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Abstract

For square contingency tables with ordered categories, this article proposes new models which indicate that in addition to
the structure of asymmetry of the probabilities with respect to the main diagonal of the table, the expected frequency has
an exponential form along every subdiagonal of the table. Also it gives the new three kinds of decompositions using the
proposed model and proves the orthogonality of the test statistics.
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1. Introduction

Consider an R × R square contingency table with the same row and column classifications. We may be interested in
symmetry or asymmetry about the main diagonal of the table rather than independence. Let pi j denote the probability that
an observation will fall in the ith row and jth column of the table (i = 1, . . . ,R; j = 1, . . . ,R). Caussinus (1965) considered
the quasi-symmetry (QS) model defined by

pi j = αiβ jψi j (i = 1, . . . ,R; j = 1, . . . ,R),

where ψi j = ψ ji. The QS model with {αi = βi} is the symmetry (S) model (see, Bowker, 1948; Martin & Pardo, 2010;
Kolassa & Bhagavatula, 2012). The conditional symmetry (CS) model is defined by

pi j =

{
γψi j (i < j),
ψi j (i ≥ j),

where ψi j = ψ ji; see McCullagh (1978). The CS model states that pi j (i < j) is γ times higher than p ji. The CS model
with γ = 1 is the S model.

The global symmetry (GS) model is defined by ∑∑
i< j

pi j =
∑∑

i< j

p ji;

see Read (1977). The GS model states that the probability that an observation will fall in one of the upper-right triangle
cells above the main diagonal of the table is equal to the probability that it falls in one of the lower-left triangle cells below
the main diagonal. Read (1977) gave the theorem that the S model holds if and only if both the CS and GS models hold.

Tomizawa (1992) considered the diagonal exponent symmetry (DES) model defined by

pi j =

{
δi+ jd| j−i| (i , j),
ψii (i = j).

The DES model states that in addition to the structure of the S model, pi+1, j+1 (i , j) is δ2 times higher than pi j; in other
words, for fixed distance k (k = 1, . . . ,R − 2) from the main diagonal of the table, pi,i+k increase (decrease) exponentially
along every subdiagonal of the table as the value i increase (i = 1, . . . ,R − k).

Iki, Yamamoto & Tomizawa (2014) considered the quasi-diagonal exponent symmetry (QDES) model defined by

pi j =

{
αiβ jd| j−i| (i , j),
ψii (i = j).
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The QDES model with α = β is the DES model. The QDES model states that in addition to the structure of the QS model
(instead of the S model), the expected frequency has an exponential form along every subdiagonal of the table. Under the
QDES model, we see the structure of pi j/p ji = (β/α) j−i (i < j).

Let X and Y denote the row and column variables, respectively. We define the mean equality (ME) model as E(X) = E(Y).
Iki et al. (2014) gave the theorem that the DES model holds if and only if both the QDES and ME models hold. Other
symmetry and asymmetry models have been described in Tahata & Tomizawa (2014).

We are interested in considering new models which indicate that in addition to the structure of the CS model (instead of
the S model), the expected frequency has an exponential form along every subdiagonal of the table. The present paper
proposes two new models and gives the new three kinds of decompositions of the DES model.

2. New Models

Consider a model defined by

pi j =

{
δi+ jd j−i (i , j),
ψii (i = j),

where d j−i = γdi− j (i < j). This model states that in addition to the structure of the CS model, pi+1, j+1 (i , j) is δ2 times
higher than pi j. Thus we shall refer to this model as the diagonal exponent conditional symmetry (DECS) model. Under
the DECS model, we see the structure of pi j/p ji = γ (i < j). The DECS model with γ = 1 is the DES model.

Next, consider a model defined by

pi j =

{
αiβ jd j−i (i , j),
ψii (i = j),

where d j−i = γdi− j (i < j). We shall refer to this model as the quasi-diagonal exponent conditional symmetry (QDECS)
model. Under the QDECS model, we see the structure of pi j/p ji = γ(β/α) j−i (i < j). The QDECS model with γ = 1 is
the QDES model. Also, QDECS model with α = β is the DECS model.

