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Abstract

Particle methods, also known as Sequential Monte Carlo, have been ubiquitous for Bayesian inference for state-space
models, particulary when dealing with nonlinear non-Gaussian scenarios. However, in many practical situations, the
state-space model contains unknown model parameters that need to be estimated simultaneously with the state. In this
paper, We discuss a sequential analysis for combined parameter and state estimation. An online learning method is pro-
posed to approach the distribution of the model parameter by tuning a flexible proposal mixture distribution to minimize
their Kullback-Leibler divergence. We derive the sequential learning method by using a truncated Dirichlet processes
normal mixture and present a general algorithm under a framework of the auxiliary particle filtering. The proposed algo-
rithm is verified in a blind deconvolution problem, which is a typical state-space model with unknown model parameters.
Furthermore, in a more challenging application that we call meta-modulation, which is a more complex blind deconvolu-
tion problem with sophisticated system evolution equations, the proposed method performs satisfactorily and achieves an
exciting result for high efficiency communication.

Keywords: sequential learning, sequential Monte Carlo, Kullback-Leibler divergence, blind deconvolution,
meta-modulation

1. Introduction

State-space model, a class of probabilistic graphical model (Koller and Friedman, 2009) that describes the dependence
between the unobserved state variable and the observed measurement, is a fundamental model for statistical inference with
diversely applications in fields like statistics, econometrics, and information engineering (West and Harrison, 1997; Cappé
et al., 2005). A linear or ‘weakly’ nonlinear state space model with Gaussian noise can be easily solved using Kalman
filter and its derivatives. In nonlinear non-Gaussian scenarios, particle methods (also known as Sequential Monte Carlo
methods) have been proven to be the most successful approach for the numerical approximation and Bayesian inference of
the unknown state, because of their simplicity, flexibility, and ease of implementation (Gordon et al., 1993; Liu and Chen,
1998; Doucet et al., 2000; Liu, 2001; Doucet et al., 2001). In most of previous research, the inference has been focused
on filtering or smoothing for the state, with the assumption that the model parameter in the state-space model are known.
However, in practical situations, the model may contain unknown parameter that need to be estimated simultaneously
with the state, and it might even be the case that the inference of the model parameter is the primary problem of interest.

One early and straightforward way to deal with this problem is to extend the original state to an augmented state that
includes the state and the parameter together, and then to apply a standard particle filter to perform inference for both
of them. However, this naive approach has been recognized not to be efficient, because the parameter space is not well
explored (Kitagawa, 1998; Liu and West, 2001). Consequently, various improve methods has been developed over the past
fifteen years (Refer to Kantas et al. (2015) for thoroughly review): maximum likelihood methods have been developed
with different Monte Carlo evaluations of the likelihood of the model parameter (Hürzeler and Künsch, 2001; DeJong et
al. 2013), and gradient based optimization (Ionides et al., 2006; Ionides et al., 2011) or expectation maximization methods
(Andrieu et al., 2005; Cappé, 2009) have been introduced for an on-line or off-line estimation of the model parameter. The
maximum likelihood approach generally converges rather slowly, but it may be a good choice for large data sets because
of its low complexity; Bayesian methods apply directly to the augmented states and Markov chain Monte Carlo steps
are utilized to improve the inference/estimation of the model parameter ( Gilks and Berzuini, 2001; Fearnhead, 2002;
Andrieu et al., 2010). In the inspiring work by(Liu and West, 2001), an artificial dynamic is introduced to the static model
parameter, and a kernel density estimation method is proposed to capture the density of the parameters. The significant
idea of these authors is to use a shrinkage strategy for kernel locations and variances inflation, which therefore removes
the problem of information loss over time (West, 1993). However, the learning method proposed in this work seems to
be ad hoc and weak in explaining the underlying driving strategy. In this paper, a stochastic algorithm is proposed that
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tunes a flexible proposal mixture distribution to minimize the Kullback-Leibler divergence between the distribution of the
unknown model parameter and the distribution of the proposed mixture: this leads to an online learning method for the
numerical approximation of the distribution of the model parameter. We derive the sequential learning method by using
a truncated Dirichlet processes normal mixture, and present the general algorithm using a proposed learning approach
under a framework of the auxiliary particle filtering. The proposed algorithm is verified and compared with other related
algorithms in a blind deconvolution problem, which is a typical state-space model with unknown model parameter (Liu
and Chen, 1995). Furthermore, a more novel and challenging application is presented, which is essentially a more complex
blind deconvolution problem with sophisticated system evolution equation. The proposed method performs satisfactorily
in dealing with the demodulation of this system and obtains an exciting result for high efficiency communication.

