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Abstract

In this paper we revisit the Natural Exponential Family (NEF) of distributions generated by the Kendall-Ressel density.
We study some of the statistical properties of this class (KR-NEF), as well as those of an associated class of Exponential
Dispersion Model (KR-EDM). In particular, we discuss some of the immediate properties of these distributions, especially
under the so called mean re-parameterization. The moments and other cumulants of these distributions are thoroughly
presented as well as expressions for the measures of their skewness and kurtosis. Estimation procedures under the mean
parameterization are also discussed where the maximum likelihood, second order minimax and a Bayes estimators are
presented and illustrated.
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1. Introduction

Let λ > 0 and consider the probability density function (pdf) fλ on the positive real line defined by

fλ(x) =
λ xx+λ−1e−x

Γ(x + λ + 1)
I[x > 0]. (1)

The pdf in (1) is called the Kendall-Ressel density (hereafter the KR density or distribution) with parameter λ. This
density appears in various areas. For an M/G/1 queueing system with arrival rate λ, it is the limiting distribution, as
λ → ∞, of the length of the busy period T (λ) − λ initiated by the virtual time quantity λ > 0 (c.f. Prabhu,1965, pages
73 and 237). In characterization of the regression of the sample variance on the sample mean, Fosam and Shanbhag
(1997) showed that such a regression is cubic in the sample mean for only for six distributions, of which one is the KR
distribution. Kokonendji (2001) also revealed this distribution on his investigation of first passage times on 0 and 1 of
some Lévy processes for natural exponential families (NEF’s). Additional references can be provided here regarding the
KR distribution, but one of the most detailed reference on some of the probabilistic nature of the KR density is Letac
and Mora (1990) who characterized all NEF’s having cubic variance functions (VF’s), of which, one is the KR-NEF. One
can consult Proposition 5.5 of Letac and Mora (1990) for checking the puzzling formula

∫ ∞
0 fλ(x)dx = 1 and page 36

of this reference for learning why this density could also be called the KR density. This density is infinitely divisible,
implying that the NEF generated by this density is also infinitely divisible (i.e., all members of the generated NEF are
so). Mixtures of KR-NEF distributions are analyzed in Bar-Lev and Letac (2012). An excellent references review can be
found in Vinogradov (2011) who also presented an interesting probabilistic type study of the KR-NEF and its associated
Exponential Dispersion Model (EDM) in terms of their mean value parameterization.

It should be noted that the Laplace Transform (LT) of (1) cannot be expressed explicitly (see next section) but rather is can
be given as the solution of some functional equation. This fact implies that the corresponding KR-NEF and KR-EDM do
not have explicit representation in terms of their canonical parameter θ (see Eq. (3)). Fortunately, they can be explicitly
expressed by their mean value parameter m (a more important parameter than θ), making them applicable for statistical
use.

The aim of the present study is to further expose the KR-NEF and KR-EDM by some of their statistical properties as we
believe they could naturally be used for statistical modeling. However, the work is primarily focused on some estimation
aspects such as second order minimax estimation of the mean and its related Bayes estimates. The paper is organized
as follows. In Section 2 we present first some known basic preliminaries on NEF’s and EDM’s, and then describe the
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KR-NEF and EDM in terms of their mean value parameterization. Cumulants, moments and other related measures are
presented in Section 2.4. Section 3 is devoted to estimation, where Section 3.1 deals devoted to the maximum likelihood
equations (where the related dispersion parameter ζ is either known or not). Section 3.2 is devoted to second order
minimax estimation of the mean (with either ζ known or unknown). We prove that these estimates behave better than
the MLE for the mean (i.e. the sample mean) in terms of mean squared error. Some simulation results are provided.
Section 3.3 focuses on Bayesian estimation of the mean. We show that that under the implied conjugate prior or the flat,
non-informative, prior distributions, useful expressions for the Bayes estimates of the mean are readily available. We
close in Section 4 with some concluding remarks.

