On the Existence Conditions

for Balanced Fractional 2^{m} Factorial Designs of Resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$ with $N<v_{\ell}(m)$

Yoshifumi Hyodo ${ }^{1,2}$, Masahide Kuwada ${ }^{2}$, Hiromu Yumiba ${ }^{2}$
${ }^{1}$ Graduate School of Informatics, Okayama University of Science, Okayama, Japan
${ }^{2}$ International Institute for Natural Sciences, Kurashiki, Japan
Correspondence: Hiromu Yumiba, International Institute for Natural Sciences, Kurashiki, 710-0821, Japan.
E-mail: yumiba@edu.kake.ac.jp

Received: January 29, 2016 Accepted: February 22, 2016 Online Published: June 22, 2016
doi:10.5539/ijsp.v5n4p84 URL: http://dx.doi.org/10.5539/ijsp.v5n4p84

Abstract

We consider a fractional 2^{m} factorial design derived from a simple array (SA) such that the $(\ell+1)$-factor and higher-order interactions are assumed to be negligible, where $2 \ell \leq m$. Under these situations, if at least the main effect is estimable, then a design is said to be of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$. In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional 2^{m} factorial design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$ for $\ell=2,3$, where the number of assemblies is less than the number of non-negligible factorial effects. Such a design is concretely characterized by the suffixes of the indices of an SA.

Keywords: association algebra, balanced fractional factorial design, estimable parametric function, factorial effect, resolution, simple array

1. Introduction

As a generalization of an orthogonal array, the concept of a balanced array (BA) was first introduced by Chakravarti (1956) as a partially BA. However it is a generalization of the BIB design rather than of the PBIB design. Thus Srivastava and Chopra (1971) called it by BA. A BA of strength t, size N, m constraints, two symbols and index set $\left\{\mu_{i}^{(t)} \mid 0 \leq i \leq t\right\}$ is briefly written by $\mathrm{BA}\left(N, m, 2, t ;\left\{\mu_{i}^{(t)}\right\}\right)$. In particular, a BA of strength $t=m$ is called a simple array (SA) (see Shirakura, 1977), and it is written by $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$ for brevity, where $\lambda_{x}=\mu_{x}^{(m)}$. When $t<m$, a BA of strength t does not always exist for given indices $\mu_{i}^{(t)}$. On the other hand, an SA always exists for any λ_{x} and any m. The existence conditions for a BA of strength t were given by Srivastava (1972) for $m=t+1, t+2$, and Shirakura (1977) for $m=t+3$. If the variance-covariance matrix of the estimators of the factorial effects to be of interest is invariant under any permutation on the factors, then a design is said to be balanced. Under certain conditions, a BA of strength 2ℓ turns out to be a balanced fractional 2^{m} factorial ($2^{m}-\mathrm{BFF}$) design of resolution $2 \ell+1$ (see for $\ell=2$, Srivastava, 1970, and for general ℓ, Yamamoto et al., 1975), where $2 \ell \leq m$. The characteristic roots of the information matrix of a $2^{m}-\mathrm{BFF}$ design of resolution V, i.e., $\ell=2$, were obtained by Srivastava and Chopra (1971). By using the triangular multidimensional partially balanced (TMDPB) association scheme and its algebra, their results were generalized by Yamamoto et al. (1976) and Hyodo (1992) for a resolution $2 \ell+1$ design, where $2 \ell \leq m$ and $m<2 \ell \leq 2 m$, respectively. The concept of the MDPB association scheme, which is a generalization of an ordinary association scheme (e.g., Bailey, 2004), was introduced by Bose and Srivastava (1964). The existence conditions for a BA of strength 2ℓ to be a $2^{m}-$ BFF design of resolution 2ℓ for general ℓ were obtained by Shirakura $(1975,1980)$. Some algebraic properties of the information matrix of a fractional 2^{m} factorial ($2^{m}-\mathrm{FF}$) design derived from an SA were investigated by Hyodo and Yamamoto (1988) and Hyodo (1989). As the extension of the concept of resolution, Yamamoto and Hyodo (1984) discussed the extended concept of resolution for 2^{m} fractions.

Definition 1.1. Under the assumption that the $(\ell+1)$-factor and higher-order interactions are negligible, if the p_{1}-factor, the p_{2}-factor, \cdots, and the p_{r}-factor interactions are estimable, where $0 \leq p_{1}<p_{2}<\cdots<p_{r} \leq \ell$, and furthermore if the
remaining interactions are not estimable (including the general mean and the main effect), then a design is said to be of resolution $\mathrm{R}\left(\left\{p_{1}, p_{2}, \cdots, p_{r}\right\} \mid \Omega_{\ell}\right)$, where $\Omega_{\ell}=\{0,1, \cdots, \ell\}$. In particular, when $p_{i}=i-1(1 \leq i \leq r=\ell+1)$, it is of resolution $2 \ell+1$, and when $p_{i}=i(1 \leq i \leq r=\ell-1)\left(\right.$ or $p_{i}=i-1(1 \leq i \leq r=\ell)$, it is of resolution 2ℓ.

By relaxing the conditions of Definition 1.1, we give the following definition of resolution:
Definition 1.2. Under the same assumptions as Definition 1.1, if at least the p_{1}-factor, the p_{2}-factor, \cdots, and the $p_{r^{-}}$ factor interactions are estimable, where $0 \leq p_{1}<p_{2}<\cdots<p_{r} \leq \ell$, then a design is said to be of resolution $\mathrm{R}^{*}\left(\left\{p_{1}, p_{2}, \cdots, p_{r}\right\} \mid \Omega_{\ell}\right)$.

Note that the set of resolution $\mathrm{R}\left(\left\{p_{1}, p_{2}, \cdots, p_{r}\right\} \mid \Omega_{\ell}\right)$ designs is a subset of resolution $\mathrm{R}^{*}\left(\left\{p_{1}, p_{2}, \cdots, p_{r}\right\} \mid \Omega_{\ell}\right)$ designs. For example, a resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ design is of resolution $\mathrm{R}\left(\omega \mid \Omega_{3}\right)$, where $\omega=\{1\},\{0,1\},\{1,2\},\{1,3\},\{0,1,2\},\{0,1,3\}$, $\{1,2,3\}$ or $\{0,1,2,3\}$. Here when a design is derived from an SA, where the number of assemblies (or treatment combinations) is less than the number of non-negligible factorial effects, there does not exist a resolution $\mathrm{R}\left(\{1,2\} \mid \Omega_{3}\right), \mathrm{R}\left(\{1,3\} \mid \Omega_{3}\right)$, $\mathrm{R}\left(\{0,1,3\} \mid \Omega_{3}\right), \mathrm{R}\left(\{1,2,3\} \mid \Omega_{3}\right)$ or $\mathrm{R}\left(\{0,1,2,3\} \mid \Omega_{3}\right)$ design (see Table 4.1 in latter).
In a practical experiment, the most interesting factorial effect may be the main effect, next may be the two-factor interaction, and so on. Using the algebraic structure of the TMDPB association scheme and the matrix equations, Kuwada et al. (2003) obtained a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$. However their results are very complex. A necessary and sufficient condition for an SA to be a 2^{m}-BFF design of resolution $2 \ell+1$ for general ℓ has been obtained by Hyodo et al. (2015), where $2 \ell \leq m$.

In this paper, we consider a $2^{m}-B F F$ design derived from an SA such that the number of assemblies is less than the number of factorial effects up to the ℓ-factor interaction, where $\ell=2,3$. Under these situations, using the suffixes of the indices λ_{x} of an SA, we give a necessary and sufficient condition for an SA to be a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$, i.e., of resolution IV, and also we rewrite a necessary and sufficient condition for an SA to be a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.

