 and 100, respectively. It shows that for all considered cases, the null rejection rates of the tests exceed the
corresponding nominal level. This is in agreement with liberal characteristic of the likelihood ratio test in small samples
and shows the same trend of the gradient test.

For n = 30 the tests get worse (rejection rate gets away from nominal level) when p (number of parameters) increases,
and when we increase the number of tested parameters (q = 1 to q = 2). This fact is accentuated especially when we have
30% of censoring. For n = 100, there are not significative change in the performance of tests with increasing of p, or q,
even in the presence of censoring. In general, we note that with the increase of sample size the tests become better (the
null rejection rates approach the nominal level), regardless of the existence of cure fraction.

When we compare the performance of the likelihood ratio and gradient tests, we noticed they have equivalent results in
almost all cases. There are just slight differences when the sample is very small (n = 30). Specifically, the gradient
statistic presents mild advantage in some cases with uncensored samples while the likelihood ratio statistic is a little better
in cases with censorship where the dimension of the vector parameters tested is lower.

We now consider a brief simulation study to investigate the finite-sample power properties of the tests. To make power
comparisons, we must ensure that the test has the same (correct) size under the null hypothesis. As we have seen in
our simulations that the likelihood ratio and gradient tests have different sizes, we used 100,000 Monte Carlo simulated
samples, drawn under the null hypothesis, to estimate the correct critical value of each test for the fixed nominal level.
Here we considered the tests for n = 30, p = 3, q = 1, 30% of censoring and 30% cure fraction under null hypothesis. We
computed the rejection rates under the alternative hypothesis H01 : β1 = w, for values of w belonging to the set [−3, 3].
As a result (Figure 1) we see that no test seems uniformly more powerful than the other.

13



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 4; 2016

Table 2. Null rejection rates of the likelihood ratio (S LR) and the gradient (S G) tests based of the null hypothesis H00 : β1 = 0 (q = 1)
and H01 : β1 = β2 = 0 (q = 2) for n = 30, according to the number of parameters (p), number of tested parameters (q), censoring
proportions (%cens) and cure fraction proportions (%c. f .).

case
(

p
q

)
%cens. %c. f .

n = 30
α = 1% α = 5% α = 10%

S LR S G S LR S G S LR S G

1
2
3
4
5
6

(
p = 3
q = 1

) 0
10 1.85 1.84 7.37 7.20 13.80 13.45
20 1.67 1.71 6.78 6.77 12.43 12.35
30 1.81 1.92 7.10 7.23 12.97 13.07

30
10 2.39 2.36 8.42 8.17 14.61 14.60
20 1.99 2.26 8.10 8.14 14.58 14.63
30 2.02 2.58 7.87 7.97 13.48 13.81

7
8
9
10
11
12

(
p = 4
q = 1

) 0
10 2.29 2.21 7.77 7.48 14.06 13.75
20 1.81 1.78 7.22 7.22 13.12 12.98
30 1.68 1.82 7.30 7.44 13.70 13.97

30
10 2.85 2.71 9.02 8.87 15.64 15.35
20 2.49 2.51 8.56 8.76 14.95 14.91
30 2.42 2.80 8.80 9.12 15.11 15.25

13
14
15
16
17
18

(
p = 5
q = 1

) 0
10 2.51 2.46 9.20 8.99 15.83 15.54
20 2.53 2.55 8.94 8.88 14.98 15.02
30 2.45 2.56 8.38 8.63 15.05 15.17

30
10 2.98 2.79 9.80 9.87 16.55 16.50
20 3.06 3.26 10.04 10.04 17.17 17.12
30 3.09 3.44 10.18 10.44 16.84 16.86

19
20
21
22
23
24

(
p = 3
q = 2

) 0
10 1.57 1.53 7.24 7.08 13.82 13.42
20 1.70 1.84 7.29 7.50 13.24 13.22
30 1.94 2.06 7.41 7.67 13.46 13.58

30
10 2.03 2.12 8.27 8.36 14.72 14.83
20 2.21 2.34 7.75 8.03 14.10 14.24
30 1.90 2.46 7.58 7.91 14.34 14.89

25
26
27
28
29
30

(
p = 4
q = 2

) 0
10 2.66 2.56 8.95 8.86 16.07 15.80
20 2.16 2.24 8.46 8.50 14.75 14.74
30 2.10 2.29 7.86 8.26 14.47 14.68

30
10 2.71 2.83 9.46 9.32 16.64 16.33
20 2.62 2.83 9.31 9.66 16.12 16.36
30 2.65 3.23 8.99 9.66 16.07 16.70

31
32
33
34
35
36

(
p = 5
q = 2

) 0
10 2.88 2.87 9.58 9.54 16.34 16.43
20 2.64 2.77 9.53 9.56 16.52 16.45
30 2.54 2.77 9.40 9.63 16.28 16.38