2. Some Preliminaries of NEF’s and the KR NEF and EDM

2.1 The KR-NEF and KR-EDM

Let f1, denote the pdf obtained from (1) with λ = 1 and denote by L1(θ) its corresponding Laplace Transform, so that

L1(θ) =
∫ ∞

0
eθx f1(x)dx (2)

It can be verified (c.f. Letac and Mora, 1990) that L1(θ) is finite if in only if θ ∈ (−∞, 0] ≡ Θ, but unfortunately it is not
expressible explicitly in term of θ. In fact, L1(θ) may be written as L1(θ) = e−η(−θ), where η(−θ) is obtained as the solution
of the implicit functional equation

η(−θ) = ln(1 + η(−θ) − θ), θ ≤ 0, (3)

(c.f. Prabhu,1965, and also Fosam and Shanbhag, 1997, eq. (11)).

The KR NEF distribution we consider here is generated from (1) with λ = 1 and (2), and is given in the form of

f1(x; θ) =
1

Γ(x + 2)
xxe−xeθx−k1(θ)I[x > 0], (4)

where k1(θ) ≡ ln L1(θ) = η(−θ), θ ∈ Θ. Similarly, let Lλ(θ) denote the LT of fλ in (1) with λ > 0. Letac and Mora
(1990) have established that Łλ(θ) = Lλ1(θ), so that Lλ is the λth convolution of L1, in which case, kλ(θ) ≡ log Lλ(θ) =
λ log L1(θ) = λk1(θ). Accordingly, we define the KR-EDM class of distributions in a similar fashion to (4) by the pdf,

fλ(x; θ) =
λ xx+λ−1e−x

Γ(x + λ + 1)
exp {θx − λk1(θ)} I[x > 0], (5)

with θ ∈ Θ and λ > 0.

2.2 The Mean Value Reparameterization

Note that f1(·; θ), θ ∈ Θ, defines a one-parameter family of distributions whereas fλ(·; θ) θ ∈ Θ, λ > 0, defines a two-
parameter one. Further, it is well known that the cumulant transform k1 in (4) is strictly convex and real analytic on Θ
and m = k′1(θ) ∈ M is the mean function of f1 and M is the mean domain of f1. Similarly, V(m) = k′′1 (θ), is the variance
function (VF) of f1, with m ∈ M. We remind the reader that the VF (V, M), uniquely determines an NEF within the class
of NEF’s. Classes of various VF’s have been thoroughly classified in the literature. Along these lines, Letac and Mora
(1990) have shown that despite the intractable form of the cumulant transform k1 in (4) as defined by the implicit function
(3), the VF of the KR-NEF defined in (4) has a simple tractable form given by

(V(m),M) =
(
m2(1 + m), R+)

)
. (6)

As was already indicated earlier, the LT (2) and hence k1(θ) cannot be expressed explicitly in terms of θ. Practically
however, the parameter θ by itself is not of much interest, but rather, the mean parameter m is. In which case, both θ and
the cumulant transform k1(θ) can be expressed explicitly in terms of the mean parameter m, m ∈ M.

For this, we use the well-known fact that given the VF, (V,M) of an NEF, the respective natural parameter θ and cumulant
transform k(θ) can be expressed in terms of its mean m as follows (c.f. Morris, 1982, and Letac and Mora, 1990),

θ(m) =
∫

dm
V(m)

+ c1 and k(θ(m)) =
∫

mdm
V(m)

+ c2. (7)

Since by (6), the VF of f1 is V(m) = m2(1 + m), we immediately obtain that

θ(m) = ln
1 + m

m
− 1

m
+ c1 (8)
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and
k1(θ(m)) = ln

m
1 + m

+ c2. (9)

Now, using the fact that f1 is a density and that θ → 0− iffm→ ∞,we obtain that c1 = c2 = 0 in (8) and (9). Consequently,
the reparameterization of f1 by the mean m, (m > 0), is given by probability density function

f1(x; m) =
xxe−x

Γ(x + 2)
exp

{
x
[
ln

(1 + m)
m

− 1
m

]
− ln

m
1 + m

}
I[x > 0]. (10)