2. Preliminaries

We consider a 2^{m}-FF design T with m factors and N assemblies, where $2 \ell \leq m$, and the $(\ell+1)$-factor and higher-order interactions are assumed to be negligible. Then the linear model is given by $\boldsymbol{y}(T)=E_{T} \boldsymbol{\Theta}+\boldsymbol{e}_{T}$, where $\boldsymbol{y}(T)$ is an $N \times 1$ observation vector, E_{T} is the $N \times v_{\ell}(m)$ design matrix, $\boldsymbol{\Theta}^{\prime}=\left(\boldsymbol{\theta}_{0}^{\prime} ; \boldsymbol{\theta}_{1}^{\prime} ; \cdots ; \boldsymbol{\theta}_{\ell}^{\prime}\right)$, and \boldsymbol{e}_{T} is an $N \times 1$ error vector with mean $\boldsymbol{0}_{N}$ and variance-covariance matrix $\sigma^{2} I_{N}$. Here $\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}, \cdots$, and $\boldsymbol{\theta}_{\ell}$ are the general mean, the vector of the main effect, \cdots, and the vector of the ℓ-factor interaction, respectively, $\nu_{\ell}(m)=\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{\ell}$, and I_{p} is the identity matrix of order p. The normal equations for estimating $\boldsymbol{\Theta}$ are given by $M_{T} \hat{\boldsymbol{\Theta}}=E_{T}^{\prime} \boldsymbol{y}(T)$, where $M_{T}=E_{T}^{\prime} E_{T}$ is the information matrix of order $v_{\ell}(m)$. If M_{T} is non-singular, then T is of resolution $2 \ell+1$.
Let $A_{\alpha}^{(u, v)}\left(=A_{\alpha}^{(v, u) \prime}\right)(0 \leq \alpha \leq u \leq v \leq \ell)$ be the local association matrices of size $\binom{m}{u} \times\binom{ m}{v}$ of the TMDPB association scheme, and further let $A_{\beta}^{\#(u, v)}\left(=A_{\beta}^{\left.\#(v, u)^{\prime}\right)}\right)(0 \leq \beta \leq u \leq v \leq \ell)$ be the matrices of size $\binom{m}{u} \times\binom{ m}{v}$ (see Yamamoto et al., 1976), where the relation between $A_{\alpha}^{(u, v)}$ and $A_{\beta}^{\#(u, v)}$ is given by

$$
A_{\alpha}^{(u, v)}=\sum_{\beta=0}^{u} z_{\beta \alpha}^{(u, v)} A_{\beta}^{\#(u, v)} \quad \text { for } 0 \leq \alpha \leq u \leq v
$$

and

$$
A_{\beta}^{\#(u, v)}=\sum_{\alpha=0}^{u} z_{(u, v)}^{\beta \alpha} A_{\alpha}^{(u, v)} \quad \text { for } 0 \leq \beta \leq u \leq v .
$$

Here
and

$$
z_{(u, v)}^{\beta \alpha}=\phi_{\beta} z_{\beta \alpha}^{(u, v)} /\left\{\binom{m}{u}\binom{u}{\alpha}\binom{m-u}{v-u+\alpha}\right\} \quad \text { for } u \leq v
$$

(see Shirakura and Kuwada, 1976, and Yamamoto et al., 1976), where $\phi_{\beta}=\binom{m}{\beta}-\binom{m}{\beta-1}$. Then some properties of $A_{\beta}^{\#(u, v)}$ are cited in the following:

$$
\begin{align*}
& A_{\beta}^{\#(u, w)} A_{\gamma}^{\#(w, v)}=\delta_{\beta \gamma} A_{\beta}^{\#(u, v)}, \\
& \sum_{\beta=0}^{u} A_{\beta}^{\#(u, u)}=I_{\binom{m}{u}} \tag{2}
\end{align*}
$$

and

$$
\operatorname{rank}\left\{A_{\beta}^{\#(u, v)}\right\}=\phi_{\beta},
$$

where $\delta_{\beta \gamma}$ is the Kronecker delta.
Let $D_{\alpha}^{(u, v)}\left(=D_{\alpha}^{(v, u) \prime}\right)(0 \leq \alpha \leq u \leq v \leq \ell)$ and $D_{\beta}^{\#(u, v)}\left(=D_{\beta}^{\#(v, u) \prime}\right)(0 \leq \beta \leq u \leq v \leq \ell)$ be the matrices of order $v_{\ell}(m)$ such that the $(u+1)$-th row block and the $(v+1)$-th column block of $D_{\alpha}^{(u, v)}$ and $D_{\beta}^{\#(u, v)}$ are given by $A_{\alpha}^{(u, v)}$ and $A_{\beta}^{\#(u, v)}$, respectively, and zero at elsewhere. Then the information matrix M_{T} is given by

$$
M_{T}=\sum_{\beta=0}^{\ell} \sum_{u=0}^{\ell-\beta} \sum_{v=0}^{\ell-\beta} \kappa_{\beta}^{u, v} D_{\beta}^{\#(u+\beta, v+\beta)}
$$

(see Yamamoto et al., 1976), where T is a $\mathrm{BA}\left(N, m, 2,2 \ell ;\left\{\mu_{i}^{(2 \ell)}\right\}\right)$. Here the relation between $\kappa_{\beta}^{u, v}$ and $\mu_{i}^{(2 \ell)}$ is given by

$$
\begin{equation*}
\kappa_{\beta}^{u, v}\left(=\kappa_{\beta}^{v, u}\right)=\sum_{\alpha=0}^{u+\beta} z_{\beta \alpha}^{(u+\beta, v+\beta)} \gamma_{v-u+2 \alpha} \quad \text { for } 0 \leq u \leq v \leq \ell-\beta \text { and } 0 \leq \beta \leq \ell, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{j}=\sum_{i=0}^{2 \ell} \sum_{p=0}^{j}(-1)^{p}\binom{j}{p}\binom{2 \ell-j}{i-j+p} \mu_{i}^{(2 \ell)} \quad \text { for } 0 \leq j \leq 2 \ell . \tag{4}
\end{equation*}
$$

The relation between the indices $\mu_{i}^{(2 \ell)}$ of a BA of strength 2ℓ and λ_{x} of an SA is given by

$$
\begin{equation*}
\mu_{i}^{(2 \ell)}=\sum_{x=0}^{m}\binom{m-2 \ell}{x-i} \lambda_{x} \quad \text { for } 0 \leq i \leq 2 \ell . \tag{5}
\end{equation*}
$$

Note that size $N\left(=\right.$ number of assemblies) of an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$ is given by $N=\sum_{x=0}^{m}\binom{m}{x} \lambda_{x}$. Furthermore M_{T} is isomorphic to the symmetric matrices $\left\|\kappa_{\beta}^{u, v}\right\|\left(=K_{\beta}\right.$, say) of order $(\ell-\beta+1)$, i.e., there exists an orthogonal matrix P of order $v_{\ell}(m)$ such that

$$
\begin{equation*}
P^{\prime} M_{T} P=\operatorname{diag}\left[K_{0} ; K_{1}, \cdots, K_{1} ; K_{2}, \cdots, K_{2} ; \cdots ; K_{\ell}, \cdots, K_{\ell}\right], \tag{6}
\end{equation*}
$$

where $K_{\beta}(0 \leq \beta \leq \ell)$ are with multiplicities ϕ_{β}. From (6), the following is immediately:
Lemma 2.1. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$. Then the information matrix M_{T} is non-singular, i.e., T is of resolution $2 \ell+1$, if and only if every $K_{\beta}(0 \leq \beta \leq \ell)$ is non-singular, i.e., $\operatorname{rank}\left\{K_{\beta}\right\}=\ell-\beta+1$ for all β.