30
10 3.43 3.51 11.21 11.21 18.35 18.23
20 3.83 4.24 11.41 11.88 18.37 18.77
30 3.36 4.07 11.18 11.99 18.32 19.11
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Table 3. Null rejection rates of the likelihood ratio (S LR) and the gradient (S G) tests based of the null hypothesis H00 : β1 = 0 (q = 1)
and H01 : β1 = β2 = 0 (q = 2) for n = 100, according to the number of parameters (p), number of tested parameters (q), censoring
proportions (%cens) and cure fraction proportions (%c. f .).

case
(

p
q

)
%cens. %c. f .

n = 100
α = 1% α = 5% α = 10%

S LR S G S LR S G S LR S G

1
2
3
4
5
6

(
p = 3
q = 1

) 0
10 1.32 1.30 5.63 5.65 10.88 10.87
20 1.20 1.21 5.31 5.33 11.02 10.98
30 1.33 1.36 5.84 5.85 10.57 10.66

30
10 1.42 1.41 5.73 5.76 10.97 10.93
20 1.27 1.27 5.68 5.68 10.85 10.93
30 1.06 1.09 5.83 5.78 11.09 11.25

7
8
9
10
11
12

(
p = 4
q = 1

) 0
10 1.16 1.17 5.81 5.73 10.99 11.05
20 1.19 1.17 5.74 5.80 10.92 10.95
30 1.24 1.28 5.59 5.59 10.72 10.76

30
10 1.43 1.45 6.20 6.23 11.86 11.77
20 1.29 1.29 5.90 5.85 11.34 11.36
30 1.19 1.28 5.70 5.69 10.88 10.85

13
14
15
16
17
18

(
p = 5
q = 1

) 0
10 1.43 1.36 5.96 5.94 11.38 11.31
20 1.37 1.34 6.24 6.14 11.71 11.76
30 1.16 1.17 5.77 5.77 11.16 11.21

30
10 1.53 1.51 6.46 6.44 11.97 11.98
20 1.27 1.27 6.05 6.07 11.90 11.95
30 1.39 1.40 5.94 6.04 11.15 11.19

19
20
21
22
23
24

(
p = 3
q = 2

) 0
10 1.15 1.14 5.60 5.52 10.93 10.83
20 1.30 1.28 5.67 5.63 10.83 10.85
30 1.11 1.14 5.23 5.23 10.57 10.67

30
10 1.34 1.31 6.48 6.37 12.00 11.97
20 1.14 1.14 5.67 5.79 11.12 11.20
30 1.38 1.42 5.67 5.81 10.83 10.98

25
26
27
28
29
30

(
p = 4
q = 2

) 0
10 1.19 1.19 6.06 5.99 11.36 11.23
20 1.27 1.33 5.81 5.79 11.37 11.29
30 1.23 1.20 5.38 5.43 10.58 10.61

30
10 1.15 1.18 5.93 5.92 11.77 11.79
20 1.19 1.23 5.80 5.89 11.34 11.53
30 1.33 1.38 6.13 6.23 11.60 11.73

31
32
33
34
35
36

(
p = 5
q = 2

) 0
10 1.41 1.37 6.01 5.92 11.51 11.45
20 1.18 1.18 6.38 6.30 11.50 11.57
30 1.56 1.56 6.22 6.35 11.81 11.88

30
10 1.46 1.53 6.58 6.63 12.32 12.39
20 1.41 1.43 6.41 6.43 12.38 12.47
30 1.42 1.51 6.60 6.60 11.28 11.33
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Figure 1. Power of likelihood and gradient tests for n = 30, p = 3, q = 1, 30% of censoring and 30% cure fraction under
null hypothesis.

5. Application

To illustrate the model and the tests presented in this paper, we made an application in a data set about time of relapse
free survival of 103 Brazilian children under 15 years, with acute lymphoblastic leukemia (ALL). These children were
followed from 1988 to 1992 in some health institutions organized within a cooperative group for the treatment of acute
leukemia in the state of Minas Gerais, Brazil.

These data are available in Colosimo and Giolo (2006). Viana et al. (1994) had described the study and analyzed the
data using the Cox regression model (Cox, 1972), in order to evaluate the effect of factors on the hazard of recurrence in
previously treated children.

At the end of the study, 39 children experienced the event and 64 censored (62% of censorship). Kaplan-Meier estimates
of the survival function are shown in Figure 2, and show that in the last year of follow-up, the estimated survival curve
apparently stabilizes at some positive value. Although follow-up seems insufficient to notice the occurrence of cured
in study, there is a vast literature in the medical area about long-term survivors of pediatric leukemia (see for example
Sala et al. (2004), Pui et al. (2003) and Neglia et al. (1991)).