Similarly, the probability density function of the corresponding EDM fλ in (5) under this mean value reparameterization,
with m > 0, is

fλ(x; m) =
λ xx+λ−1e−x

Γ(x + λ + 1)
exp

{
x
[
ln

(1 + m)
m

− 1
m

]
− λ ln

m
1 + m

}
I[x > 0]. (11)

Further, when the transformation x 7→ x/λ and λ 7→ 1/λ � ζ is applied to the EDM densities in (11), one obtains a family
of probability densities of the form

fζ(x; m) =
( x
ζ
)

(x+1)
ζ −1e−x/ζ

ζ2 Γ( (x+1)
ζ
+ 1)

exp
{

1
ζ

[(
ln

(1 + m)
m

− 1
m

)
x − ln

m
1 + m

]}
I[x > 0], (12)

with (ζ,m) ∈ R+ × R+. Note that (12), may be presented in a more compact form as,

fζ(x; m) =
( 1+m

m )
(x+1)
ζ ( x

ζ
)

(x+1)
ζ −1

ζ2 Γ( (x+1)
ζ
+ 1)

e−
x
ζ ( 1+m

m )I[x > 0]. (13)

The form of the density in (13) was derived in eq. (27) of Vinogradov (2011) (while correcting a typo there in which
Γ(x+λ+1) should have been Γ(λ(x+1)+1)). However, it is not straightforward to see from Vinogradov’s derivations how
one obtains (13). Here we have chosen to present (8) and (9) which provide the details on how to compute the constants
c1 and c2 in (8) and (9) and thus to allow one to readily obtain the mean value representation of the densities in 12) and
(13). We note that such computations could be utilized for other NEF’s and their corresponding EDM’s.

The behavior of the tail or near 0 of (13) can be deduced from Vinogradov (2011, eq. 34). Namely, for a fixed ζ, as x ↓ 0,

fζ(x; m)→


0, ζ ∈ (0, 1)
m+1

m ζ = 1
∞ ζ ∈ (1,∞)

and as x→ ∞, we obtain

fζ(x; m) ∼ 1

ζ
√

2π
x−3/2

(
m + 1

m

) 1
ζ

.

These expressions imply that as x ↓ 0 and for ζ > 1, fζ(x; m) behaves as the gamma density with shape parameter smaller
than 1 and for ζ = 1 as the negative exponential density. As x→ ∞ and ζ > 0, it behaves as the inverse Gaussian density.
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Figure 1. The Ressel EDM pdf with ζ = 1 and m = 0.5, 1, 5
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In Figures 1 and 2 we present plots of the pdf fζ(x; m) in (13) for some selected values of ζ (ζ = 0.5, 1, 10) and for some
selected values of m (m = 0.5, 1, 5).
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Figure 2a. The Ressel EDM pdf with ζ = 1 and m = 0.5, 1, 5
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Figure 2b. The Ressel EDM pdf with ζ = 1 and m = 0.5, 1, 5

The above figures suggest the potential versatility of the Ressel EDM in statistical applications and modeling. We further
illustrate the applicability of the KR-EDM model in the following figure which depicts the histogram of data which is a
(unbeknownst) mixture of two negative exponential distributions; 75% Exp(2) and 25% Exp(0.5). As can be seen, the
KR-EDM model produces a much better fit to these (mixture) data than a single negative exponential distribution (with
the same estimated mean for both).
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Figure 3. Illustrating the fit of the Ressel Distribution to mixed Exponential Data

2.3 Cumulants, Moments, Skewness and Kurtosis
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In general, the r-th cumulant of an EDM with densities as in (13) is given by (see Jorgensen (1987, Eq. 2.6))