The paper is organized as follows. In Section 2 we present the general state space model and the auxiliary particle filter
algorithm for the Bayesian inference of this model. In Section 3 we introduce the sequential learning method and a
general framework for joint parameter and state estimation. In Section 4 we verify the proposed method in a simple
blind deconvolution and a more channelling problem in wireless communication. Finally, we summarize our methods in
Section 5.

2. Problem Statement and Particle Filter Algorithm

A state-space model can be defined by the following two processes: the Markovian evolution equation, or state equation,

xt = f (xt−1, θ) + wt (1)

defining the transition density p(xt |xt−1, θ), in which the state vector at time t is xt, the model parameter vector is θ, f (·) is
the system evolution function and wt is the system noise; and the observation equation

yt = h(xt, θ) + vt (2)

defining the observation density p(yt |xt−1, θ), where h(·) is the observation function and vt is the observation noise. The
above expressions covers a very broad class of interesting dynamic models (West and Harrison 1997).

With a known parameter θ the task of sequential Bayesian inference is to estimate the posterior distribution p(xt |y0:t, θ).
However, to apply particle methods, a more general approach is to estimate the sequence of joint posteriors p(x0:t |y0:t, θ)
recursively, which leads to the following fundamental recursions: for t ≥ 1,

p(x0:t |y0:t, θ) =
p(x0:t, y0:t |θ)

p(y0:t |θ)
(3)

=
p(xt, yt |x0:t−1, y0:t−1, θ)p(x0:t−1|y0:t−1, θ)p(y0:t−1|θ)

p(yt |y0:t−1, θ)p(y0:t−1|θ)
(4)

=
p(xt, yt |x0:t−1, y0:t−1, θ)p(x0:t−1|y0:t−1, θ)

p(yt |y0:t−1, θ)
(5)

= p(x0:t−1|y0:t−1, θ)
p(yt |x0:t, y0:t−1, θ)p(xt |x0:t−1, y0:t−1, θ)

p(yt |y0:t−1, θ)
(6)

= p(x0:t−1|y0:t−1, θ)
p(yt |xt, θ)p(xt |xt−1, θ)

p(yt |y0:t−1, θ)
(7)

where p(yt |y0:t−1, θ) =
∫

p(xt−1|y0:t−1, θ)p(xt |xt−1, θ)p(yt |xt, θ)dxt−1:t, p(xt |xt−1, θ) represents the system dynamic in (1),
and p(yt |xt, θ) refers to the likelihood function obtained in (2). The recursion is initialised with some distribution, for
example, p(x0).

Particle filtering is a class of importance sampling and resampling techniques designed to give a numerical approximation
for the recursions in (7). We present the auxiliary particle filter (APF) (Pitt and Shephard, 1999) here, as it covers a class
of particle filter algorithms (Kantas et al., 2015) and is widely used in parameter and state estimation (Liu and West, 2001;
Flury and Shephard, 2011). Let the proposal be q(xt, yt |xt−1, ϕ) = q(xt |yt, xt−1, ϕ)q(yt |xt−1, ϕ), where q(xt |yt, xt−1, ϕ) is a
probability density function which is easy to sample from and q(yt |xt−1, ϕ) is a nonnegative function that can be evaluat-
ed. The auxiliary particle filter sequentially draws samples from q(xt |yt, xt−1, ϕ) and calculates the following importance
weights,

wt(xt−1:t) =
p(xt |xt−1, θ)p(yt |xt, θ)

q(xt, yt |xt−1, ϕ)
. (8)

For t ≥ 1 the APF algorithm can be summarized as follows,

At iteration t ≥ 1, for all i = 1, ...,N:
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Step 1: Sample x(i)
t ∼ q(xt |yt, x(i)

t−1, ϕ) and set x(i)
0:t = [x(i)

0:t−1, x
(i)
t ];

Step 2: Compute the weights w̃(i)
t ∝ wt(x(i)

t−1:t)q(yt |x(i)
t−1, ϕ), where w̃(i)

t is normalized as
∑N

i=1 w̃(i)
t = 1;

Step 3: Resample x(i)
0:t ∼

∑N
i=1 w̃(i)

t δ(x
(i)
0:t).