Figure 1 shows the relationships among the models. In figure, A→ B indicates that model A implies model B.
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Figure 1. Relationships among models.

3. Decompositions and Orthogonality of Test Statistics

We obtain the new three kinds of decompositions of the DES model as follows:

Theorem 1 The DES model holds if and only if all the QDECS, GS and ME models hold.

Theorem 2 The DES model holds if and only if both the DECS and GS models hold.

Theorem 3 The DES model holds if and only if both the DECS and ME models hold.

The proofs of these theorems are given in Appendix 1.

Consider the model that has the structure of both the GS and ME models. We shall refer to this model as the GSME
model. From Theorem 1, we can obtain the following the corollary:

Corollary 1 The DES model holds if and only if the QDECS and GSME models hold.

Let ni j denote the observed frequency in the (i, j)th cell of the table (i = 1, . . . ,R; j = 1, . . . ,R) with n =
∑∑

ni j, and
let mi j denote the corresponding expected frequency. Assume that {ni j} have a multinomial distribution. The maximum
likelihood estimates (MLEs) of {mi j} under the DECS and QDECS models could be obtained using iterative procedures;
for example, see Darroch & Ratcliff (1972). The MLEs of {mi j} under the GSME model could be obtained using Newton-
Raphson method to the log-likelihood equations.
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Let G2(M) denote the likelihood ratio chi-squared statistic for testing goodness-of-fit of model M. The numbers of degrees
of freedom (df) for the DECS and QDECS models are R2 − 2R − 1 and R2 − 2R − 2, respectively.

The orthogonality (asymptotic separability or independence) of the test statistics for goodness-of-fit of two models is
discussed by, e.g., Darroch & Silvey (1963) and Read (1977). We obtain the following theorems for the orthogonality.

Theorem 4 The test statistic G2(DES ) is asymptotically equivalent to the sum of G2(QDECS ) and G2(GS ME).

Theorem 5 The test statistic G2(DES ) is asymptotically equivalent to the sum of G2(DECS ) and G2(GS ).

The proof of Theorem 4 is given in Appendix 2. We shall omit the proof of Theorem 5 because it is obtained in a similar
way to the proof of Theorem 4.

4. An Example

Consider the data in Table 1 taken from Agresti (2002, p. 462). These data are insomniac patient’s reported time (in
minutes) to fall asleep after going to bed. The response is the patient’s reported time at baseline (before treatment) and
following two weeks of treatment (hypnotic drug).

Table 1. Insomniac patient’s reported time (in minutes) to fall asleep after going to bed; from Agresti (2002, p. 462). (The
upper and lower parenthesized values are MLEs of expected frequencies under the DECS model and the special DECS
model with δ = 1, respectively.)

Follow-up
Initial < 20 20-30 30-60 > 60 Total
< 20 7 4 1 0 12

(7.00) (1.81) (1.69) (0.94)
(7.00) (1.88) (1.72) (0.94)

20-30 11 5 2 2 20
(15.58) (5.00) (1.87) (1.75)
(16.12) (5.00) (1.88) (1.72)

30-60 13 23 3 1 40
(14.53) (16.12) (3.00) (1.94)
(14.78) (16.12) (3.00) (1.88)

> 60 9 17 13 8 47
(8.06) (15.03) (16.67) (8.00)
(8.06) (14.78) (16.12) (8.00)

Total 40 49 19 11 119

We see from Table 2 that the CS, DECS and QDECS models fit these data well, although the other models fit poorly. Since
the DECS model is a special case of the QDECS model, we shall test the hypothesis that the DECS model holds (i.e., the
hypothesis of α = β) assuming that the QDECS model holds. Since G2(DECS |QDECS ) = G2(DECS )−G2(QDECS ) =
1.54 with 1 df being the difference between the numbers of df for the DECS and the QDECS models, this hypothesis is
accepted at the 0.05 significance level. Similarly, the hypothesis that the DECS model holds assuming that the CS model
holds is accepted for these data. Therefore, the DECS model would be preferable to the CS and QDECS models.