From (1), and (3) through (5), we have the following (see Hyodo and Yamamoto, 1988):
Lemma 2.2. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$. Then we have

$$
\begin{aligned}
& \kappa_{\beta}^{u, v}=\sum_{x=\beta}^{m-\beta}\left[\left\{2^{\beta} / \sqrt{\binom{m-2 \beta}{u}}\right\}\left\{\left\{\sqrt{\lambda_{x}} \sum_{p=0}^{u}(-1)^{p}\binom{x-\beta}{u-p}\binom{m-\beta-x}{p}\right\} \sqrt{\binom{m-2 \beta}{x-\beta}}\right]\right. \\
& \times\left[\left\{2^{\beta} / \sqrt{\binom{m-2 \beta}{v}}\right\}\left\{\sqrt{\lambda_{x}} \sum_{q=0}^{v}(-1)^{q}\binom{x-\beta}{v-q}\binom{m-\beta-x}{q}\right\} \sqrt{\binom{m-2 \beta}{x-\beta}}\right] \\
& \text { for } 0 \leq u \leq v \leq \ell-\beta, 0 \leq \beta \leq \ell \text {, and } 2 \ell \leq m \text {. }
\end{aligned}
$$

Let $F_{\beta}(0 \leq \beta \leq \ell)$ be the $(\ell-\beta+1) \times(m-2 \beta+1)$ matrices such that the column vector corresponding to the index $\lambda_{x}\left(x \in V_{\beta}\right)$ is given by $\boldsymbol{F}_{\beta}(x)$, where the $(u+1)$-th row of $\boldsymbol{F}_{\beta}(x)$ is given by

$$
\begin{equation*}
\sqrt{\lambda_{x}} \sum_{p=0}^{u}(-1)^{p}\binom{x-\beta}{u-p}\binom{m-\beta-x}{p} \text { for } 0 \leq u \leq \ell-\beta \tag{7}
\end{equation*}
$$

and $V_{\beta}=\left\{x \in N_{0} \mid \beta \leq x \leq m-\beta\right\}$. Here N_{0} is a set of non-negative integers. The ($u+1$)-th row and the ($v+1$)-th column of $K_{\beta}(0 \leq u, v \leq \ell-\beta ; 0 \leq \beta \leq \ell)$ correspond to the $(u+\beta)$-factor interaction and the $(v+\beta)$-factor one, respectively. Thus the $(u+1)$-th row of F_{β} corresponds to the $(u+\beta)$-factor interaction. Then from (7), we can easily obtain the following theorem (e.g., Hyodo et al., 2015):
Theorem 2.1. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $2 \ell \leq m$. Then the matrices $K_{\beta}(0 \leq \beta \leq \ell)$ can be expressed as $K_{\beta}=$ $\left(D_{\beta} F_{\beta} \Lambda_{\beta}\right)\left(D_{\beta} F_{\beta} \Lambda_{\beta}\right)^{\prime}$, where D_{β} and Λ_{β} are the diagonal matrices such that the $(u+1)$-th element $(0 \leq u \leq \ell-\beta)$ of D_{β} and the element of Λ_{β} corresponding to λ_{x} are given by $2^{\beta} / \sqrt{\binom{c-2 \beta}{u}}$ and $\sqrt{\binom{m-2 \beta}{x-\beta}}$, respectively.

It follows from Theorem 2.1 that $\operatorname{rank}\left\{K_{\beta}\right\}=\operatorname{r-rank}\left\{F_{\beta}\right\}$, where $r-\operatorname{rank}\{A\}$ denotes the row rank of a matrix A. In order to obtain the rank of a matrix A, we sometimes apply the "elementary row operations" on it. In this case, we positively use the notation "r-rank" instead of the rank. Let $S V_{\beta}=\left\{x \in V_{\beta} \mid \lambda_{x} \neq 0\right\}(0 \leq \beta \leq \ell)$, and further let $\operatorname{NSV}_{\beta}$ be the cardinal number of $S V_{\beta}$. Then the following is obtained (see Hyodo et al., 2015):

Theorem 2.2. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $2 \ell \leq m$. Then it holds that $\mathrm{r}-\operatorname{rank}\left\{F_{\beta}\left(x_{1}, x_{2}, \cdots, x_{n_{\beta}}\right)\right\}=\min \left(n_{\beta}, \ell-\beta+1\right)$ for $\left\{x_{1}, x_{2}, \cdots, x_{n_{\beta}}\right\} \subset S V_{\beta}(0 \leq \beta \leq \ell)$, where $F_{\beta}\left(x_{1}, x_{2}, \cdots, x_{n_{\beta}}\right)=\left(\boldsymbol{F}_{\beta}\left(x_{1}\right), \boldsymbol{F}_{\beta}\left(x_{2}\right), \cdots, \boldsymbol{F}_{\beta}\left(x_{n_{\beta}}\right)\right)$. Furthermore the first $\min \left(n_{\beta}, \ell-\beta+1\right)$ rows of $F_{\beta}\left(x_{1}, x_{2}, \cdots, x_{n_{\beta}}\right)$ are linearly independent.

The following is due to Ghosh and Kuwada (2001):
Lemma 2.3. Let $K=\left\|K_{i j}\right\|$ and $L=\left\|L_{i j}\right\|(i, j=1,2,3)$ be a positive semi-definite matrix of order n with $\operatorname{rank}\{K\}=$ $\operatorname{rank}\left\{\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)\right\}=n_{1}+n_{2}(\geq 1)$ and some matrix of order n such that $L_{11}=I_{n_{1}}$ and $L_{1 j}=L_{j 1}^{\prime}=O_{n_{1} \times n_{j}}(j=2,3)$, respectively, where $K_{i j}$ and $L_{i j}$ are both of size $n_{i} \times n_{j}$, and $n_{1}+n_{2}+n_{3}=n$. Then a matrix equation $X K=L$ with parameter matrix X of order n has a solution if and only if
(i) $n_{3}=0$, where if $n_{2} \geq 1$, then L_{22} is arbitrary, or
(ii) $n_{3} \geq 1$, and moreover
(1) when $n_{2}=0, K_{33}=O_{n_{3} \times n_{3}}$, and furthermore $L_{33}=O_{n_{3} \times n_{3}}$, or
(2) when $n_{2} \geq 1$, there exists a matrix W of size $n_{3} \times n_{2}$ such that $K_{3 j}=W K_{2 j}(j=1,2,3)$, and furthermore $L_{i 3}=L_{i 2} W^{\prime}(i=2,3)$, where $L_{i 2}$ are arbitrary.

Remark 2.1. In Lemma 2.3.(i) and (ii)(2), when $n_{2} \geq 1$, without loss of generality, we can put $L_{22}=I_{n_{2}}$ and $L_{23}=L_{32}^{\prime}$ ($=W^{\prime}$) (if $n_{3} \geq 1$), and hence $L_{33}=W W^{\prime}$. Furthermore we have $W=K_{32} K_{22}^{-1}$.
Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $2 \ell \leq m$. Then a set of parametric functions $H \boldsymbol{\Theta}$ is estimable if and only if there exists a matrix X of order $\nu_{\ell}(m)$ such that $X M_{T}=H$, where H and X are given by

$$
H=\sum_{\beta=0}^{\ell} \sum_{u=0}^{\ell-\beta} \sum_{v=0}^{\ell-\beta} h_{\beta}^{u, v} D_{\beta}^{\#(u+\beta, v+\beta)} \text { and } X=\sum_{\beta=0}^{\ell} \sum_{u=0}^{\ell-\beta} \sum_{v=0}^{\ell-\beta} \chi_{\beta}^{u, v} D_{\beta}^{\#(u+\beta, v+\beta)},
$$

where $2 \ell \leq m$. Thus there exist matrices X_{β} such that $X_{\beta} K_{\beta}=H_{\beta}$ for all $\beta(0 \leq \beta \leq \ell)$ if and only if T is of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$, where

$$
\begin{aligned}
& H_{0}=\left(\begin{array}{ccccc}
h_{0}^{0,0} & 0 & h_{0}^{0,2} & \cdots & h_{0}^{0, \ell} \\
0 & 1 & 0 & \cdots & 0 \\
h_{0}^{2,0} & 0 & h_{0}^{2,2} & \cdots & h_{0}^{2, \ell} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{0}^{\ell, 0} & 0 & h_{0}^{\ell, 2} & \cdots & h_{0}^{\ell, \ell}
\end{array}\right), H_{1}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & h_{1}^{1,1} & \cdots & h_{1}^{1, \ell-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & h_{1}^{\ell-1,1} & \cdots & h_{1}^{\ell-1, \ell-1}
\end{array}\right) \\
& \text { and } H_{\gamma}=\left(\begin{array}{ccc}
h_{\gamma}^{0,0} & \cdots & h_{\gamma}^{0, \ell-\gamma} \\
\vdots & \ddots & \vdots \\
h_{\gamma}^{\ell-\gamma, 0} & \cdots & h_{\gamma}^{\ell-\gamma, \ell-\gamma}
\end{array}\right) \text { for } \gamma \geq 2 .
\end{aligned}
$$