κr = κr(θ, ζ) = ζr−1k(r)(θ), r ∈ N, (14)

where k(r) is the r-th derivative of k. The first two cumulants, as are given in terms of the mean m, are

κ1 = m and κ2 = ζV(m), (15)

where V(m) is given by (3) (i.e., for ζ = 1). As we consider m to be the parameter of interest, we write κr(m) = κr(θ(m), ζ)
as a function of m (if no ambiguity is caused). Hence by (14) and (15) we have recursively that

κr(m) = ζr−1κ′r−1(m)V(m), r ≥ 3,

(where κ′r−1 is to reflect a differentiation with respect to m). Accordingly, upon using (3), we obtain that the r-th cumulant
can be given the general form

κr(m) = ζr−1mr (m + 1) pr−2, r ≥ 3,

where pr−2 is a polynomial of degree r − 2 which apparently does not have a closed form and should be computed
specifically for each r.

If we denote by µr the r-th central moment then µr = κr for r = 2, 3, and otherwise it is given by

µr+2 = kr+2 +
∑r

j=2

(
r + 1

j

)
µ jkr− j+2, r ≥ 2. (16)

The coefficients of skewness, γ1 = k3/k
3/2
2 , and kurtosis, γ2 = k4/k2

2 have been shown by Vinogradov (2011, eq. 32-33) to
be

γ1 = γ1(ζ,m) =
√
ζ

3m + 2
√

m + 1
(17)

and

γ2 = γ2(ζ,m) = ζ
15m2 + 20m + 6

m + 1
, (18)

and thus are leptokurtic.

3. Estimation

Based on a sample (X1, ..., Xn), n ≥ 2, of i.i.d. observations from (12) we consider in this section three estimation proce-
dures for the mean m when ζ is either known or unknown. The three estimation procedures are the maximum likelihood,
second order minimaxity and Bayes. Section 3.1 briefly deals with the maximum likelihood equations (where the related
dispersion parameter ζ is either known or not). Section 3.2 is devoted to second order minimax estimation of the mean
(with either ζ known or unknown). We prove that these minimax estimates behave better than the MLE for the mean (i.e.
the sample mean) in terms of mean squared error. Section 3.3 is focused on Bayesian estimation of the mean. We show
that that under a naturally implied conjugate prior or the non-informative, flat prior distributions, useful expressions for
the Bayes estimates of the mean are readily available. These estimations procedures are augmented and illustrated with
some simulations results.

3.1 Maximum Likelihood Estimation

Whether ζ is known or not it is readily seen from (13) that the MLE for m is the sample average, X̄n. Since the corre-
sponding KR-NEF or KR-EDM are steep the MLE m̂ = X̄n exists with probability 1.

The MLE ζ̂n for ζ cannot, however, be derived explicitly but it can be obtained numerically by the implicit solution of the
likelihood equation for ζ given by

1
n

n∑
i=1

(Xi + 1)
[
ψ(

Xi + 1
ζ̂n

) + 1) − ln(
Xi

ζ̂n
) − 1

]
− A(m̂) − 2 ζ̂n = 0 (19)

where A(m̂) = θ(m̂)m̂ − k1(θ(m̂)) − m̂ and θ(m) and k1(θ(m)) are as given in (8) and (9) (with c1 = c2 = 0) and where

ψ(x) =
1
Γ(x)

∫ ∞

0
ln(u)ux−1 exp(−u)du

is a digamma function.
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3.2 Second Order Minimax Estimation of the Mean

Second order minimax theory of estimation of the mean parameter of EDM’s was worked out in Landsman (2001), Bar-
Lev and Landsman (2006) and Bar-Lev, Bshouty and Landsman (2010) (hereafter, L(2001), BL(2006) and BBL(2010)).
As the KR-NEF is a special case of the KR-EDM, when the dispersion parameter ζ = 1, we consider the case of KR-EDM
(with either ζ known or unknown).

