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Abstract

In this paper, we shall represent a strong law of large numbers (SLLN) for weighted sums of negatively dependent set-
valued random variables in the sense of the Hausdorff metric dH , based on the result of single-valued random variable
obtained by Taylor (Taylor, 1978).
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1. Introduction

We all know that the laws of large numbers (LLN) are one of the most important theories and play an important role in
probability and statistics. There are a lot of researches for independent single-valued random variables, and many beautiful
results have been obtained (Taylor,1978, Billingsley, 1999). But it is not always plausible to assume that the sequence
of random variables {Xk : k ≥ 1} are independent in many stochastic models. Sometimes the increasing of one random
variable will induce the decreasing of another random variable. Then the concept of dependent was useful. Lehmann
(Lehmann, 1966) provided an extensive introductory overview of various concepts of positive and negative dependence
in the bivariate case. Multivariate generalizations of conceptions of dependence were initiated by Harris (Harris, 1970),
Brindley and Thompson (Brindley & Thompson, 1972). Asadian et al. proved the Rosenthal’s type inequalities for
negatively dependent single-valued random variables in (Asadian, Fakoor & Bozorgnia, 2006). Negative dependence
has been particularly useful in obtaining strong laws of large numbers. Bozorgnia, Patterson and Taylor discussed the
properties for negatively dependent random variables in (Bozorgnia, Patterson & Taylor, 1993), and proved the laws of
large number for negative dependence random variables in (Bozorgnia, Patterson & Taylor, 1992). The limit theorems of
single-valued negative dependence random variables have been extensively studied and got very interesting results (Mi &
Tae, 2005) (Valentin, 1995), but all the results are limited to single-valued random variables.

The theory of set-valued random variables and their applications have become one of new and active branches in proba-
bility theory. And the limit theory of set-valued random variables has been developed quite extensively. In 1975, Artstein
and Vitale used an embedding theorem to prove a strong law of large numbers for independent and identically distributed
set-valued random variables whose basic space is a d-dimensional Euclidean space Rd (Artstein, 1975), and Hiai extend-
ed it to the case that basic space is a separable Banach space X (Hiai, 1984). Taylor and Inoue proved SLLN’s for only
independent case in Banach space (Taylor & Inoue, 1985). Many other authors such as Giné, Hahn and Zinn (Giné, Hahn
& Zinn, 1983), Hess (Hess,1979), Puri and Ralescu (Puri & Ralescu, 1983) discussed SLLN’s under different settings for
set-valued random variables where the underlying space is a separable Banach space. And all the above limit theories are
under the independent condition.

For set-valued random variables, there is not too much research for negatively dependent sequences. Guan and Sun
gived the definition of negatively dependent set-valued random variables and proved the weak laws of large numbers for
negatively dependent set-valued random variables in R+ space (Guan & Sun, 2014). In this paper, what we concerned is
SLLN for weighted sums of rowwise negatively dependent set-valued random variables, where the underlying space is
R+ and the convergence is in the sense of the Hausdorff metric. The results are both the extension of the single-valued’s
case and also the extension of the set-valued’s case.

This paper is organized as follows. In section 2, we shall briefly introduce some definitions and basic results of set-valued
random variables and single-valued negatively dependent random variables. In section 3, we shall give basic definition and
results on set-valued negatively dependent random variables. In section 4, we shall prove a strong law of large numbers
for weighted sums of set-valued negatively dependent random variables.
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2. Preliminaries on Set-valued Random Variables

Throughout this paper, we assume that (Ω,A, µ) is a nonatomic complete probability space, (R, | · |) is a real space, R+
denote the nonnegative real numbers, Kk(R) is the family of all nonempty compact subsets of R, and Kkc(R). (Kbc(R)) is
the family of all nonempty compact convex (bounded convex) subsets of R.

Let A and B be two nonempty subsets of R and let λ ∈ R, the set of all real numbers. We define addition and scalar
multiplication as

A + B = {a + b : a ∈ A, b ∈ B},
λA = {λa : a ∈ A}.

The Hausdorff metric on Kk(R) is defined by

dH(A, B) = max{sup
a∈A

inf
b∈B
|a − b|, sup

b∈B
inf
a∈A
|a − b|},

for A, B ∈ Kk(R). For an A in Kk(R), let ∥A∥K = dH({0}, A). The metric space (Kk(R), dH) is complete and separable, and
Kkc(R) is a closed subset of (Kk(R), dH) (Li, Ogura & Kreinovich, 2002). For more general hyperspaces, more topological
properties of hyperspaces, readers may refer to a good book (Beer, 1993).