Under the DECS model, the MLEs of parameters of γ and δ are γ̂ = 0.116 and δ̂ = 1.017. Since δ̂ is close to 1, we are
now interested in a special DECS model obtained by putting δ = 1. For this model we obtain the likelihood ratio statistic
G2(DECS with δ = 1) = 10.30 with 8 df. Thus the special DECS model with δ = 1 also fits these data well. Moreover,
we shall test the hypothesis that the special DECS model with δ = 1 holds (i.e., the hypothesis of δ = 1) assuming that
the DECS model holds for these data. Since G2(DECS with δ = 1|DECS) = G2(DECS with δ = 1) −G2(DECS) = 0.05
with 1 df, this hypothesis is accepted at the 0.05 significance level. Therefore the special DECS model with δ = 1 may be
preferable to the DECS model.

Under the special DECS model with δ = 1, the MLE of parameter γ is γ̂ = 0.116. Thus, under the special DECS model
with δ = 1, the probability that a patient’s reported time at baseline and his or her reported time at following two weeks of
treatment are i and j (i > j), respectively, is estimated to be γ̂−1 = 8.621 times higher than the probability that those are j
and i, respectively. Thus, since γ̂−1 > 1, the patient’s reported time at following two weeks of treatment is faster than the
patient’s reported time at baseline. Also under this model, the probability that a patient’s reported time at baseline and his
or her reported time at following two weeks of treatment are i + 1 and j + 1, respectively, is estimated to be equal to the
probability that those are i and j, respectively.
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We see from Table 2 and Theorem 1 that the poor fit of the DES model is caused by the influence of the lack of structure
of the GS and ME models rather than the QDECS model. Similarly, from Theorem 2, the poor fit of the DES model is
caused by the influence of the lack of structure of the GS model rather than the DECS model. Also, from Theorem 3,
the poor fit of the DES model is caused by the influence of the lack of structure of the ME model rather than the DECS
model.

Table 2. Likelihood ratio chi-squared values G2 for models applied to Table 1.
Applied models df G2

S 6 74.55∗

CS 5 5.62
DES 8 79.18∗

DECS 7 10.25
QDECS 6 8.71

GS 1 68.93∗

ME 1 66.64∗

GSME 2 71.19∗

∗ means significant at the 0.05 level.

5. Concluding Remarks

We have proposed the DECS and QDECS models, and given the three kinds of decompositions of the DES model. These
decompositions may be useful for seeing the reason for the poor fit of the DES model.

The G2(DES ) is asymptotically equivalent to the sum of values G2(QDECS ) and G2(GS ME) as described by Theorem
4. However, we point out that for the decomposition in Theorem 1, the G2(DES ) is not asymptotically equivalent to the
sum of values G2(QDECS ), G2(GS ) and G2(ME) because the sum of values G2(GS ) and G2(ME) is not asymptotically
equivalent to the G2(GS ME).
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Appendix 1

Proof of Theorem 1. If the DES model holds, then the QDECS, GS and ME models hold. Assuming that all the QDECS,
GS and ME models hold, then we shall show that the DES model holds. Since the QDECS model holds, we have

pst − pts = (γθt−s − 1)pts (s < t), (A.1)

where θ = β/α. Since (A.1) and the GS model hold, we see∑∑
s<t

(γθt−s − 1)pts = 0,

namely,

R−1∑
k=1

R−k∑
s=1

(γθk − 1)ps+k,s = 0. (A.2)

From (A.2), we see

γ =

∑R−1
ℓ=1

∑R−ℓ
t=1 pt+ℓ,t∑R−1

k=1
∑R−k

s=1 ps+k,sθk
. (A.3)