In many applications, the model parameter θ is unknown and it might even be of interest for inference. A straightforward
solution is to define an extended state that includes the state xt and the parameter θ together. For example in (Liu and West,
2001), an ‘artificial evolution’ equation for the model parameter θ is introduced: θt = θt−1 + ε, where ε ∼ N(0,Σt) with
some specified variance matrix Σt. A kernel density estimation method is proposed to capture the density of the parameter
θt. However, the method of the kernel density estimation is critical in such a problem. As studied by Liu and West (2001),
they use a shrinkage strategy for kernel locations and variances estimation in order to removes the over-dispersion of the
variances. Although this method works satisfactorily with a careful chosen shrinkage strategy, more efficient approach
are still worth for further exploration (Kantas et al., 2015).

3. Sequential Learning and Joint Parameter and State Estimation

3.1 Sequential Learning

A sequential learning method is proposed here to deal with the online learning of the unknown distribution of the model
parameter. Assume that the parameter vector θ is subject to some unknown distribution π(θ). We propose to utilize
a parametric distribution q(θ;ψ) with the controlling parameter ψ to approximate the unknown π(θ). To measure the
distance between these two distributions, the broadly used Kullback-Leibler divergence (KL-divergence) is employed
here. The idea of the proposed sequential learning approach is to tune the parameter ψ by learning from samples of π(θ),
and enable q(θ;ψ) to approximate π(θ) in the sense of minimizing the KL-divergenceD[π(·) ∥ q(·)] = Eπ

[
log π(·)

q(·)

]
. Other

criterion like moment matching can also be applied to measure the closeness of two distributions (Ji, 2006), but it is not
straightforward to derive the algorithm to find the optimal controlling parameter of the proposal distribution. Under the
measurement of KL-divergence, the optimal parameter ψ∗ which minimizesD [

π(θ) ∥ q(θ;ψ)
]

can be obtained by finding
the root of the derivative ofD (if exists):

h(ψ) = −
∫

π(θ)
∂

∂ψ

(
log

π(θ)
q(θ;ψ)

)
dθ = 0. (9)

The closed-form solution of the integral equation (9) is generally intractable, as h(ψ) involves an integral with unknown
distribution π(θ). However, suppose that we can obtain samples θ(1:N) from π(θ), denote f (θ, ψ) = ∂

∂ψ

(
log π(θ)

q(θ;ψ)

)
, then we

can numerically evaluate h(ψ) by Monte Carlo integration:

ĥ(θ(1:N);ψ) =
1
N

N∑
i=1

f (θ(i), ψ) (10)

where ĥ(θ(1:N);ψ) can be viewed as a noisy ‘observation’ of h(ψ). One available approach for obtaining roots of h(ψ) = 0
when we only have noisy evaluations of h(ψ) is the Stochastic Approximation (SA) algorithm (Kusher and Yin, 1997).
The SA algorithm iteratively updates ψ to approximate its optimal values by the following formula:

ψt = ψt−1 + rt
[
h(ψt−1) + ξt

]
= ψt−1 + rt ĥ(θ(1:N)

t−1 ;ψt−1) (11)

where t is an iterative index, {ξt} is a sequence of ‘noise’ (thus the Monte Carlo estimation ĥ(θ(1:N)
t ;ψt) can be interpreted

as the ground true h(ψt) plus noise ξt), and {rt} is a sequence of decreasing step-sizes satisfying
∑

t rt = ∞ and
∑

t r2
t < ∞.

The proof of covergence of this Monte Carlo estimation based sequential learning algorithm is detailed in the appendix.