For each A ∈ kkc(R), define the support function by

s(k, A) = sup
a∈A

ka,

where k ∈ R.

The following are equivalent definition of Hausdorff metric. For A, B ∈ Kk(R),

dH(A, B) = sup
k∈{1,−1}

|s(k, A) − s(k, B)|.

A set-valued mapping F : Ω→ Kk(R) is called a set-valued random variable (or a random set, or a multifunction) if, for
each open subset O of R, F−1(O) = {ω ∈ Ω : F(ω) ∩ O , ∅} ∈ A.

In fact, set-valued random variables can be defined as a mapping fromΩ to the family of all closed subsets of R. Since our
main results shall be only related to compact set-valued random variables, we limit the definition above in the compact
case. Concerning its equivalent definitions, please refer to (Castaing & Valadier, 1977), (Hiai & Umegaki, 1977), (Li,
Ogura & Kreinovich, 2002).

Concerning operations, it is well known that P0(R)(the family of all the subsets of R) is not a linear space, in general,
A + (−1)A , {0}. Thus , adding −1 times a set does not constitute a natural operation of subtraction. Instead, Hukuhara
defined Hukuhara difference as follows in (Hukuhara, 1967) and many authors used this definition in their work (Puri &
Ralescu, 1983).

Let A, B ∈ K(R), If there exist a W ∈ K(R), such that A = B +W, then W is called the Hukuhara difference of A and B,
denote by A ⊖ B.

A set-valued random variable F is called integrably bounded , if
∫
Ω
∥F(ω)∥Kdµ < ∞ (Hiai & Umegaki, 1977), (Li, Ogura

& Kreinovich, 2002).

Let L1[Ω,A, µ; Kk(R)] denote the space of all integrably bounded random variables, and L1[Ω,A, µ; Kkc(R)] denote the
space of all integrably bounded random variables taking values in Kkc(R). For F,G ∈ L1[Ω,A, µ; Kk(R)], F = G if and
only if F(ω) = G(ω) a.e.(µ).

For each set-valued random variable F, the expectation of F, denoted by E[F], is defined as

E[F] =
{ ∫
Ω

f dµ : f ∈ S F

}
,

where
∫
Ω

f dµ is the usual Bochner integral in L1[Ω,R], the family of integrable R-valued random variables, and S F =

{ f ∈ L1[Ω;R] : f (ω) ∈ F(ω), a.e.(µ)}. This integral was first introduced by Aumann (Aumann, 1965), called Aumann
integral in literature.

A sequence of set-valued random variables {Fn : n ∈ N} is called to be stochastically dominated by a set-valued random
variable F if

µ{∥Fn∥K > t} ≤ µ{∥F∥K > t}, t ≥ 0, n ≥ 1.
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A triangle sequence of set-valued random variables {Fnk : n ≥ 1} is said to be stochastic dominated by a set-valued random
variable F, if for each t > 0, for all n and k,

P{∥Fnk∥K > t} ≤ P{∥F∥K > t}.

In the following, we will recall some contents about real-valued negatively dependent random variables, which will be
used later.

Definition 2.1 A finite family of real-valued random variables X1, · · · , Xn is said to be negatively dependent if for all real
x1, x2, · · · , xn,

P{X1 > x1, · · · , Xn > xn} ≤
n∏

i=1

P{Xi > xi}

and

P{X1 ≤ x1, · · · , Xn ≤ xn} ≤
n∏

i=1

P{Xi ≤ xi}.

An infinite family of random variables is negatively dependent if every finite subfamily is negatively dependent. The
following results are very useful and we will use them in the later.

Lemma 2.1 (Bozorgnia, Patterson & Taylor, 1993) Let real-valued random variables {xi : 1 ≤ i ≤ n} be negatively
dependent. Then the following are true:

(i)E[
n∏

i=1
xi] ≤

n∏
i=1

E[xi];

(ii)Cov(xi, x j) ≤ 0, i , j;

(iii) If {gi : 1 ≤ i ≤ n} be all nondecreasing (or all nonincreasing) Borel functions, then random variables g1(x1), g2(x2),· · · , gn(xn)
are negatively dependent random variables.