Let $B=\operatorname{diag}\left[B_{1}, B_{2}, B_{3}\right], C^{\prime}=\left(C_{1}^{\prime} C_{2}^{\prime} C_{3}^{\prime}\right)$ and Δ be a diagonal and non-singular matrix of order $n\left(=n_{1}+n_{2}+n_{3}\right)$, a matrix of size $n \times p$ with r-rank $\{C\}=$ r-rank $\left\{\binom{C_{1}}{C_{2}}\right\}=n_{1}+n_{2}$, and a diagonal and non-singular matrix of order p, respectively, where B_{i} and $C_{i}(i=1,2,3)$ are of order n_{i} and of size $n_{i} \times p$, respectively. Then we have the following:

Lemma 2.4. Let $Z=\left\|Z_{i j}\right\|(i, j=1,2,3)$ be a matrix of order $n\left(=n_{1}+n_{2}+n_{3}\right)$, where $Z_{i j}$ are of size $n_{i} \times n_{j}$, and let $K\left(=\left\|K_{i j}\right\|\right)=(B C \Delta)(B C \Delta)^{\prime}$ and $K_{i j}=\left(B_{i} C_{i} \Delta\right)\left(B_{j} C_{j} \Delta\right)^{\prime}$, and further let $L=\left\|L_{i j}\right\|$ be a matrix given by Lemma 2.3. Then a matrix equation $Z K=L$ has a solution if and only if
(i) $n_{3}=0$, where if $n_{2} \geq 1$, then L_{22} is arbitrary, or
(ii) $n_{3} \geq 1$, and moreover
(1) when $n_{2}=0$, it holds $C_{3}=O_{n_{3} \times p}$, and furthermore $L_{33}=O_{n_{3} \times n_{3}}$, or
(2) when $n_{2} \geq 1$, there exists a matrix $W_{2}^{*}\left(=C_{3} C_{2}^{\prime}\left(C_{2} C_{2}^{\prime}\right)^{-1}\right)$ of size $n_{3} \times n_{2}$ such that $C_{3}=W_{2}^{*} C_{2}$, and furthermore $L_{i 3}=L_{i 2}\left(B_{3} W_{2}^{*} B_{2}^{-1}\right)^{\prime}(i=2,3)$, where $L_{i 2}$ are arbitrary.

Proof. (i) When $n_{3}=0$, if $n_{2} \geq 1$, then from Lemma 2.3.(i), we have the required result.
(ii)(1) When $n_{3} \geq 1$ and $n_{2}=0$, it follows from Lemma 2.3.(ii)(1) that $K_{33}=\left(B_{3} C_{3} \Delta\right)\left(B_{3} C_{3} \Delta\right)^{\prime}=B_{3} C_{3} \Delta \Delta^{\prime} C_{3}^{\prime} B_{3}^{\prime}=O_{n_{3} \times n_{3}}$, and hence $C_{3} \Delta \Delta^{\prime} C_{3}^{\prime}=O_{n_{3} \times n_{3}}$, which implies $C_{3} \Delta=O_{n_{3} \times p}$. Thus we get $C_{3}=O_{n_{3} \times p}$, and hence $L_{33}=O_{n_{3} \times n_{3}}$.
(2) When $n_{i} \geq 1(i=2,3)$, from Lemma 2.3.(ii)(2), there exists a matrix W_{2} of size $n_{3} \times n_{2}$ such that $K_{3 j}=W_{2} K_{2 j}$ $(j=1,2,3)$. Since r-rank $\{C\}=\operatorname{r-rank}\left\{\binom{C_{1}}{C_{2}}\right\}=n_{1}+n_{2}$, there exists a matrix $\left(\begin{array}{ll}W_{1}^{*} & \left.W_{2}^{*}\right) \text { of size } n_{3} \times\left(n_{1}+n_{2}\right)\end{array}\right.$ such that $C_{3}=\left(\begin{array}{ll}W_{1}^{*} & W_{2}^{*}\end{array}\right)\binom{C_{1}}{C_{2}}$, where $W_{k}^{*}(k=1,2)$ are of size $n_{3} \times n_{k}$. Then $K_{3 j}=\left(B_{3} C_{3} \Delta\right)\left(B_{j} C_{j} \Delta\right)^{\prime}=$ $\left\{B_{3}\left(W_{1}^{*} W_{2}^{*}\right)\binom{C_{1}}{C_{2}} \Delta\right\}\left(B_{j} C_{j} \Delta\right)^{\prime}=B_{3}\left\{W_{1}^{*} B_{1}^{-1}\left(B_{1} C_{1} \Delta\right)\right\}\left(B_{j} C_{j} \Delta\right)^{\prime}+B_{3}\left\{W_{2}^{*} B_{2}^{-1}\left(B_{2} C_{2} \Delta\right)\right\}\left(B_{j} C_{j} \Delta\right)^{\prime}=B_{3} W_{1}^{*} B_{1}^{-1} K_{1 j}+B_{3} W_{2}^{*}$ $\times B_{2}^{-1} K_{2 j}=\left(\begin{array}{lll}B_{3} W_{1}^{*} B_{1}^{-1} & B_{3} W_{2}^{*} B_{2}^{-1}\end{array}\right)\binom{K_{1 j}}{K_{2 j}}$. Thus we have $\left(\begin{array}{lll}K_{31} & K_{32}\end{array}\right)=\left(\begin{array}{lll}B_{3} W_{1}^{*} B_{1}^{-1} & B_{3} W_{2}^{*} B_{2}^{-1}\end{array}\right)\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)$ $=\left(O_{n_{3} \times n_{1}} W_{2}\right)\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)$. Since $\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)$ is non-singular, we get $B_{3} W_{1}^{*} B_{1}^{-1}=O_{n_{3} \times n_{1}}$, i.e., $W_{1}^{*}=O_{n_{3} \times n_{1}}$, and $W_{2}=B_{3} W_{2}^{*} B_{2}^{-1}$.
From Lemma 2.3, the converse is obvious, and hence the required result is obtained.
Let \bar{T} be an array obtained by interchanging all of symbols 0 and 1 of T, where T is an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$. Then it can be easily shown that \bar{T} is also an $\operatorname{SA}\left(m ;\left\{\bar{\lambda}_{x}\right\}\right)$, where $\bar{\lambda}_{x}=\lambda_{m-x}$ for $0 \leq x \leq m$ (e.g., Shirakura and Kuwada, 1975). Note that \bar{T} is called a complementary SA (CSA) of T. Furthermore if T is of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$, then \bar{T} is also of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$.

If $N \geq v_{\ell}(m)$, then there always exists a $2^{m}-B F F$ design of resolution $2 \ell+1$ (see Hyodo et al., 2015). Thus in the rest of this paper, we consider a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$ derived from an SA with $N<v_{\ell}(m)$ for $\ell=2,3$.