Recall that the MLE m̂ = X̄n of m is a first order optimal estimator of m, as its quadratic risk is given by

R(X̄n,m) = Em, ζ(X̄n − m)2 = ζ
V(m)

n
,

where, as in (3)), V(m) = m2(m + 1) is unit (ζ = 1) VF the KR-EDM.

To begin, we first assume that the dispersion parameter ζ is known. We are reminded that an estimator mn for m minimaxly
improves on the MLE m̂ = X̄n in second order with respect to a given weight function q(m) > 0 and m ∈ R+ if

R(mn,m) = R(X̄n,m) − ζ
2α1

n2 q(m) + o(
1
n2 ), (20)

where R(X̄n,m) = ζV(m)/n and with α1 > 0,

lim
n→∞

inf
mn

sup
m∈R+

n2q(mn)−1
(
R(mn,m) − ζ

n
V(m)

)
= −ζ2α1

In L(2001) it was shown that
α1 = lim

al↓0,bl↑∞
α1([al, bl]) > 0

where α1([al, bl]) is the first eigenvalue of the Dirichlet problem{
4 d

dx (V(x) d
dxω(x)) + α q(x)

V(x)ω(x) = 0
ω(al) = ω(bl) = 0, 0 < al < bl < ∞.

(21)

Theorem 4 in BBL(2010) introduced some conditions under which q(x) and the value α1 can be determined directly in
a manner that a second order minimax estimator mn can be derived explicitly. Indeed, this Theorem asserts that with
V(x) = x2(1+ x), t = 2, p = 3, s = (p− 1)/2 = 1 and r = 0, (in the notations of that theorem - we skip details for brevity),
together with a polynomial P(x) = 1 + x and the steepness of Fζ , for any given ζ > 0, we obtain the weight function q(x)
as

q(x) =
4P′(x)V(x)

(p − 1)2
∫ ∞

x
P(t)
V(t) dt

= x3(x + 1).

Accordingly, the differential equation in the Dirichlet problem (21) becomes

(x2 + x3)ω′′(x) + (2x + 3x2)ω′(x) +
α

4
xω(x) = 0.

This equation has positive solution

ω(x) =
C
x
,

with α = α1 = 4. Hence, the second order minimax estimator of m has the form (see Remark 2 in L(2001)) and eq. (4.12)
in BBL (2010))

mn = X̄n −
2ζ
n

P(X̄n)∫ ∞
X̄n

P(t)
V(t) dt

= X̄n −
2ζ
n

(1 + X̄n)X̄n

= X̄n(1 − 2ζ
n

(1 + X̄n)), (22)

whose quadratic risk has the following asymptotic expansion (see (20))

R(mn,m) = R(X̄n,m) − 4 ζ2

n2 m3(m + 1) + o(
1
n2 ),
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with a relative risk expansion

RR(mn,m) =
R(mn,m)
R(X̄n,m)

= 1 − 4ζ2

n
m + o(

1
n

).

We now consider the situation when dispersion parameter ζ is unknown. It was shown in BL (2006) that for an EDM, the
mean parameter m and the dispersion parameter ζ are orthogonal in the sense that the 2 × 2 Fisher Information matrix is
diagonal. This would imply the following (see Lemma 1 in BL(2006)). In similarity to (25),

m∗n = X̄n(1 − 2ζ̂n

n
(1 + X̄n)), (23)

where ζ̂n is MLE of ζ obtained from (22). Then

R(m∗n,m) = R(mn,m) + o(
1
n2 ),

i.e., the risks of m∗n and mn coincide up to the term o( 1
n2 ). The estimator m∗n is called the modified second order minimax

estimator of mean parameter m (when ζ is estimated by ζ̂n in (19)). Note that the estimator in (23) is a consistent estimator
of m.