Lemma 2.2 (Taylor & Patterson, 1997) Let x1, x2, · · · , xn be real-valued negatively dependent random variables, then for
any real numbers a1, · · · , an and b1, · · · , bn such that ai < bi,

i) {I{−∞<xi<bi}, 1 ≤ i ≤ n} are negatively dependent random variables;

ii) {yi : 1 ≤ i ≤ n} are negatively dependent random variables, where yi = xiI{ai≤xi≤bi} + biI{xi>bi} + aiI{xi<ai}.

Lemma 2.3 (Taylor & Patterson, 1997) If x is a real-valued random variable with |x| ≤ M, and E[x] = 0, then

1 ≤ E[etx] ≤ et2E[x2] for all |t| ≤ 1
M
.

For more contents about negatively dependent random variables, readers can refer to (Bozorgnia, Patterson & Taylor,
1992), (Bozorgnia, Patterson & Taylor, 1993), (Bozorgnia, Patterson & Taylor, 1997), (Taylor & Patterson, 1997).

3. Set-Valued Negatively Dependent Random Variables

In this section, we shall introduce the definition of set-valued negatively dependent random variables and prove some
results which will be used later. In the following, We consider the results in R+ = {x ≥ 0 : x ∈ R} space.

Definition 3.1 (Guan & Sun, 2014) A finite family of set-valued random variables F1, F2, · · · , Fn is said to be negatively
dependent if s(·, F1), · · · , s(·, Fn) is single-valued negatively dependent random variables.

Remark 1 From the definition we obviously can know that if specially F1 = { f1}, · · · , Fn = { fn}, where f1, · · · , fn are
single-valued random variables, then it degenerate to the single-valued negatively dependent random variables.

Remark 2 Specially for F1 = [ξ1, η1], · · · , Fn = [ξn, ηn] are interval valued random variables, it is easy to prove that
ξ1, · · · , ξn and η1, · · · , ηn are all real-valued negatively dependent random variables.

Remark 3 Any infinite sequence {Fn : n ≥ 1} is said to be negatively dependent if and only if every finite subset
{F1, · · · , Fn} is negatively dependent.

Theorem 3.1 A finite family of set-valued random variables F1, · · · , Fn in Kk(R+) is negatively dependent, then

∥F1∥K, ∥F2∥K, · · · , ∥Fn∥K are single-valued negatively dependent random variables.

104



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 5, No. 3; 2016

Proof. Since F1, · · · , Fn in Kk(R+) is negatively dependent, by the definition of negatively dependent, we know that for
any k ∈ R, s(k, F1), · · · , s(k, Fn) are real-valued negatively dependent random variables. For each 1 ≤ i ≤ n, we have

∥Fi∥K = sup Fi = s(1, Fi).

If we take k = 1, then s(1, F1), · · · , s(1, Fn) are real-valued negatively dependent random variables. That is sup F1, sup F2,· · · , sup Fn

are real-valued negatively dependent random variables. Then ∥F1∥K, ∥F2∥K, · · · , ∥Fn∥K are real-valued negatively depen-
dent random variables. 2

Theorem 3.2 A finite family of set-valued random variables F1, · · · , Fn in Kk(R+) is negatively dependent, then for any
real numbers b1, · · · , bn such that bi > 0,

(i){I{∥Fi∥K<bi}, 1 ≤ i ≤ n} are negatively dependent random variables;

(ii) {Yi : 1 ≤ i ≤ n} are negatively dependent set-valued random variables, where Yi = FiI{∥Fi∥K≤bi} + biI{∥Fi∥K>bi}.

Proof. (i) By theorem 3.1, we know that ∥F1∥K, ∥F2∥K, · · · , ∥Fn∥K are single-valued negatively dependent random vari-
ables. Then by lemma 2.2, we can get the result.

(ii)Since F1, · · · , Fn in Kk(R+) is negatively dependent, by definition we know for any k ∈ R, s(k, F1), · · · , s(k, Fn) is
negatively dependent random variables. Then by lemma 2.2, we can know that for any k ∈ R , {s(k, Fi)I{0≤s(k,Fi)≤bi} +
biI{s(k,Fi)>bi} : 1 ≤ i ≤ n} is negatively dependent random variables. Since F1, · · · , Fn in Kk(R+), then

∥Fi∥K = sup
k∈{1,−1}

|s(k, Fi)| = s(1, Fi).