3. Resolution $R^{*}\left(\{1\} \mid \mathbf{\Omega}_{\mathbf{2}}\right)$ designs

We now consider case $\ell=2$. Then it follows from (7) that $\boldsymbol{F}_{\beta}(x)(0 \leq \beta \leq 2)$ are given by

$$
\begin{align*}
& \boldsymbol{F}_{0}(x)=\sqrt{\lambda_{x}}\left(\begin{array}{c}
1 \\
2 x-m \\
\left\{(2 x-m)^{2}-m\right\} / 2
\end{array}\right) \text { for } x \in V_{0} \tag{8a}\\
& \boldsymbol{F}_{1}(x)=\sqrt{\lambda_{x}}\binom{1}{2 x-m} \quad \text { for } x \in V_{1} \tag{8b}
\end{align*}
$$

and

$$
\begin{equation*}
F_{2}(x)=\sqrt{\lambda_{x}}(1) \quad \text { for } x \in V_{2} \tag{8c}
\end{equation*}
$$

Let

$$
\begin{equation*}
f_{\beta}(x ; m)=\left\{(2 x-m)^{2}+(2 \beta-m)\right\} / 2 \quad \text { for } x \in V_{\beta}(\beta=0,1) . \tag{9}
\end{equation*}
$$

Then we have the following:

Lemma 3.1. If $f_{\beta}\left(x_{1} ; m\right)=f_{\beta}\left(x_{2} ; m\right)$ for $\left\{x_{1}, x_{2}\right\} \subset V_{\beta}(\beta=0,1)$, then $x_{1}+x_{2}-m=0$.
Proof. If $f_{\beta}\left(x_{1} ; m\right)=f_{\beta}\left(x_{2} ; m\right)$ for $\left\{x_{1}, x_{2}\right\} \subset V_{\beta}(\beta=0,1)$, i.e., $\left\{\left(2 x_{1}-m\right)^{2}+(2 \beta-m)\right\} / 2=\left\{\left(2 x_{2}-m\right)^{2}+(2 \beta-m)\right\} / 2$, then we have $\left(2 x_{1}-m\right)^{2}-\left(2 x_{2}-m\right)^{2}=4\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}-m\right)=0$. Thus we get the required result.
The following is the main results of this section:
Theorem 3.1. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $S V_{0}=\left\{x_{1}, x_{2}, \cdots, x_{\mathrm{NSV}_{0}}\right\}, N<v_{2}(m)$ and $m \geq 4$. Then a necessary and sufficient condition for T to be a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$, i.e., of resolution IV , is that non-zero indices of an SA satisfy the following:
(i) When $\mathrm{NSV}_{0}=2, x_{1}=1$ and $x_{2}=m-1$,
(ii) when $\mathrm{NSV}_{0}=3$,
(1) $x_{1}=0, x_{2}=1$ and $x_{3}=m-1$, or its CSA, or
(2) $x_{1}=0, x_{2}=2$ and $x_{3}=4$, where $m=4$
and
(iii) when $\mathrm{NSV}_{0}=4, x_{1}=0, x_{2}=1, x_{3}=m-1$ and $x_{4}=m$.

Proof. See Appendix.

From Theorems 2.1 and 2.2, Lemmas 2.3 and 2.4, and Remark 2.1, we have the following:
Theorem 3.2. If T is a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$, i.e., of resolution IV, derived from an $\mathrm{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $m \geq 4$ and $N<v_{2}(m)$, and moreover
(i) when $\mathrm{NSV}_{0}=2, A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\left[\left\{1 / \sqrt{\binom{m}{2}}\right\} f_{0}\left(x_{i} ; m\right)\right] A_{0}^{\#(0,2)} \boldsymbol{\theta}_{2}(i=1,2)$ and $A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}$ are estimable, where $\left\{x_{1}, x_{2}\right\}=S V_{0}$ and $f_{0}(x ; m)$ is given by (9), and furthermore if $f_{0}\left(x_{i} ; m\right)=0$ for all i, then $A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}$ is estimable and $A_{0}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is not estimable,
(ii) when $\mathrm{NSV}_{1}=1, A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}$ is estimable and $A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is not estimable,
(iii) when $\mathrm{NSV}_{2}=0, A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is not estimable
and
(iv) when $\mathrm{NSV}_{\beta} \geq 3-\beta(0 \leq \beta \leq 2), A_{\beta}^{\#(u, u)} \boldsymbol{\theta}_{u}(\beta \leq u \leq 2)$ are estimable.

Note from (2) that if $A_{\beta}^{\#(u, u)} \boldsymbol{\theta}_{u}$ are estimable for all $\beta(0 \leq \beta \leq u \leq 2)$, then $\boldsymbol{\theta}_{u}$ is estimable. The results of Theorem 3.1, and estimable parametric functions and the resolution $\mathrm{R}\left(\omega \mid \Omega_{2}\right)$ for each design are summarized in Table 3.1.
Let $K_{\beta}^{(0)}(0 \leq \beta<\ell)$ be the matrices of order $(\ell-\beta)$ obtained from K_{β} by cutting off its last row and column, and further let $\boldsymbol{k}_{\beta}^{1 \prime}=\left(\kappa_{\beta}^{0,0} \kappa_{\beta}^{0,1} \cdots \kappa_{\beta}^{0, \ell-\beta}\right)$ and $\boldsymbol{k}_{\beta}^{2 \prime}=\left(\kappa_{\beta}^{\ell-\beta, 0} \kappa_{\beta}^{\ell-\beta, 1} \cdots \kappa_{\beta}^{\ell-\beta, \ell-\beta}\right)$. Then we have the following due to Shirakura (1980):
Proposition 3.1. A necessary and sufficient condition for a $\mathrm{BA}\left(N, m, 2,2 \ell ;\left\{\mu_{i}^{(2 \ell)}\right\}\right), T$, say, to be a $2^{m}-\mathrm{BFF}$ design of resolution 2ℓ is that T satisfies the following condition:
For r integers $0 \leq \beta_{1}<\beta_{2}<\cdots<\beta_{r} \leq \ell$ with $\left|K_{\beta_{j}}\right|=0$ and $\left|K_{\alpha}\right| \neq 0\left(\alpha \neq \beta_{j}(1 \leq j \leq r) ; 0 \leq \alpha \leq \ell\right)$,
(i) when $\beta_{1}=0$, there exists a scalar d such that $\boldsymbol{k}_{0}^{2}=d \boldsymbol{k}_{0}^{1},\left|K_{0}^{(0)}\right| \neq 0, \kappa_{\beta_{j}}^{\ell-\beta_{j} \ell-\beta_{j}}=0\left(1 \leq \beta_{j} \leq \ell\right)$ and $\left|K_{\beta_{j}}^{(0)}\right| \neq 0\left(1 \leq \beta_{j} \leq\right.$ $\ell-1)$
and
(ii) when $\beta_{1} \geq 1, \kappa_{\beta_{j}}^{\ell-\beta_{j}, \ell-\beta_{j}}=0\left(1 \leq \beta_{j} \leq \ell\right)$ and $\left|K_{\beta_{j}}^{(0)}\right| \neq 0\left(1 \leq \beta_{j} \leq \ell-1\right)$,
where $|A|$ denotes the determinant of a matrix A.
In a theoretical sense, Proposition 3.1 above is a very useful result. However it is not always practical. Because the elements $\kappa_{\beta}^{u, v}$ of $K_{\beta}(0 \leq u \leq v \leq \ell-\beta ; 0 \leq \beta \leq \ell)$ are given by some linear combinations of the indices $\mu_{i}^{(2 \ell)}$ of a BA (or λ_{x} of an SA) (see (3) and (4)). Hence it is not always easy to obtain $\mu_{i}^{(2 \ell)}$ (or λ_{x}) such that these indices satisfy some conditions. As an example, we consider case $\ell=2$:

Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $m \geq 4$. Then from (3) through (5), we have

$$
\begin{aligned}
& \kappa_{0}^{0,0}=\sum_{x=0}^{m}\binom{m}{x} \lambda_{x}(=N), \\
& \kappa_{0}^{0,1}\left(=\kappa_{0}^{1,0}\right)=\left\{1 / \sqrt{\binom{m}{1}}\right\} \sum_{x=0}^{m}(2 x-m)\binom{m}{x} \lambda_{x}, \\
& \kappa_{0}^{0,2}\left(=\kappa_{0}^{2,0}\right)=\left[1 /\left\{2 \sqrt{\binom{m}{2}}\right)\right\} \sum_{x=0}^{m}\left\{(2 x-m)^{2}-m\right\}\binom{m}{x} \lambda_{x}, \\
& \kappa_{0}^{1,1}=\left\{1 /\binom{m}{1}\right\} \sum_{x=0}^{m}(2 x-m)^{2}\binom{m}{x} \lambda_{x}, \\
& \kappa_{0}^{1,2}\left(=\kappa_{0}^{2,1}\right)=\left[1 /\left\{2 \sqrt{\binom{m}{1}\binom{m}{2}}\right)\right\} \sum_{x=0}^{m}(2 x-m)\left\{(2 x-m)^{2}-m\right\}\binom{m}{x} \lambda_{x}, \\
& \kappa_{0}^{2,2}=\left[1 /\left\{4\binom{m}{2}\right\}\right] \sum_{x=0}^{m}\left\{(2 x-m)^{2}-m\right\}^{2}\binom{m}{x} \lambda_{x}, \\
& \kappa_{1}^{0,0}=2^{2} \sum_{x=1}^{m-1}\binom{m-2}{x-1} \lambda_{x}, \\
& \kappa_{1}^{0,1}\left(=\kappa_{1}^{1,0}\right)=\left\{\begin{array}{c}
2
\end{array}\right) \sqrt{\left.\binom{m-2}{1}\right\} \sum_{x=1}^{m-1}(2 x-m)\binom{m-2}{x-1} \lambda_{x},} \\
& \kappa_{1}^{1,1}=\left\{2^{2} /\binom{m-2}{1}\right\} \sum_{x=1}^{m-1}(2 x-m)^{2}\binom{m-2}{x-1} \lambda_{x}
\end{aligned}
$$