We assume that q(θ;ψ) is a truncated Dirichlet process (TDP) normal mixture (Ishwaran and James, 2001; Ji, 2009).
Let ψ denotes the set of controlling parameters (Vk, µk,Σk), a TDP normal mixture can be expressed as, q(θ;ψ) =∑K

k=1 ωkN(·|µk,Σk), where ωk = Vk
∏k−1

l=1 (1 − Vl) and Vl ∈ (0, 1) which can be initially drawn from a beta distribution
Beta(α0, β0). The the partial derivative of D[π(θ) ∥ q(θ;ψ)] with respect to Vk, µk and Σk can be derived respectively as
follows (refer to Ji (2009) for more details of derivations),

hVk (θ;ψ) =
∫

π(θ)
−∑K

l=k+1 Vl
∏

ι≤l−1,ι,k
(1 − Vι)q(θ|µl,Σl) +

k−1∏
l=1

(1 − Vl)q(θ|µk,Σk)

K∑
m=1

ωmq(θ|µm,Σm)
dθ (12)
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Hµk (θ;ψ) ∝
∫

π(θ)
ωkq(θ; µk,Σk)∑K

m=1 ωmq(θ; µm,Σm)
× (θ − µk) dθ (13)

HΣk (θ;ψ) ∝
∫

π(θ)
ωkq(θ; µk,Σk)∑K

m=1 ωmq(θ; µm,Σm)
×

(
(θ − µk) (θ − µk)T − Σk

)
dθ (14)

Given the samples Θt = {θ(i)
t }Ni=1 from π(θ), the Monte Carlo approximation of these partial derivatives is

HVk (Θt;ψ) =
1
N

N∑
i=1

−∑K
l=k+1 Vl

∏
ι≤l−1,ι,k

(1 − Vι)q(θ(i)
t |µl,Σl) +

k−1∏
l=1

(1 − Vl)q(θ(i)
t |µk,Σk)

K∑
m=1

ωmq(θ(i)
t |µm,Σm)

(15)

Hµk (Θt;ψ) ∝ 1
N

N∑
i=1

ωkq(θ(i)
t ; µk,Σk)∑K

m=1 ωmq(θ(i)
t ; µm,Σm)

×
(
θ(i)

t − µk

)
(16)

HΣk (Θt;ψ) ∝ 1
N

N∑
i=1

ωkq(θ(i)
t ; µk,Σk)∑K

m=1 ωmq(θ(i)
t ; µm,Σm)

×
((
θ(i)

t − µk

) (
θ(i)

t − µk

)T
− Σk

)
(17)

3.2 Joint Parameter and State Estimation

Let us return to the inference of the augmented states under a particle filter framework. Assuming the particle samples
(x(i)

t , θ
(i)
t ) and weights w(i)

t (i = 1, ...,N) are available to represent the joint posterior p(xt, θ|yt), with the sequential learning
algorithm to approach the unknown distribution of θ by samples θ(i)

t (i = 1, ...,N), we now have an extended version of
the auxiliary particle filter algorithm, incorporating the parameter and the state estimation together. The resulting general
algorithm is presented as follows:

Step 1: At iteration t, the sampled N particles containt
{
x(i)

t , θ
(i)
t , c

(i)
t

}N

i=1
(where c(i)

t is the label of the TDP normal mixture

component which θ(i)
t belongs to), with its weights w(i)

t . Calculate the auxiliary variable

ϕ(i)
t+1 = E(xt+1|x(i)

t , θ
(i)
t ).

Step 2: Sample the auxiliary index from the set {1, ...,N} with probabilities proportion to

g(i)
t+1 ∝ w(i)

t p(yt+1|ϕ(i)
t+1, θ

(i)
t );

obtain new index set j, and new label set c( j)
t .

Step 3: Sample a new parameter vector θ( j)
t+1 from the k = c( j)

t normal components of the mixture model

θ
( j)
t+1 ∼ N(·|µk,t,Σk,t).

Step 4: Sample the new state vector x( j)
t+1, from the system equation

x( j)
t+1 ∼ p(·|x( j)

t , θ
( j)
t+1).