The ME model can be expressed as

R−1∑
i=1

G1(i) =

R−1∑
i=1

G2(i), (A.4)

where

G1(i) =

i∑
s=1

R∑
t=i+1

pst, G2(i) =

i∑
s=1

R∑
t=i+1

pts.
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From (A.1) and (A.4), we see
R−1∑
i=1

i∑
s=1

R∑
t=i+1

(γθt−s − 1)pts = 0,

namely,

R−1∑
k=1

R−k∑
s=1

k(γθk − 1)ps+k,s = 0. (A.5)

From (A.5), we see

γ =

∑R−1
ℓ=1

∑R−ℓ
t=1 ℓpt+ℓ,t∑R−1

k=1
∑R−k

s=1 kps+k,sθk
. (A.6)

From (A.3) and (A.6), we obtain(R−1∑
ℓ=1

R−ℓ∑
t=1

pt+ℓ,t

)(R−1∑
k=1

R−k∑
s=1

kps+k,sθ
k
)
−

(R−1∑
ℓ=1

R−ℓ∑
t=1

ℓpt+ℓ,t

)(R−1∑
k=1

R−k∑
s=1

ps+k,sθ
k
)
= 0,

namely,

R−1∑
k=1

R−1∑
ℓ=1

R−k∑
s=1

R−ℓ∑
t=1

(k − ℓ)ps+k,s pt+ℓ,tθ
k = 0. (A.7)

The equation (A.7) is also expressed as

(θ − 1)
R−1∑
m=2

(
θm−1

R−1∑
g=m

R−g∑
s=1

R−1∑
ℓ=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t

)
= 0. (A.8)

In addition,

R−1∑
g=m

R−g∑
s=1

R−1∑
ℓ=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t =

R−1∑
g=m

m−1∑
ℓ=1

R−g∑
s=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t +

R−1∑
g=m

R−1∑
ℓ=m

R−g∑
s=1

R−ℓ∑
t=1

(g − ℓ)ps+g,s pt+ℓ,t. (A.9)

The first term on the right-hand side of (A.9) is positive and the second term equals zero. Thus (A.9) is positive. Therefore,
noting that θ > 0, from (A.8) we obtain θ = 1, i.e., α = β. Thus, from (A.2) we obtain γ = 1. Namely, the DES model
holds. The proof is complicated.

Proof of Theorem 2. If the DES model holds, then the DECS and GS models hold. Assuming that both the DECS and GS
models hold, then we shall show that the DES model holds. Since the DECS and GS models hold, we see∑∑

s<t

pst −
∑∑

s<t

pts =
∑∑

s<t

δs+tdt−s −
∑∑

s<t

δs+tds−t

=
∑∑

s<t

δs+tγds−t −
∑∑

s<t

δs+tds−t

= (γ − 1)
∑∑

s<t

δs+tds−t

= 0.

Thus, we obtain γ = 1. Namely, the DES model holds. The proof is complicated.

Proof of Theorem 3. If the DES model holds, then the DECS and ME models hold. Assuming that both the DECS and
ME models hold, then we shall show that the DES model holds. Since the DECS and ME models hold, we see

R−1∑
i=1

i∑
s=1

R∑
t=i+1

pst −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

pts =

R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tdt−s −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

=

R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tγds−t −
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

= (γ − 1)
R−1∑
i=1

i∑
s=1

R∑
t=i+1

δs+tds−t

= 0.
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Thus, we obtain γ = 1. Namely, the DES model holds. The proof is complicated.

Appendix 2

Proof of Theorem 4. The QDECS model is expressed as

log pi j =


γ∗ + iα∗ + jβ∗ + d∗i− j (i < j),

iα∗ + jβ∗ + d∗j−i (i > j),
ψ∗ii (i = j).