Then {s(1, Fi)I{0≤∥Fi∥K≤bi} + biI{∥Fi∥K>bi} : 1 ≤ i ≤ n} is negatively dependent random variables. That means {s(1,Yi) : 1 ≤
i ≤ n} is negatively dependent random variables. Then for any k ∈ R, {s(k,Yi) : 1 ≤ i ≤ n} is negatively dependent random
variables. Then {Yi : 1 ≤ i ≤ n} are negatively dependent set-valued random variables. 2

4. Main Results

Throughout this section, {ank}will be a Toeplitz sequence of nonnegative real numbers. And a strong law of large numbers
for weighted sums of rowwise negative dependent set-valued random variables will be obtained.

Definition 4.1 A double array {ank : n, k = 1, 2, · · · } of real numbers is said to be a Toeplitz sequence, if

(i) lim
n→∞

ank = 0 for each k;

(ii)
∞∑

k=1
|ank | ≤ M for each n.

Before we prove the strong law of large numbers for negatively dependent weighted sums of set-valued random variables,
we need the following three lemmas.

Lemma 4.1 Let {Fnk} ∈ Kk(R+) be a rowwise negatively dependent random variables and stochastic dominated by F,
E[∥F∥1+1/r

K ] < ∞, where r > 0, and max
k

ank ≤ Bn−r, then for every ε > 0

∞∑
n=1

P{∥ankFnk∥K > ε for some k} < ∞.

Proof. The proof is similar to the proof of Lemma 1 of (William, 1966), here we omit it. 2

Lemma 4.2 If {Fnk} ∈ Kk(R+) is a rowwise negatively dependent random variables and stochastic dominated by F,
E[∥F∥1+1/r

K ] < ∞, where r > 0, and max
k

ank ≤ Bn−r, then for α < r
2(1+r) ,

∞∑
n=1

P{∥ankFnk∥K > n−α for at least 2 values o f k} < ∞.

Proof. By Markov’s inequality and the stochastic dominated by F of {Fnk},

P{∥ankFnk∥K > n−α} ≤ a1+1/r
nk E[∥F∥1+1/r

K ]nα(1+1/r). (4.1)
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Thus by the negative dependence of Fni and Fnk and (4.1)

∞∑
n=1

P{∥ankFnk∥K > n−α for at least 2 values of k}

≤
∞∑

n=1

∑
i,k

P{∥aniFni∥K > n−α, ∥ankFnk∥K > n−α}

≤
∞∑

n=1

∑
i,k

P{∥aniFni∥K > n−α}P{∥ankFnk∥K > n−α}

≤
∞∑

n=1

E2[∥F∥1+1/r
K ]n2α(1+1/r)

∑
i,k

|ani|1+1/r∥ank∥1+1/r
K

≤
∞∑

n=1

E2[∥F∥1+1/r
K ]B2/r M2n2[−1+α(1+1/r)]

< ∞

for α < r
2(1+r) , the result follows. 2

Lemma 4.3 If {Fnk} ∈ Kk(R+) be a rowwise negatively dependent random variables and stochastic dominated by F,
E[∥F∥1+1/r

K ] < ∞, where r > 0. E[Fnk] = {0} and max
k

ank ≤ Bn−r for all n and k, then for each ε > 0 ,

∞∑
n=1

P
{
∥
∑

k

ankFnkI{∥ank Fnk∥K<n−α}∥K > ε
}
< ∞,

where α < r
2(1+r) .

Proof. Step 1 Let Ynk = ankFnkI{∥ank Fnk∥K<n−α} + n−αI{∥ank Fnk∥K≥n−α}. Since E[Fnk] = {0}, we have

E[Fnk] = E
[
FnkI{∥ank Fnk∥K<n−α} + FnkI{∥ank Fnk∥K≥n−α}

]
= {0}.