Step 5: Calculate the importance weights

w( j)
t+1 ∝

p(yt+1|x( j)
t+1, θ

( j)
t+1)

p(yt+1|ϕ( j)
t+1, θ

( j)
t )
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Step 6: Update the parameters of the TDP mixture Vk, ωk, µk and Σk (for k = 1, ...,K) using
{
w( j)

t+1, θ
( j)
t+1

}N

j=1
as follows,

Vk,t+1 = Vk,t + rt+1HVk (Θt;ψt) (18a)

ωk,t+1 = Vk,t+1

k−1∏
l=1

(1 − Vl,t+1) (18b)

µk,t+1 = µk,t + r′t+1

N∑
j=1

w( j)
t+1α

( j)
k,t+1

(
θ

( j)
t+1 − µk,t

)
(18c)

Σk,t+1 = Σk,t + r′t+1

N∑
j=1

w( j)
t+1α

( j)
k,t+1

(
(θ( j)

t+1 − µk,t)(θ
( j)
t+1 − µk,t)T − Σk,t

)
(18d)

where HVk (Θt;ψt) =
∑N

i=1 w( j)
t+1

−∑K
l=k+1 Vl

∏
ι≤l−1,ι,k

(1−Vι)q(θ( j)
t |µl,Σl)+

k−1∏
l=1

(1−Vl)q(θ( j)
t |µk ,Σk)∑K

m=1 ωmq(θ( j)
t |µm,Σm)

, α( j)
k,t+1 =

ωk,tq(θ( j)
t+1;µk,t ,Σk,t)∑K

m=1 ωm,tq(θ( j)
t+1;µm,t ,Σm,t)

, rt+1 and

r′t+1 are the step-sizes in the stochastic approximation algorithm.

Step 7: If the stopping criterion is satisfied, then stop; otherwise, set t := t + 1 and go back to step 1.

3. Simulation Study

3.1 Blind Deconvolution

Blind deconvolution of source signals is a subject that has been widely studied and applied in various fields, such as
wireless communications, sonar and radar systems, audio and acoustics, and image processing (Benveniste and Goursat,
1984; Haykin, 1994). Take the wireless communication over a multipath fading channel as an example (Chen and Liu,
2000; Ali et al., 2002), the unknown information signal propagates through the channel which mixes the signal as it passes
through a filter. The blind deconvolution problem is to recover the independent sources from the mixed signal without
any priori knowledge of the original signal and the conditions of the channel. This problem is a typical state-space model
problem, and can be expressed as follows,

xt =

q∑
i=0

hist−i (19)

yt = xt + ϵt (20)

where the information bits st ∈ {−1, 1} are independent, identically distributed (i.i.d) samples from a Bernoulli(0.5),
[h0, h1, ..., hq]T is a set of coefficients representing the channel conditions, q is the number of the multipath, yt is the
received signal for decoding and the noise ϵ are i.i.d. normal with mean zero and variance σ.

In the simulation study, we consider the following settings: the number of particles in the particle filter is 200, the number
of components in the TDP normal mixture is 20, the initial values of µk are randomly chosen from (−0.5, 1) and Σk

are 0.1 ∗ I where I is an identity matrix. The noise variance σ is an important parameter in the blind deconvolution
problem, where we use the signal to noise ratios(SNR) to measure the noise level. For the first study, the SNR is 14 dB
and the coefficients of the channel are shown in Table 1. We run 10 trials, and each trial has 10, 000 information bits.
The sequential learning algorithm outputs an online estimation of the coefficients θ , [h0, h1, h2]T . At each iteration we
estimate the mean value of θ using the particles

{
w( j)

t , θ
( j)
t

}200

j=1
. The resulting trajectories from 1 to 2000 are shown in Figure

1, which demonstrates the convergence rate and stability of the sequential learning algorithm. The mean values of each
hi over a long period (iterations 1, 000 to 10, 000) are shown in Table 1, which show the high accuracy of our algorithm
in estimating the model parameter. The performance of blind deconvlution in the above communication system can be
well measured using the bit error rate (BER) of different SNRs (Chen and Liu, 2000; Ali et al., 2002). We compare our
proposed method (SL+APF) with a naive bootstrap particle filter (BPF) with augmented state (x, θ), a BPF with known θ,
an APF with augmented state (x, θ), an APF with known θ and a matched filter bound (MFB) which represents a reference
line for the BER in Gaussian noise channel (Ali et al., 2002). The MFB can be calculated as follows (Ali et al., 2002):

1 −
∫ p
−∞

1√
2π

e−
x2
2 dx, where p =

√∑q
i=0 h2

i
σ

. Figure 2 shows the BERs for different SNRs (in dB). The APF based methods
can generally outperform the BPF based methods. The proposed SL+APF method outperforms the APF with augmented
states, and the resulting BER is close to the one evaluated by the APF when θ is known. Moreover, APF with augmented
states has a apparent higher SNR requirement for low BERs below 10−3, while our proposed method overcomes this
drawback because of the efficient learning for channel coefficients.
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Table 1. The coefficients of channel response and the estimation via sequential learning algorithm

Coefficients h0 h1 h2

True value 0.9460 0.2340 -0.1670
Estimation 0.9450 0.2322 -0.1669
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Figure 1. Trajectory plots of the mean value of θ = [h0, h1, h2]T estimated using the particles
{
w( j)

t , θ
( j)
t

}200

j=1
from iteration 0 to 2000.