and

$$
\kappa_{2}^{0,0}=\sum_{x=2}^{m-2}\binom{m-4}{x-2} \lambda_{x} .
$$

Thus it can be easily shown that $\kappa_{1}^{1,1}=0$ if and only if there exists $\lambda_{x^{*}}$ such that $\left(2 x^{*}-m\right)^{2}=0$ for $x^{*} \in S V_{1}$, and $\kappa_{2}^{0,0}=0$ if and only if $\lambda_{x^{* * 1}}=0$ for any $x^{* *} \in V_{2}$. However it is not so easy to obtain the indices λ_{x} such that $\boldsymbol{k}_{0}^{2 \prime}\left(=\left(\kappa_{0}^{2,0} \kappa_{0}^{2,1} \kappa_{0}^{2,2}\right)\right)=$ $d \boldsymbol{k}_{0}^{1 \prime}\left(=d\left(\kappa_{0}^{0,0} \kappa_{0}^{0,1} \kappa_{0}^{0,2}\right)\right)$ for $x \in S V_{0}$ and some d, that is to say, to obtain λ_{x} such that the system of the linear equations $\kappa_{0}^{2, u}=d \kappa_{0}^{0, u}(u=0,1,2)$ satisfies for $x \in S V_{0}$ and some d. On the other hand, the elements of $F_{\beta}(0 \leq \beta \leq 2)$ are given by some polynomial of x of the indices λ_{x} of an SA (e.g., Hyodo et al., 2015) as seen from (8). In particular, the element of the first row of F_{β} is all one. Thus it follows from Theorem 2.2 and (8) that if r-rank $\left\{F_{0}\right\}=2<3$, then there exist two indices $\lambda_{x_{i}}(i=1,2)$ such that $x_{i} \in S V_{0}$ and the elements of the last row of $F_{0}\left(x_{1}, x_{2}\right)$ are the same constants, i.e., $f_{0}\left(x_{1} ; m\right)=f_{0}\left(x_{2} ; m\right)$, where $f_{0}(x ; m)$ is given by (9). Next if $\mathrm{r}-\mathrm{rank}\left\{F_{1}\right\}=1<2$, then there exists an index $\lambda_{x^{*}}$ such that $x^{*} \in S V_{1}$ and the last row of $\boldsymbol{F}_{1}\left(x^{*}\right)$ is 0 , i.e., $2 x^{*}-m=0$, and if $\mathrm{r}-\operatorname{rank}\left\{F_{2}\right\}=0<1$, then $F_{2}\left(x^{* *}\right)=0$ for any $x^{* *} \in V_{2}$, i.e., $\lambda_{x^{* *}}=0$. Thus in order to obtain the indices λ_{x} of an SA such that they satisfy some conditions, the matrices F_{β} and Theorem 2.2 are very powerful.
Table 3.1. 2^{m}-BFF designs of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$ with $N<\nu_{2}(m)(m \geq 4)$

Theo	m 3.1	Existence conditions ($\lambda_{x_{i}} \neq 0\left(i=1,2, \cdots, \mathrm{NSV}_{0}\right)$)	Estimable parametric functions	Resolution $\mathrm{R}\left(\omega \mid \Omega_{2}\right)$
(i)		$x_{1}=1, x_{2}=m-1$	$\begin{aligned} & A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\left[(m-1)(m-4) /\left\{2 \sqrt{\binom{m}{2}}\right\}\right] A_{0}^{\#(0,2)} \boldsymbol{A}_{2}: \\ & \text { estimable, }, \\ & A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}: \text { estimable, } \\ & \left.A_{0}^{\#(1,2)} \boldsymbol{\theta}_{2}: \text { not estimable (if } m=4\right), \\ & A_{1}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(u=1,2), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}: \text { not estimable } \end{aligned}$	$\begin{aligned} & \omega=\{0,1\}\text { (if } m=4) \\ &\{1\} \quad(\text { if } m \geq 5) \end{aligned}$
(ii)	(1)	$x_{1}=0, x_{2}=1, x_{3}=m-1$, or its CSA	$\begin{aligned} & A_{\gamma}^{(u, u)} \boldsymbol{\theta}_{u} \text { : estimable }(\gamma \leq u \leq 2 ; \gamma=0,1), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}: \text { not estimable } \\ & \hline \end{aligned}$	$\omega=\{0,1\}$
	(2)	$m=4 ; x_{1}=0, x_{2}=2, x_{3}=4$	$\begin{aligned} & A_{\gamma}^{\frac{\#}{\#(u, u)} \boldsymbol{\theta}_{u}}: \text { estimable }(\gamma \leq u \leq 2 ; \gamma=0,2), \\ & A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}: \text { estimable, } \\ & A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}: \text { not estimable } \end{aligned}$	
(iii)		$x_{1}=0, x_{2}=1, x_{3}=m-1, x_{4}=m$	$\begin{aligned} & A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u} \text { : estimable }(\gamma \leq u \leq 2 ; \gamma=0,1), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}: \text { not estimable } \end{aligned}$	

4. Resolution $\mathbf{R}^{*}\left(\{1\} \mid \Omega_{\mathbf{3}}\right)$ designs

In this section, we consider case $\ell=3$. By use of the properties of the TMDPB association algebra and the matrix equations, a necessary and sufficient condition for an SA to be a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ was already given by Kuwada et al. (2003). However their results are very complex. On the other hand, the elements of $F_{\beta}(0 \leq \beta \leq 3)$ considered here are given by some polynomial of x of the indexes λ_{x} of an SA as in (10) below, and they are very simple. Thus using these matrices F_{β} and Theorem 2.2, we shall rewrite the existence conditions for a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<\nu_{3}(m)$.
From (7), $\boldsymbol{F}_{\beta}(x)(0 \leq \beta \leq 3)$ are given by

$$
\begin{align*}
& \boldsymbol{F}_{0}(x)=\sqrt{\lambda_{x}}\left(\begin{array}{c}
1 \\
2 x-m \\
\left\{(2 x-m)^{2}-m\right\} / 2 \\
(2 x-m)\left\{(2 x-m)^{2}-(3 m-2)\right\} / 6
\end{array}\right) \text { for } x \in V_{0}, \tag{10a}\\
& \boldsymbol{F}_{1}(x)=\sqrt{\lambda_{x}}\left(\begin{array}{c}
1 \\
2 x-m \\
\left\{(2 x-m)^{2}-(m-2)\right\} / 2
\end{array}\right) \text { for } x \in V_{1}, \tag{10b}\\
& \boldsymbol{F}_{2}(x)=\sqrt{\lambda_{x}}\binom{1}{2 x-m} \text { for } x \in V_{2} \tag{10c}
\end{align*}
$$

and

$$
\begin{equation*}
F_{3}(x)=\sqrt{\lambda_{x}}(1) \text { for } x \in V_{3} . \tag{10d}
\end{equation*}
$$

Let

$$
\begin{equation*}
g(x ; m)=(2 x-m)\left\{(2 x-m)^{2}-(3 m-2)\right\} / 6 \quad \text { for } x \in V_{0} \text { and } m \geq 6 . \tag{11}
\end{equation*}
$$

Then we have the following:
Lemma 4.1. (I)(i) If $d_{02}=f_{0}\left(x_{i} ; m\right)$ and $d_{03}=g\left(x_{i} ; m\right)(i=1,2)$ for $\left\{x_{1}, x_{2}\right\} \subset V_{0}$ and $m \geq 6$, where $d_{0 k}(k=2,3)$ are constants, and $f_{0}(x ; m)$ and $g(x ; m)$ are given by (9) and (11), respectively, then
(1) when $m=3 t^{2}+2 t+1(t \geq 1)$, we get $x_{p}=t(3 t-1) / 2(\geq 1)$ and $x_{q}=(t+1)(3 t+2) / 2(\geq 5)$ for $\{p, q\}=\{1,2\}$ and
(2) when $m=3 t^{2}+4 t+2(t \geq 1)$, we get $x_{p}=t(3 t+1) / 2(\geq 2)$ and $x_{q}=(t+1)(3 t+4) / 2(\geq 7)$ for $\{p, q\}=\{1,2\}$.