Figure 2. Kaplan-Meier estimates to of the data related to survival to acute lymphoblastic leukemia treatment.

To investigate the differences between subgroups in the data with respect to proportion of individuals who are long-term
survivors, we consider a cure rate model associated with 5 factors of 2 levels: number of white cell count at diagnosis
(White = 1 if this number is greater than 75, 000 by mm3 and White = 0 otherwise); standardized age (Age = 1 if the
index is greater than −2 and Age = 0 otherwise); standard weight for age and sex (Weight = 1 if the index is greater than
−2 and Weight = 0 otherwise); positive periodic acid Schiff (PAS ) reaction in the lymphoblasts (Pas = 1 for more than
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5% of Pas positive marrow lymphoblasts and Pas = 0 otherwise) and cytoplasmic vacuolation (Vac = 1 if more than
10% of vacuolated blasts were present, and Vac = 0 otherwise).

We consider that the lifetimes for susceptible individuals Zil, follow a Weibull(ρ, γ) distributions, i = 1, . . . , 103 and
l = 1, . . . ,Mi.

Table 4. Estimates and tests for data on pediatric leukemia

Effect Estimate(Se) S LR p-value S G p-value df

White 1.211 (0.390) 8.676 0.003 8.676 0.004 1
Age 0.735 (0.371) 3.626 0.057 3.459 0.063 1
Weight -0.767(0.341) 4.136 0.042 3.496 0.062 1
Pas -1.062 (0.460) 6.491 0.011 7.073 0.008 1
Vac 1.391 (0.420) 9.072 0.003 8.087 0.004 1
ρ 0.343 (0.137) - - - - -
γ -1.256 (0.312) - - - - -

We fit this model and apply the likelihood ratio and gradient tests to evaluate the effect of each factor in the cure rate.
The results are shown in Table 4. At the 5% significance level, we note that for both tests the factors White, Pas and Vac
are significant to explain the cure fraction. For the Age factor, the p-values obtained for the two tests are slightly greater
than 5% so this is not significant at this level. However for the Weight factor there is a divergence between the tests: the
likelihood ratio test indicates that the Weight factor is significant (p-value = 0.0419) while the gradient test concludes that
it is not significant (p-value = 0.0616). One might argue that, according to the simulation results (see the most similar case
in Table 3, line 18) the calculated p-values will always underestimate the true p-values (which would be calculated from
the exact statistics distributions). This behavior can lead to undue rejection of hypotheses. Thus, based on this argument
we do not reject the null hypothesis and we assume that the Weight factor is not significant in this model.

Thus, the results of fit for the final model are given in Table 5.

Table 5. Estimates for final model - pediatric leukemia data.

Effect Estimate Se S LR p-value S G p-value df

White 1.063 0.346 8.088 0.004 7.353 0.007 1
Vac 1.219 0.403 7.542 0.006 6.746 0.009 1
Pas -1.052 0.455 6.583 0.010 7.196 0.007 1
ρ 0.234 0.135 - - - - -
γ -1.691 0.295 - - - - -

From (8), we can calculate the cure rate for each combination of factors with the expression (11). The results are given in
Table 6.

exp
[ − exp(1.063Whitei + 1.219Vaci − 1.052Pasi)

]
. (11)

Table 6. Cure rate for pediatric leukemia data.

White Vac Pas cure rate
(%)

< 75000
< 15% < 5% 36,788

≥ 5% 70,525

≥ 15% < 5% 3,389
≥ 5% 30,671

≥ 75000
< 15% < 5% 5,533

≥ 5% 36,395

≥ 15% < 5% < 0, 001
≥ 5% 3,269
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Thus in this study the group with the highest estimated cure rate (70.5%) is formed by children with lower white cell
count at diagnosis (White = 0), with negative cytoplasmic vacuolation (Vac = 0) and PAS positive reaction (Pas = 1).

Note that although Viana et al. (1994) found that malnutrition (measured through the Weight) is the most significant
adverse factor affecting time to remission, here we find that it is not significant to explain cure rate. In fact, according
to Sala et al. (2004) there is no consensus about the relationship between poor nutritional status and the poor prospect
for survival. Besides, covariates do not need exert the same effects on the cure fraction and the time to remission for
susceptible individuals.

6. Concluding Remarks

In this work we compare via simulation, the perfomance of likelihood ratio and gradient tests to test regression coefficients
related with cure fraction in Weibull promotion time model. We note that null rejection rates of the tests exceed the
corresponding nominal level for small and moderate samples. This well-known liberal tendency of the likelihood ratio test,
was also observed to the gradient test, which showed similar size distortions. Additionally, we note that this size distortion
increases with the presence of censorship and with the increases of number of tested parameter as well as with the number
of the nuisance parameters. This oversized behavior of the tests indicates that the true distributions of the likelihood ratio
and gradient statistic have heavier right tail than the chi-square in small and moderate-sized samples. In applications
this can lead to undue rejection of hypotheses since the calculated p-values (based in chi-square approximation) will in
general underestimate the true p-values. The power simulation study suggest that no test seems uniformly most powerful
than other when we use estimated correct critical values. Overall, we understand that the gradient statistic is equivalent to
the likelihood ratio one, to test coefficients of this model.