The estimation of each hi comes close to the true value with in a few hundreds iterations and becomes stable since then.

3.2 Meta-modulation

In this example we consider a realistic state space model with sophisticated system evolution equations. In the above
example, only the channel response is considered as the mixing mechanism, which is expressed as the coefficients h.
Here, we consider a more general situation, where the impulse response consists of all the filters and the channel response
during the entire transmission. Let ht = [h0, ..., hqt ]

T represents all the filter responses in the transmitter, such as the pulse
shaping filter, the transmitter filter and etc. Let hc = [h0, ..., hqc ]

T be the channel response, and let hr = [h0, ..., hqr ]
T be the

response of all the filters in the receiver, such as the receiver filter, the matched filter and etc.

xt =

Q∑
q=0

hqst−q (21)

yt = xt + ϵt (22)

where h = [h0, h2, ..., hQ]T represents the convolution of all the impulse responses h = ht ⊗ hc ⊗ hr, and Q = qt + qc + qr

is the total number of the filter coefficients.

Let S = [s0, sτ, s2τ, ...]T denotes the transmitted i.i.d. bit sequence. In traditional communication system, S will be
N times upsampled to S ′ = [s0, 0, ..., 0, sτ, 0, ..., 0, s2τ...]T , and then S ′ passes through a pulse shaping filter h(nτ/N)
(n = 0, ...,N − 1) with duration τ. The resulting convolution signal will be

x = [s0h((N − 1)τ/N), s0h((N − 2)τ/N), ..., s0h(0), sτh((N − 1)τ/N), sτh((N − 2)τ/N), ..., sτh(0), ...]T . (23)

To demodulate such a signal, one can apply the matched filter to the received noisy signal y, where y = x + ϵ, and
then decide the value of each si by using the signal detection theory. Obviously, such a demodulation is not a blind
deconvolution problem. On the other hand, consider the scenario that S is transmitted Q times faster, then S becomes

18
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Figure 2. Comparisons of BERs for different methods. Both APF with known parameter and our proposed SL+APF algorithms
deconvolute all the 10, 000 bits correctly when SNR ≥ 12dB, so no points appear in 12dB and 14dB for these two curves.

S ′ = [s0, sτ/Q, ..., s(Q−1)τ/Q, sτ, ...]T . Let S ′ passes through a pulse shaping filter h(qτ/Q) (q = 0, ...,Q− 1) with duration τ,
then we get a truly convoluted signal

x̃ = [s0h((Q − 1)τ/Q), s0h((Q − 2)τ/Q) + sτ/Qh((Q − 1)τ/Q), ...,
Q∑

q=0

s(n−q)τ/Qh(qτ/Q), ...]T . (24)

Consequently this communication system violates the Nyquist intersymbol interference criterion, and traditional matched
filter and detection approaches fail to demodulated such signal, however, we can appeal to the blind deconvolution tech-
niques to separate the information bits at the receiver. The notable advantage of this system is that the bandwidth of
modulated signal x̃, which depends mainly on the pulse shaping filter h(qτ/Q), is comparable with the bandwidth of x as
the pulse duration τ is the same, but the information sequence S has been managed to transmitted Q times faster.