Here in (1) and (2) just above, we have $d_{02}=m-1$ and $d_{03}=0$.
(ii) If $d_{0}+f_{0}\left(x_{i} ; m\right) d_{2}=g\left(x_{i} ; m\right)(i=1,2,3)$ for $\left\{x_{1}, x_{2}, x_{3}\right\} \subset V_{0}$ and $m \geq 6$, where $d_{k}(k=0,2)$ are constants, then $x_{p}+x_{q}-m \neq 0$ for some $\{p, q\} \subset\{1,2,3\}$ and $\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+(3 m-2)=0$. Here

$$
d_{0}=-\left[\left(2 x_{p}-m\right)^{2}\left(2 x_{q}-m\right)^{2}-m\left\{4\left(x_{p}-x_{q}\right)^{2}-(3 m-2)\right\}-2\left(2 x_{p}-m\right)\left(2 x_{q}-m\right)\right] /\left\{12\left(x_{p}+x_{q}-m\right)\right\}
$$

and

$$
d_{2}=\left\{\left(2 x_{p}-m\right)^{2}+\left(2 x_{p}-m\right)\left(2 x_{q}-m\right)+\left(2 x_{q}-m\right)^{2}-(3 m-2)\right\} /\left\{6\left(x_{p}+x_{q}-m\right)\right\} .
$$

(II)(i) There does not exist a integer $x_{1}^{*} \in V_{1}$ such that $2 x_{1}^{*}-m=0$ and $f_{1}\left(x_{1}^{*} ; m\right)=0$ for $m \geq 6$, where $f_{1}\left(x^{*} ; m\right)$ is given by (9).
(ii) If $\left(2 x_{j}^{*}-m\right) d^{*}=f_{1}\left(x_{j}^{*} ; m\right)(j=1,2)$ for $\left\{x_{1}^{*}, x_{2}^{*}\right\} \subset V_{1}$ and $m \geq 6$, where d^{*} is a constant, then $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+$ $(m-2)=0$. Here $d^{*}=x_{1}^{*}+x_{2}^{*}-m$.

Proof. (I)(i) If $d_{02}=f_{0}\left(x_{i} ; m\right)(i=1,2)$ for $\left\{x_{1}, x_{2}\right\} \subset V_{0}$ and $m \geq 6$, i.e., $f_{0}\left(x_{1} ; m\right)=f_{0}\left(x_{2} ; m\right)$, then from Lemma 3.1, we have $x_{1}+x_{2}-m=0$. In addition, if $d_{03}=g\left(x_{i} ; m\right)(i=1,2)$, i.e., $g\left(x_{1} ; m\right)=g\left(x_{2} ; m\right)$, then $\left(2 x_{p}-m\right)\left\{\left(2 x_{p}-m\right)^{2}-\right.$ $(3 m-2)\}=0$ for some $p \in\{1,2\}$. If $2 x_{p}-m=0$, then $x_{p}=m / 2=x_{q}$ for $q \in\{1,2\} \backslash\{p\}$, and hence $2 x_{p}-m \neq 0$. Thus it must be $\left(2 x_{p}-m\right)^{2}-(3 m-2)=0$. Then it has solutions $x_{p}=(m \pm \sqrt{3 m-2}) / 2$, which must be integers.

Thus we put $3 m-2=s^{2}(s \geq 4)$, and hence $m=\left(s^{2}+2\right) / 3$. If $s=3 t(t \geq 2)$, then $m=3 t^{2}+2 / 3$, if $s=3 t+1(t \geq 1)$, then $m=3 t^{2}+2 t+1$, and if $s=3 t+2(t \geq 1)$, then $m=3 t^{2}+4 t+2$, and hence $s \neq 3 t$. Since $(2 x-m)^{2}-(3 m-2)=0$ for $x \in\left\{x_{1}, x_{2}\right\}$, we get $d_{02}=m-1$ and $d_{03}=0$. Therefore (i) is proved.
(ii) It follows from Theorem 2.2 that the first three rows of $F_{0}\left(x_{1}, x_{2}, x_{3}\right)$ are linearly independent, and hence the first and the third rows of $F_{0}\left(x_{1}, x_{2}, x_{3}\right)$ are also linearly independent. Thus there exists $\left\{x_{p}, x_{q}\right\} \subset\left\{x_{1}, x_{2}, x_{3}\right\}$ such that $f_{0}\left(x_{p} ; m\right) \neq f_{0}\left(x_{q} ; m\right)$, i.e., $x_{p}+x_{q}-m \neq 0$. If $d_{0}+f_{0}\left(x_{i} ; m\right) d_{2}=g\left(x_{i} ; m\right)(i=1,2,3)$, i.e., $d_{0}+\left[\left\{\left(2 x_{i}-m\right)^{2}-m\right\} / 2\right] d_{2}=$ $\left(2 x_{i}-m\right)\left\{\left(2 x_{i}-m\right)^{2}-(3 m-2)\right\} / 6$, where $d_{k}(k=0,2)$ are constants, then we get $d_{0}=-\left[\left(2 x_{p}-m\right)^{2}\left(2 x_{q}-m\right)^{2}-\right.$ $\left.m\left\{4\left(x_{p}-x_{q}\right)^{2}-(3 m-2)\right\}-2\left(2 x_{p}-m\right)\left(2 x_{q}-m\right)\right] /\left\{12\left(x_{p}+x_{q}-m\right)\right\}$ and $d_{2}=\left\{\left(2 x_{p}-m\right)^{2}+\left(2 x_{p}-m\right)\left(2 x_{q}-m\right)+\right.$ $\left.\left(2 x_{q}-m\right)^{2}-(3 m-2)\right\} /\left\{6\left(x_{p}+x_{q}-m\right)\right\}$ for some $\{p, q\} \subset\{1,2,3\}$, where $x_{p}+x_{q}-m \neq 0$. Substituting d_{0} and d_{2} into $d_{0}+f_{0}\left(x_{r} ; m\right) d_{2}=g\left(x_{r} ; m\right)$ for $r \in\{1,2,3\} \backslash\{p, q\}$, we get $\left(2 x_{p}-m\right)\left(2 x_{q}-m\right)+\left(2 x_{q}-m\right)\left(2 x_{r}-m\right)+\left(2 x_{r}-\right.$ $m)\left(2 x_{p}-m\right)+(3 m-2)=\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+(3 m-2)=0$, and hence (ii) is established.
(II)(i) If $2 x_{1}^{*}-m=0$ and $f_{1}\left(x_{1}^{*} ; m\right)=0$ for $x_{1}^{*} \in V_{1}$, i.e., $\left\{\left(2 x_{1}^{*}-m\right)^{2}-(m-2)\right\} / 2=-(m-2) / 2=0$, then $m=2<6$. Thus the required result is obtained.
(ii) If $\left(2 x_{j}^{*}-m\right) d^{*}=f_{1}\left(x_{j}^{*} ; m\right)(j=1,2)$ for $\left\{x_{1}^{*}, x_{2}^{*}\right\} \subset V_{1}$ and $m \geq 6$, i.e., $\left(2 x_{j}^{*}-m\right) d^{*}=\left\{\left(2 x_{j}^{*}-m\right)^{2}-(m-2)\right\} / 2$, then $2\left(x_{1}^{*}-x_{2}^{*}\right) d^{*}=\left\{\left(2 x_{1}^{*}-m\right)^{2}-\left(2 x_{2}^{*}-m\right)^{2}\right\} / 2=2\left(x_{1}^{*}-x_{2}^{*}\right)\left(x_{1}^{*}+x_{2}^{*}-m\right)$. Thus we get $d^{*}=x_{1}^{*}+x_{2}^{*}-m$, and hence $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=0$, which is the required result.
The following is the main theorem of this section:
Theorem 4.1. Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $S V_{0}=\left\{x_{1}, x_{2}, \cdots, x_{\mathrm{NSv}_{0}}\right\}, N<v_{3}(m)$ and $m \geq 6$. Then a necessary and sufficient condition for T to be a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ is that non-zero indices of an SA satisfy the following:
(i) When $\mathrm{NSV}_{0}=3$,
(1) $x_{1}=1, x_{2}=2$ and $x_{3}=5$, where $m=6$, or its CSA,
(2) $x_{1}=1, x_{2}=2$ and $x_{3}=7$, where $m=9$, or its CSA, or
(3) $x_{1}=1, x_{2}=3$ and $x_{3}=5$, where $m=6$,
(ii) when $\mathrm{NSV}_{0}=4$,
(1) $x_{1}=0, x_{2}=1, x_{3}=2$ and $x_{4}=m-1$, or its CSA,
(2) $x_{1}=0, x_{2}=1, x_{3}=m-2$ and $x_{4}=m-1$, or its CSA,
(3) $x_{1}=0, x_{2}=2, x_{3}=4$ and $x_{4}=6$, where $m=6$,
(4) $x_{1}=0, x_{2}=1, x_{3}=2$ and $x_{4}=m-2$, or its CSA,
(5) $x_{1}=0, x_{2}=2, x_{3}=m-2$ and $x_{4}=m-1$, or its CSA,
(6) $x_{1}=1, x_{2}=2, x_{3}=m-2$ and $x_{4}=m-1$, where $m \geq 7$,
(7) $x_{1}=0, x_{2}=1, x_{3}=4$ and $x_{4}=7$, where $m=7$, or its CSA,
(8) $x_{1}=0, x_{2}=1, x_{3}=3$ and $x_{4}=m-1$, or its CSA,
(9) $x_{1}=0, x_{2}=1, x_{3}=m-3$ and $x_{4}=m-1$, where $m \geq 7$, or its CSA, or
(10) $x_{1}=0, x_{2}=1, x_{3}=4$ and $x_{4}=7$, where $m=8$, or its CSA,
(iii) when $\mathrm{NSV}_{0}=5$,
(1) $x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-1$ and $x_{5}=m$, or its CSA,
(2) $x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2$ and $x_{5}=m$, or its CSA,
(3) $x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2$ and $x_{5}=m-1$, where $m \geq 7$, or its CSA,
(4) $x_{1}=0, x_{2}=1, x_{3}=3, x_{4}=m-1$ and $x_{5}=m$, or its $\operatorname{CSA}($ if $m \geq 7)$, or
(5) $x_{1}=0, x_{2}=1, x_{3}=4, x_{4}=7$ and $x_{5}=8$, where $m=8$
(iv) when $\mathrm{NSV}_{0}=6, x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2, x_{5}=m-1$ and $x_{6}=m$, where $m \geq 7$.