(A.10)

Let

p = (p11, . . . , p1R, p21, . . . , p2R, . . . , pR1, . . . , pRR)t,

β = (γ∗, α∗, β∗, ϕ)t,

where “t” denotes the transpose, and

ϕ = (d∗−1, d
∗
−2, . . . , d

∗
−(R−1), ψ

∗
11, ψ

∗
22, . . . , ψ

∗
RR),

is the 1 × (2R − 1) vector. The QDECS model is expressed as

log p = Xβ = (X0, X1, X2, X3)β,

where X is the R2 × L matrix with L = 2R + 2, X0 = (v1, . . . , vR)t (the R2 × 1 vector), X1 = JR ⊗ 1R (the R2 × 1 vector),
X2 = 1R ⊗ JR (the R2 × 1 vector), and X3 is the R2 × (2R− 1) matrix of 1 or 0 elements determined from (A.10); and where
vp is the 1 × R vector of 0 for the first p elements or 1 for the others, 1s is the s × 1 vector of 1 elements, JR = (1, . . . ,R)t

and ⊗ denotes the Kronecker product. The matrix X is full column rank which is L. In a similar manner to Haber (1985),
we denote the linear space spanned by the columns of the matrix X by S (X) with the dimension L.

Let U be an R2 × l1, where l1 = R2 − L = R2 − 2R − 2, full column rank matrix such that the linear space spanned by the
columns of U, i.e., S (U), is the orthogonal complement of S (X). Thus, U tX = Ol1,L, where Os,t is the s × t zero matrix.
Therefore the QDECS model is expressed as

h1(p) = 0l1 ,

where 0s is the s × 1 zero vector, and h1(p) = U t log p. The GSME model is expressed as

h2(p) = 0l2 ,

where l2 = 2 and h2(p) = W p with

W =
(

(2X0 − 1R2 + w1 + w2 + · · · + wR)t

(X2 − X1)t

)
; the 2 × R2 matrix,

where wi (i = 1, . . . ,R) is the R2 × 1 vector, being one of column vectors in X3 shouldering ψ∗ii. Note that X312R−1 = 1R2 .
Thus W t belongs to S (X), i.e., S (W t) ⊂ S (X). Hence WU = Ol2,l1 . From Corollary 1, the DES model is expressed as

h3(p) = 0l3 ,

where l3 = l1 + l2 = R2 − 2R, and h3 = (ht
1, h

t
2)t.

Let Hs(p) (s = 1, 2, 3) denote the ls × R2 matrix of partial derivative of hs(p) with respect to p, i.e., Hs(p) = ∂hs(p)/∂pt.
Let Σ(p) = diag(p) − ppt, where diag(p) denotes a diagonal matrix with ith component of p as ith diagonal component.
Let p̂ denote p with {pi j} replaced by { p̂i j = ni j/n}. Then

√
n( p̂ − p) has asymptotically a normal distribution with mean

0R2 and covariance matrix Σ(p). Using the delta method,
√

n(h3( p̂)− h3(p)) has asymptotically a normal distribution with
mean 0l3 and covariance matrix

H3(p)Σ(p)H3(p)t =

[
H1(p)Σ(p)H1(p)t H1(p)Σ(p)H2(p)t

H2(p)Σ(p)H1(p)t H2(p)Σ(p)H2(p)t

]
.

Since H1(p)p = U t1R2 = 0l1 , H1(p)diag(p) = U t and H2(p) = W, we see

H1(p)Σ(p)H2(p)t = U tW t = Ol1,l2 .
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Thus, we obtain ∆3(p) = ∆1(p) + ∆2(p), where

∆s(p) = hs(p)t[Hs(p)Σ(p)Hs(p)t]−1hs(p). (A.11)

Under each hs(p) = 0ls (s = 1, 2, 3), the Wald statistic Ws = n∆s(p̂) has asymptotically a chi-squared distribution with ls

degrees of freedom. From (A.11), we see that W3 = W1 +W2. From the asymptotic equivalence of the Wald statistic and
likelihood ratio statistic, we obtain Theorem 4.
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