Although the Wald and score tests shares the same asymptotic properties with the likelihood ratio and Gradient tests, they
were not included in our simulation study because they require the computation of the Fisher information matrix, which
cannot be obtained for the cure fractions models considered here. One could argue that the Fisher information should be
replaced by the observed information matrix. We noticed, however, that in small and moderate-sized samples the observed
information produced negative standard errors for a non-negligible proportion of the simulated censored samples. This is
a problem to be investigated in a future study.

Due to the size distortions of the tests in small samples, an important subject of study is to obtain inferential improve-
ments, like the Bartlett correction (Bartlett , 1937) or the Skovgaard’s adjustment (Skovgaard , 1996). However the
presence of censorship and cure fraction in cure rate models can make cumbersome or impossible the analytic derivation
of corrections. Thus, another topic for future research will be investigate the use of a bootstrap Bartlett adjustment for
the log-likelihood ratio statistic (Rocke , 1989) and bootstrap adjustment for gradient statistic. Furthermore we wish to
study associated tests to models with cure rate in the presence of covariates associated with the lifetime of susceptible
individuals.

7. Appendix

Complete and Marginal Likelihood

Here we present details to obtain the likelihood for the complete data (2) and the marginal likelihood function given in (3).
We consider the same notations used in Section 2.1 but, for simplicity, we get xi = 1 (no covariates and θi = θ). Besides,
for a single individual i, we denote the complete data by Dci = (yi, δi,mi) and the data without the latent variables by
Di = (yi, δi) .

The likelihood for the complete dataDc can be represented as follows

L (ϕ;Dc) =

n∏
i=1

L(ϕ;Dci ) =
n∏

i=1

L(λ;Di|Mi = mi)pθ(mi).

Based on classical results in survival analysis, it can be shown that the conditional likelihood function of (Yi, δi) given the
latent variable Mi, for a single individual i, is given by

L(λ;Di|Mi = mi) =
[
fp(t; λ|mi)

]δi [
S p(t; λ|mi)

]1−δi
. (12)

Now, the conditional survival and density functions of Ti given the latent variable Mi can be obtained, respectively, as
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follows

S p(yi|λ,m) = P(Ti > yi|Mi = mi) = P(min
{
Zi0,Zi1, . . . ,Zimi

}
> yi)

= P(Zi0 > yi,Zi1 > yi, . . . , Zimi > yi)
= P(Zi0 > yi)︸       ︷︷       ︸

1

P(Zi1 > yi) . . . P(Zimi > yi) = [S (yi; λ)]mi ,

and
fp(yi|λ,mi) = −

d
dt

S (yi; λ) = mi[S (yi; λ)]mi−1 f (yi; λ).

Using the above results in (12), we get

L(λ;Di|Mi = mi) =
[
mi(S (yi; λ))mi−1 f (yi; λ)

]δi [
(S (yi; λ))mi

]1−δi

=
[
mi f (yi; λ)

]δi [S (yi; λ)
]mi−δi . (13)

Thus, the likelihood for the complete data is

L (ϕ;Dc) =
n∏

i=1

[
mi f (yi|λ)

]δi [S (yi|λ)
]mi−δi pθ(mi). (14)

The likelihood with respect to the marginal distribution of the (Yi, δi), denoted by L∗, can be obtained by summing overall
possible values for the variables Mi, that is

L∗(ϕ;Di) =

∞∑
mi=0

L(ϕ;Dci ) =
∞∑

mi=0

[
mi f (yi; λ)

]δi [S (yi; λ)
]mi−δi pθ(mi). (15)

Considering separately the cases δi = 0 and δi = 1, we have

L∗(ϕ;Di) =

{ ∑∞
mi=0 [S (yi; λ)]mi pθ(mi) if δi = 0∑∞
mi=0 mi f (yi; λ)

[
S (yi; λ)

]mi−1 if δi = 1

=

{
S p(yi; λ, θ) if δi = 0
fp(yi; λ, θ) if δi = 1

=
[
fp(yi; λ, θ)

]δi [
S p(yi; λ, θ)

]1−δi
. (16)

Thus, the total marginal likelihood is given by

L∗(ϕ;D) =

n∏
i=1

L∗(ϕ;Di) =
n∏

i=1

[
fp(yi; λ, θ)

]δi [
S p(yi; λ, θ)

]1−δi
. (17)
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