Furthermore, it can be verified that this system essentially belongs to a parallel Gaussian channel model: let the vector
S Q×1 represents Q bits information, H(2Q−1)×Q be a matrix that each row is the filter coefficients hT shifted with one time
slot delay, then the received signal Y(2Q−1)×1 is given by the matrix format Y = HS +ϵ. It is trivial to find that the rank
of matrix H(2Q−1)×Q is Q. Apply a singular value decomposition, H = UΛV , where both U(2Q−1)×(2Q−1) and VQ×Q are the
unitary matrix and Λ(2Q−1)×Q is a diagonal matrix with rank Q, then

Y ′ = ΛS ′ + ϵ′ (25)

where Y ′ = U−1Y , S ′ = VS and ϵ′ = U−1ϵ. According to (25) , this system is equivalent to Q independent parallel
channels (Tse and Viswanath 2005; Cover and Thomas, 2006). Consequentially, the transmission rate R of this commu-
nication system will be bounded by the capacity of a parallel Gaussian channel model: R ≤ C = Q

2 log2(1 + SNR/Q) bits
per transmission. This high efficient communication strategy is proposed to be named as ‘meta-modulation’: it utilizes
ordinary modulation framework but allows heavy interaction such as convolution in certain domain of the information
bits, and therefore format an independent parallel channel to achieve an extraordinary high spectrum efficiency.

In this simulation study, we consider the case that Q is sufficient large, then it is not trivial to demodulate the convolutional
signal of (21) particulary some of the coefficients are unknown. For example, the Viterbi algorithm can be modified to
deal with deconvolution or blind deconvoultion (Ali et al., 2001; Li, 2014), but it becomes infeasible for large Q as the
potential paths in Viterbi algorithm increase exponentially. However, our proposed SL+APF method seems well suite for
the deconvolution of this meta-modulation system. The simulation is set as follows, ht is a Gaussian filter with qt = 100, hr

is also a Gaussian filter with qr = 100, hc = [0.925, 0.430,−0.201,−0.117, 0.091]. Parameter settings of the algorithm are
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Figure 3. Comparisons of BERs for different methods. Both APF with known parameter and our proposed SL+APF algorithms
deconvolute all the 105 bits correctly when SNR > 42dB, so no points appear in 44 dB for these two curves.

kept the same with example 3.1 except we simulated 105 bits. Coefficients of ht and hr are predefined and known, while
the channel response hc are unknown at the receiver. We compare our proposed method with an APF with augmented state
and an APF with known channel coefficients. The BER plots in Figure 3 shows that the proposed SL+APF algorithm still
performs well, but this time the APF with augmented state method performs very unstable because of the insufficiency in
exploration of the unknown channel coefficients. Simulation study also demonstrates that the proposed algorithm achieves
the BER < 10−5 at SNR=44 dB, which is approximately 4 dB higher than the theoretical required SNR 40.1dB to reach
the capacity 200 bits per transmission. We also verify that the meta-modulation works in real-world physical channels,
we implemented the communication process on a standard verification system, the universal software radio peripheral
(USRP). The received signal is demodulated by the SL+APF algorithm. As shown in Figure 3, the BER becomes slightly
higher because of the quantization error in the real communication, however, hardware verification shows the potential in
real-world applications. In conclusion, this is an exciting result, because not only such a high spectrum efficiency system
has rarely been reported, but also the required SNR for demodulation is moderately low that can be satisfied in practice.
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Appendix: Proofs of Convergence of Monte Carlo SA Algorithm

Stochastic Approximation (SA) is a class of algorithms to finding the roots of possibly non-linear equation h (ψ) = 0, in
the situation where only noisy measurements of h (ψ) are available. In its simplest form, the Robbins-Monro algorithm is
a recursive process as follows,

ψ(t+1) = ψ(t) + r(t+1)ζ(t+1) (26)

where
{
r(t), t ≥ 1

}
is a sequence of stepsizes which satisfies standard conditions:

∑∞
t=1 r(t) = ∞ and

∑∞
t=1

[
r(t)

]2
< ∞ and for

any t ≥ 1, ζ is a noisy measurement of h (ψ):
ζ(t+1) = h (ψ) + ξ(t+1) (27)

where
{
ξ(t), t ≥ 1

}
is the so called noise sequence.

In our case, we denote f (θ;ψ) = ∂
∂ψ

(
log π(θ)

q(θ;ψ)

)
. Assume we have Monte Carlo samples {θ(i) : i = 1, . . . ,N} from the

distribution π(θ), then h(ψ) can be evaluated by its Monte Carlo estimate,

ζ (ψ) =
1
N

N∑
i=1

f (θ(i);ψ). (28)

The Central Limit Theorem gives

ξ =
[
ζ (ψ) − h (ψ)

]→ Norm
(
0,
σ2

N

)
, as N → ∞ (29)

which implies that ξ is Gaussian noise, with mean zero and variance σ2

N where σ2 = 1
N−1

∑N
i=1 (h(ψ) − ζ(ψ)) (Robert and

Casella, 1999).