Thus we have ∥∥∥∥E[FnkI{∥ank Fnk∥K<n−α}]
∥∥∥∥

K
=
∥∥∥∥E[FnkI{∥ank Fnk∥K≥n−α}]

∥∥∥∥
K
. (4.2)

Since E[Fnk] = {0}, we have

FnkI{∥ank Fnk∥K<n−α} = E[FnkI{∥ank Fnk∥K<n−α}] + E[FnkI{∥ank Fnk∥K≥n−α} + FnkI{∥ank Fnk∥K<n−α},

That means FnkI{∥ank Fnk∥K<n−α} ⊖ E[FnkI{∥ank Fnk∥K<n−α}] exists. Furthermore, we can know that Ynk ⊖ E[Ynk] exists. Thus we
can have

ankFnkI{∥ank Fnk∥K<n−α} = Ynk ⊖ E[Ynk] + E[ankFnkI{∥ank Fnk∥K<n−α}]
+n−αE[I{∥ank Fnk∥K≥n−α}] − n−αI{∥ank Fnk∥K≥n−α}.

Then we have
n∑

k=1

ankFnkI{∥ank Fnk∥K<n−α} =
n∑

k=1

[
Ynk ⊖ E[Ynk]

]
+

n∑
k=1

E
[
ankFnkI{∥ank Fnk∥K<n−α}

]
+

n∑
k=1

n−α
{
E[I{∥ank Fnk∥K≥n−α}] − I{∥ank Fnk∥K≥n−α}

}
.

Then ∥∥∥∥ n∑
k=1

ankFnkI{∥ank Fnk∥K<n−α}

∥∥∥∥
K
≤
∥∥∥∥ n∑

k=1

[Ynk ⊖ E[Ynk]]
∥∥∥∥

K
+
∥∥∥∥ n∑

k=1

E[ankFnkI{∥ank Fnk∥K<n−α}]
∥∥∥∥

K

+

∞∑
k=1

n−α
∣∣∣∣P{∥ankFnk∥K ≥ n−α} − I{∥ank Fnk∥K≥n−α}

∣∣∣∣
= I + II + III.
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Step 2 For I, using integration by parts, we have

∞∑
k=1

E
[
∥ankFnk∥2KI{∥ank Fnk∥K<n−α}

]
=

∞∑
k=1

a2
nk

∫ a−1
nk n−α

0
x2dP{∥Fnk∥K ≤ x}

=

∞∑
k=1

n−2αP{∥Fnk∥K ≤ a−1
nk n−α} −

∞∑
k=1

a2
nk

∫ a−1
nk n−α

0
2xP{∥Fnk∥K ≤ x}dx

=

∞∑
k=1

n−2αP{∥Fnk∥K ≤ a−1
nk n−α} − n−2α + a2

nk

∫ a−1
nk n−α

0
2xP{∥Fnk∥K > x}dx

≤
∞∑

k=1

a2
nk

∫ a−1
nk n−α

0
2xP{∥F∥K > x}dx

≤
∞∑

k=1

a2
nk

∫ a−1
nk n−α

0
2xE[∥F∥K]1+1/r x−1−1/rdx

≤ M
∞∑

k=1

a2
nk

∫ a−1
nk n−α

0
x−1/rdx

= M
∞∑

k=1

a1+1/r
nk n−α+α/r

≤ MB1/rn−1−α+α/r (4.3)
−→ 0, as n→ ∞.

By theorem 3.1, {Ynk} is rowwise negatively dependent set-valued random variables, and

E[s(k,Ynk) − s(k, E[Ynk])] = 0, |s(k,Ynk) − s(k, E[Ynk)| ≤ M

for fixed k and constant M.

So we have

P{I > ε} = P
{
∥
∞∑

k=1

[Ynk ⊖ E[Ynk]]∥K > ϵ
}

= P
{
∥nλ

∞∑
k=1

[Ynk ⊖ E[Ynk]]∥K > nλϵ
}

= P
{
nλ sup

j∈{1,−1}
|
∞∑

k=1

s( j,Ynk) − s( j, E[Ynk])| > nλϵ
}

≤ P
{
nλ sup

j∈{1,−1}

∞∑
k=1

[
s( j,Ynk) − s( j, E[Ynk])

]
> nλϵ

}
+P
{
nλ sup

j∈{1,−1}

∞∑
k=1

[
s( j, E[Ynk]) − s( j,Ynk)

]
> nλϵ

}
≤ e−nλϵE

[
exp
{
nλ sup

j∈{1,−1}

∞∑
k=1

[
s( j,Ynk) − s( j, E[Ynk])

]}]
+e−nλϵE

[
exp
{
nλ sup

j∈{1,−1}

∞∑
k=1

[
s( j, E[Ynk]) − s( j,Ynk)