3.2.1 Some Simulation Analysis

Numerical investigation shows that equation (19) has a unique positive root, ζ̂n >. Accordingly, for numerical illustrations
we generated N = 1000 samples from a KR-EDM density in (13) of sizes n = 10 and ζ = 0.2, using Metropolis–Hastings
algorithm. This experiment was repeated 5 times with m varying from 0.5 to 2.9 with uniform increments. For each
experiment we calculated the following three estimators: m̂ = X̄n, the second order minimax estimator mn (calculated
from (22) with ζ = 0.2), and the modified second order minimax estimator m∗n (calculated from (23)). For each estimator
we calculated its sample relative mean squared error (SRMSE)

S RMS E(m) =
1
N

∑N
j=1(mn( j) − m)2

Vm,ζ(X̄n)
,

where mn( j) is the corresponding estimator in the j-th sample, j = 1, ...,N. Figure 4 displays the graphs of RMS E(m) for
the three estimators. We find that the graphs of the S RMS E(m)’s for m∗n (solid line) and mn (dashed line) are relatively
close while both are essentially better than the S RMS E of X̄n (dotted line).
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Figure 4. Graphs of sample RMSE for estimators m∗n (ζ is unknown), mn (ζ is known) and the MLE X̄n.

3.3 Bayesian Estimation

Let X1, ..., Xn be i.i.d. observations from a KR-EDM as given in (13) and denote Tn =
∑n

i Xi. As was pointed out earlier,
the MLE of m is m̂ = X̄n ≡ Tn/n. For any m > 0, let β = (1 + m)/m. We will compare the properties of the MLE
β̂MLE = (1 + m̂)/m̂ to those of the Bayesian estimator for β obtained under a conjugate and a non-informative prior
distributions. To that end, we consider this re-parameterization of the mean m with which, fζ(·; ·) in (13) can be rewritten
in terms of β, β ∈ (1, ∞), as

38
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fζ(x; m) =
( x
ζ
)

(x+1)
ζ −1β

(x+1)
ζ

ζ2 Γ( (x+1)
ζ
+ 1)

e−
x
ζ βI[x > 0]. (24)

We denote the sample data by Xn = (X1, ..., Xn) and their observed values by xn = (x1, ..., xn), then for a given ζ > 0, the
likelihood function for β, based on xn is

Ln(xn ; β) =
n∏

i=1

fζ(xi; β) = Cn(xn; ζ) × β
tn+n
ζ e−

tn
ζ β, β > 1, (25)

where tn =
∑n

i=1 xi and Cn(xn; λ) is some factor that is independent of β.

The form of the likelihood function (25) suggests the modified gamma distribution as the conjugate prior distribution for β
(over (1,∞)). That is, let ξ ≥ 0, α > 0 and b > 0, then the modified gamma distribution over (ξ, ∞), denoted by Gξ(α, b),
has a pdf.

gξ(u;α, b) =
bαuα−1e−bu

Γ(ξ, α)
I[u > ξ], (26)

where Γ(ξ, α) is the incomplete gamma function,

Γ(ξ, α) =
∫ ∞

ξ

yα−1e−ydy,

which satisfies the recurrence relation, Γ(ξ, α) = (α − 1)Γ(ξ, α − 1) + ξα−1e−ξ. Now, by (25), assuming that β has the
conjugate prior distribution G1(α, b), it can immediately be obtained from (24-26) that the posterior distribution for β,
given the data xn is the G1(α∗n, b∗n) where α∗n =

tn+n
ζ
+ α and b∗n =

tn
ζ
+ b. The corresponding posterior pdf of β given the

data xn, is then,
π(β |xn) = g1(β; α∗n, b∗n), (27)

where g1(·; ) is as given in (26) with ξ = 1. Note that the posterior distribution of m = 1/(β − 1), m > 0, can be obtained
directly from (27) as

π̃(m |xn) = g1(1 + 1/m; α∗n, b∗n)/m2. (28)

Also, from (27) we can immediately obtain a closed form expression for kth posterior moment of β given the data xn (and
α > 0, b > 0), as:

E(βk |xn) =
Γ(1, α∗n + k)
(b∗n)kΓ(1, α∗n)

, k = 0, 1, 2, . . . ... (29)

Utilizing the recurrence relation above, it immediately follows from (29) that the Bayes estimator for β is

β̂B ≡ E(β |xn) =
tn + n + ζα

tn + ζ b
+ dn(ζ, α, b), (30)

where we denoted
dn(ζ, α, b) =

[
e × (

tn
ζ
+ b) × Γ(1, tn + n

ζ
+ α)

]−1
.