By using the iterative stochastic approximation method, we can estimate ψ iteratively by

ψ(t+1) = ψ(t) + r(t+1)ζ
(
ψ(t)

)
. (30)

Assume that ψL is the root of equation h (ψ) = 0. We present a theorem to show that ψ(t) → ψL in probability one as
t → ∞.

Theorem 1. Consider the following conditions:

(A1) By the central limit theorem, ξ (ψ)→ N
(
0, σ

2

N

)
in distribution and∫
Θ

h(θ;ψ)2q(θ;ψ)dθ < ∞.

(A2) Ψ is an open subset of Rnψ . The mean field f : Ψ→ Rnψ is continuous and there exists a continuously differentiable
function w : Ψ→ [0,∞) (with the convention w(ψ) = ∞ when ψ < Ψ ) such that:

1. For any M > 0, the level set WM ≡ {ψ ∈ Ψ,w(ψ) ≤ M} ⊂ Ψ is compact,

2. The set of stationary point(s) L ≡ {ψ ∈ Ψ, ⟨∇w(ψ), f (ψ)⟩ = 0} belongs to the interior of Ψ,

3. For any ψ ∈ Ψ , ⟨∇w(ψ), f (ψ)⟩ ≤ 0 and the closure of w(L) has an empty interior.

(A3) The sequence {r(t), t ≥ 1} is non-increasing, positive and

∞∑
t=1

r(t) = ∞ and
∞∑

t=1

[
r(t)

]2
< ∞. (31)
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Assume (A1-3). Then,

P
[
lim
t→∞

d
(
ψ(t),L

)
= 0

]
= 1. (32)

Proof: the recursion is expressed as follows

ψ(t+1) = ψ(t) + r(t+1)ζ(t+1) = ψ(t) + r(t+1) f (ψ) + r(t+1)ξ(t+1), (33)

where f (ψ) is the function of interest and ξ(t+1) is a random perturbation

ξ(t+1) = f (ψ) − ζ(t+1) (34)

=

∫
Θ

h(θ;ψ)dθ − 1
N

N∑
i=1

h(θ(i);ψ). (35)

Define Mn =
∑n

t=1 r(t)ξ(t). Then

E [Mn+1 |Mk, k ≤ n] = E

n+1∑
t=1

r(t)ξ(t) |Mk, k ≤ n

 (36)

= E

 n∑
t=1

r(t)ξ(t) |Mk, k ≤ n

 + E
[
r(t+1)ξ(t+1) |Mk, k ≤ n

]
(37)

= Mn + r(t+1)E
[
ξ(t+1)

]
. (38)

Since ξ(t+1) =
∫
Θ

h(θ;ψ)dθ − 1
N

∑N
i=1 h(θ(i);ψ)→ 0, almost sure (a.s.), as N → ∞, E [Mn+1|Mk, k ≤ n]→ Mn a.s. or with

probability one. Therefore {Mn, n ≥ 1} is a F-martingale.

Then by the martingale inequality,

P
{

sup
n≥ j≥m

∣∣∣M j − Mm

∣∣∣ ≥ µ} ≤ E
∣∣∣∑n−1

i=m r(i)ξ(i)
∣∣∣

µ
(39)

which implies

lim
m→∞

P
{

sup
j≥m

∣∣∣M j − Mm

∣∣∣ ≥ µ} = 0 (40)

so that

lim
m→∞

 sup
m≤ j≤m(n,T )

∥∥∥∥∥∥∥
j∑

i=n

r(i)ξ(i)

∥∥∥∥∥∥∥
 = 0 for all T > 0 (41)

where m(n,T ) ≡ max
{
k : r(n) + ... + r(k) ≤ T

}
. This condition is called Kushner and Clark’s condition, which is an impor-

tant sufficient condition on the noise sequence for the convergence of stochastic approximation algorithms (Wang et al.,
1995; Kushner and Yin, 1997). By the theorem in Chapter 5 of Kushner and Yin (1997), we can obtain

P
[
lim
t→∞

d
(
ψ(t),L

)
= 0

]
= 1. (42)
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