]}]
(by Markov inequality)
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≤ e−nλϵE
[

exp
{
nλ

∞∑
k=1

[
s(1,Ynk) − s(1, E[Ynk])

]}]
+e−nλϵE

[
exp
{
nλ

∞∑
k=1

[
s(−1,Ynk) − s(−1, E[Ynk])

]}]
+e−nλϵE

[
exp
{
nλ

∞∑
k=1

[
s(1, E[Ynk]) − s(1, Ynk)

]}]
+e−nλϵE

[
exp
{
nλ

∞∑
k=1

[
s(−1, E[Ynk]) − s(−1,Ynk)

]}]
≤ e−nλϵ

∞∏
k=1

E
[

exp
{
nλ[s(1,Ynk) − s(1, E[Ynk])]

}]
+e−nλϵ

∞∏
k=1

E
[

exp
{
nλ[s(−1,Ynk) − s(−1, E[Ynk])]

}]
+e−nλϵ

∞∏
k=1

E
[

exp
{
nλ[s(1, E[Ynk]) − s(1,Ynk)]

}]
+e−nλϵ

∞∏
k=1

E
[

exp
{
nλ[s(−1, E[Ynk]) − s(−1,Ynk)]

}]
(by lemma 2.1 )

≤ 4e−nλϵ
∞∏

k=1

exp
{
n2λE
[[

s(1,Ynk) − s(1, E[Ynk])
]2]}

(by lemma 2.3)

≤ 4e−nλϵ
∞∏

k=1

exp
{
n2λE
[

sup
j∈{1,−1}

[
s( j,Ynk) − s( j, E[Ynk])

]2]}
= 4e−nλϵ

∞∏
k=1

exp
{
n2λE
[
∥Ynk ⊖ E[Ynk]∥2K

]}
≤ 4e−nλϵ

∞∏
k=1

exp
{
n2λ4E

[
∥Ynk∥2K

]}
= 4e−nλϵ exp

{ ∞∑
k=1

4n2λE
[
∥Ynk∥2K

]}
≤ 4e−εn

λ

exp
{
4n2λ

∞∑
k=1

E[∥ankFnk∥2KI{∥ank Fnk∥K<n−α}]

+4n2λ
∞∑

k=1

n−2αP{∥ankFnk∥K ≥ n−α}
}

≤ 4e−εn
λ

exp
{
4n2λMB1/rn−1−α+α/r

+4n2λ
∞∑

k=1

n−2αP{∥ankFnk∥K ≥ n−α}
}

(by (4.3))

≤ 4e−εn
λ

exp
{
4n2λMB1/rn−1−α+α/r + 4n2λ

∞∑
k=1

n−2αP{ank∥F∥K ≥ n−α}
}

≤ 4e−εn
λ

exp
{
4n2λMB1/rn−1−α+α/r + 4n2λ

∞∑
k=1

n−2αE[∥ankF∥K]1+1/rnα(1+1/r)
}

≤ 4e−εn
λ

exp
{
4n2λMB1/rn−1−α+α/r + 4n2λn−2αnα(1+1/r)E[∥F∥K]1+1/r

∞∑
k=1

a1+1/r
nk

}
≤ 4e−εn

λ

exp
{
4n2λMB1/rn−1−α+α/r + 4n2λMB1/rn−1n−2αnα(1+1/r)

}
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≤ 4e−εn
λ

exp
{
Mn2λ−1−α+α/r

}
= 4e−εn

λ

exp
{
Mn−1+α/r

}
(by taking λ =

α

2
)

≤ Me−εn
λ

.

Here the M is constant and may not be the same. The last term in the above is summable with respect to n.