Now, if α = b = 1 are chosen, so that β has the (restricted) negative exponential distribution over (1,∞), and ζ = 1 is
assumed in (24), then (30) provides that

β̂B = 1 +
1

n(x̄n + 1)
+ dn(1, 1, 1), (31)

with dn(1, 1, 1) = [e n(x̄n + 1/n)Γ(1, n(x̄n + 1 + 1/n)]−1. Additionally, it can be easily verified, that if one assumes that β
has the non-informative (flat) prior distribution over (1, ∞), then (29) still holds but with α = b = 0 so that

β̃B = 1 +
1
x̄n
+ dn(1, 0, 0), (32)

Similarly, when exist, the posterior moments of m, E(mk |xn), k = 1, 2, . . . can easily be calculated either from (27) or
directly upon using π̃(m |xn) in (28). Regrettably however, no simple closed from for E(mk |xn) can be obtained in this
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case, but numerical integration w.r.t. π̃(m |xn) (27) and or simulations from π(β |xn) (28) can be utilized in such a case.
More specifically, let β∗1, β

∗
2, . . . , β

∗
M be a random sample of M replicates of β from π(β |xn). Then the Bayes estimator of

m can be calculated as

m̂B = E(m |xn) = E(
1

β − 1
|xn) ≈ 1

M

M∑
i=1

1
β∗i − 1

, (33)

which is clearly is a consistent estimator of m. As an illustration, we assumed for β the conjugate prior in (26), with
ξ = 1, α = 10 and b = 5 so that β ∼ g1(β, 10, 5) with a prior mean, E0(β) = 2. We then generated a random sample
of n = 10 observations from the K-R distribution with ζ = 0.2 and m = 1. This single sample resulted with a value of
tn = 8.728, leading to α∗ = 103.64 and b∗ = 48.64 in (27). Hence the posterior pdf of β given the data t10 = 8.728, is
g1(β, 103.64, 48.64), so that β̂B ≡ E(β |xn) = 2.130711 in (30). To obtain the Bayes estimate of m we simulated M = 1000
random values of β from the posterior pdf g1(β, 103.64, 48.64) and we calculated, as in (33), the value of m̂B = 0.91031.
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Figure 5. The Prior and the Posterior pdf of β with α = 10, b = 5 and tn = 8.728, n = 10

4. Some Concluding Remarks

Although the KR density is known for several decades, it has not been used much for statistical modeling. There might be
several reasons for this, but we believe that the primary reason is that KR-EDM density (see (13)) is analytically intractable
as it contains the expression Γ((x+1)ζ−1+1). However, nowadays, this computational hurdle does not seem to be a major
problem anymore in light of the availability of computational packages such as MATHEMATICA, MATLAB and R.
Taking into account this computational power, the KR-EDM density seems to be rather docile for statistical modeling.
We have seen in Figure 3 that it fits well data generated by a mixture of exponential distributions.

Additionally, based on Vinogradov (2011), we have seen that the KR-EDM density fζ(x; m) behaves, as x ↓ 0 and ζ > 1,
as the gamma density with shape parameter smaller than 1, and for ζ = 1 as the negative exponential density, whereas as
x → ∞ it behaves as the inverse Gaussian density. Consequently, the KR-EDM distribution can be used as a competitor
to both gamma and inverse Gaussian distributions for some appropriate data.

In any case, this remains beyond the scope of the current paper as we merely wanted to suggest the KR-EDM distribution
as an attractive possibility for suitable statistical modeling situations.
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