Step 3 For II, we have

II = ∥
∞∑

k=1

E[ankFnkI{∥ank Fnk∥K<n−α}]∥K

= ∥
∞∑

k=1

E[ankFnkI{∥ank Fnk∥K≥n−α}]∥K (by (4.2))

≤
∞∑

k=1

E[∥ankFnk∥KI{∥ank Fnk∥K≥n−α}]

≤
∞∑

k=1

ank

∫ ∞
0

P{∥Fnk∥KI{∥Fnk∥K≥n−αa−1
nk } > t}dt

=

∞∑
k=1

ank

∫ n−αa−1
nk

0
P{∥Fnk∥K ≥ n−αa−1

nk }dt +
∞∑

k=1

ank

∫ ∞
n−αa−1

nk

P{∥Fnk∥K ≥ t}dt

≤
∞∑

k=1

ank

∫ n−αa−1
nk

0
P{∥F∥K ≥ n−αa−1

nk }dt +
∞∑

k=1

ank

∫ ∞
n−αa−1

nk

P{∥F∥K ≥ t}dt

≤
∞∑

k=1

ankn−αa−1
nk E[∥F∥1+1/r

K ](nαank)1+1/r +

∞∑
k=1

ank

∫ ∞
n−αa−1

nk

E[∥F∥1+1/r
K ]t−1−1/rdt

≤ M
∞∑

k=1

nα/ra1+1/r
nk + M

∞∑
k=1

ank

∫ ∞
n−αa−1

nk

t−1−1/rdt

= M
∞∑

k=1

nα/ra1+1/r
nk + Mr

∞∑
k=1

nα/ra1+1/r
nk

≤ M2

∞∑
k=1

nα/rank(Bn−r)1/r

≤ M3n
α
r −1

−→ 0, (n→ ∞).

step 4 For III, let Znk = I{∥ank Fnk∥K≥n−α} − P{∥ankFnk∥K ≥ n−α}. Then {Znk} are rowwise negatively dependent, ∥Znk∥K ≤ 1
and E[Znk] = 0 for all n and k. Hence, we have

P{III > ε} = P
{
n−α

∞∑
k=1

∣∣∣∣Znk

∣∣∣∣ > ε}
= P

{
n−α

∞∑
k=1

Znk > ε
}
+ P
{
n−α

∞∑
k=1

−Znk > ε
}

≤ e−εn
α

E
[

exp
{ ∞∑

k=1

Znk

}]
+ e−εn

α

E
[

exp
{ ∞∑

k=1

−Znk

}]
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≤ 2e−εn
α

E
[

exp
{ ∞∑

k=1

Z2
nk

}]
≤ 2e−εn

α

exp
{ ∞∑

k=1

2P{∥ankFnk∥K ≥ n−α}
}

≤ 2e−εn
α

exp
{ ∞∑

k=1

2P{∥ankF∥K ≥ n−α}
}

≤ 2e−εn
α

exp
{ ∞∑

k=1

2E[∥F∥1+1/r
K ]a1+1/r

nk nα(1+1/r)
}

≤ 2e−εn
α

exp
{
2MB1/rn−1nα(1+1/r)

}
= 2e−εn

α

exp
{
2Kn−1+α(1+1/r)

}
≤ K′e−εn

α

.

And K′e−εn
α

is summable with respect to n.

Then combine the above steps, we can have

∞∑
n=1

P
{
∥
∑

k

ankFnkI{∥ank Fnk∥K<n−α}∥K > ε
}
≤

∞∑
n=1

P{I > ε
3
} + P{II >

ε

3
} + P{III >

ε

3
}

< ∞.

The result was proved. 2

Theorem 4.1 Let {Fnk} ∈ Kk(R+) be an array of rowwise negatively dependent set-valued random variables with E[Fnk] =
{0} and stochastic dominated by a set-valued random variable F. If max

k
ank = O(n−r), r > 0, then E[∥F∥1+1/r

K ] < ∞ implies

that
∞∑

k=1

ankFnk → 0 a.e.

with respect to the Hausdorff metric dH .

Proof. It suffices to show that for every ε > 0 that

∞∑
n=1

P
{
∥
∞∑

k=1

ankFnk∥K ≥ ε
}
< ∞.

Now {
∥
∞∑

k=1

ankFnk∥K ≥ ε
}
⊆
{
∥
∞∑

k=1

ankFnkI{∥ank Fnk∥K<n−α}∥K ≥
ε

2

}
∪{
∥ankFnk∥K ≥

ε

2
for some k

}
∪{
∥ankFnk∥K > n−α for at least two k

}
.

Thus by Lemma 4.1, Lemma 4.2 and Lemma 4.3, we have

∞∑
n=1

P
{
∥
∞∑

k=1

ankFnk∥K ≥ ε
}
< ∞.

The result was proved. 2

Remark All the above results are obtained in the space R+. From the proof, we know that they are also true for {x ∈ R :
x ≤ 0}.
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