Proof. Proof is available in the Appendix.
It follows from Theorems 2.1 and 2.2, Lemmas 2.3, 2.4 and 4.1, and Remark 2.1 that we obtain the following:
Theorem 4.2. If T is a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ derived from an $\mathrm{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, where $m \geq 6$ and $N<v_{3}(m)$, and furthermore
(i) when $\mathrm{NSV}_{0}=3, A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\left[\left\{1 / \sqrt{\binom{m}{3}}\right\} d_{0}\right] A_{0}^{\#(0,3)} \boldsymbol{\theta}_{3}, A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}$ and $A_{0}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left[\left\{\sqrt{\binom{m}{2}} / \sqrt{\binom{m}{3}}\right\} d_{2}\right] A_{0}^{\#(2,3)} \boldsymbol{\theta}_{3}$ are estimable, where $d_{k}(k=0,2)$ are given in Lemma 4.1.(I)(ii). In particular, if $d_{0}=0$, then $A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}=\boldsymbol{\theta}_{0}$ is estimable and $A_{0}^{\#(3,3)} \boldsymbol{\theta}_{3}$ is not estimable, and also if $d_{2}=0$, then $A_{0}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is estimable and $A_{0}^{\#(3,3)} \boldsymbol{\theta}_{3}$ is not estimable.
(ii) When $\mathrm{NSV}_{1}=2, A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}$ and $A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left[\left\{\sqrt{\binom{m-2}{1}} / \sqrt{\binom{m-2}{2}}\right\} d^{*}\right] A_{1}^{\#(2,3)} \boldsymbol{\theta}_{3}$ are estimable, where d^{*} is given in Lemma 4.1.(II)(ii). Particularly if $d^{*}=0$, then $A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is estimable and $A_{1}^{\#(3,3)} \boldsymbol{\theta}_{3}$ is not estimable.
(iii) When $\mathrm{NSV}_{2}=1, A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left[\left\{1 / \sqrt{\binom{m-4}{1}}\right\} d^{* *}\right] A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}$ is estimable, where $d^{* *}=2 x^{* *}-m$ for $x^{* *} \in S V_{2}$. In particular, if $d^{* *}=0$, then $A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is estimable and $A_{2}^{\#(3,3)} \boldsymbol{\theta}_{3}$ is not estimable.
(iv) When $\mathrm{NSV}_{3}=0, A_{3}^{\#(3,3)} \boldsymbol{\theta}_{3}$ is not estimable.
(v) When $\operatorname{NSV}_{\beta} \geq 4-\beta(0 \leq \beta \leq 3), A_{\beta}^{\#(u, u)} \boldsymbol{\theta}_{u}(\beta \leq u \leq 3)$ are estimable.

Analogously to Section 3, if $A_{\beta}^{\#(u, u)} \boldsymbol{\theta}_{u}$ are estimable for all $\beta(0 \leq \beta \leq u \leq 3)$, then $\boldsymbol{\theta}_{u}$ is estimable. In Table 4.1, the results of Theorem 4.1, and estimable parametric functions and the resolution $\mathrm{R}\left(\omega \mid \Omega_{3}\right)$ for each design are summarized.

5. Discussion

The class of BFF designs is a subset of FF designs. Thus there may exist a better FF design than a BFF design with respect to some criterion (e.g., Kuwada, 1982). However BFF designs possess the same advantage over unbalanced designs as a BIB design does over unbalanced or partially balanced designs. In this paper, we restrict our attention to the class of 2^{m}-BFF designs derived from SAs. Under these restrictions, we have given a necessary and sufficient condition for an SA to be a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{\ell}\right)$ for $\ell=2,3$, where $N<v_{\ell}(m)$. As mentioned earlier, if T is an $\mathrm{SA}\left(m ;\left\{\lambda_{x}\right\}\right)$, then it is a $\mathrm{BA}\left(N, m, 2, t ;\left\{\mu_{i}^{(t)}\right\}\right)$ for any $t(1 \leq t \leq m)$, where the relation between $\mu_{i}^{(t)}$ and λ_{x} is given by (5). When $m=t+1$, if there exists a BA of strength t, then it is an SA. However when $m=t+2$, there exists a BA of strength t such that it is not always an SA (e.g., Kuriki and Yamamoto, 1984, and Shirakura, 1977). For example,

$$
T^{\prime}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

is a $\operatorname{BA}\left(N=7, m=4,2, t=2 ;\left\{\mu_{0}^{(2)}=1, \mu_{1}^{(2)}=\mu_{2}^{(2)}=2\right\}\right)$, but it is not an SA.
Let T be an $\operatorname{SA}\left(m ;\left\{\lambda_{1}=\lambda_{m-1}=1, \lambda_{x}=0(x \neq 1, m-1)\right\}\right)$ with $N=2 m$, where $m \geq 6$. Then under the assumption that the three-factor and higher-order interactions are negligible, $A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\left[(m-1)(m-4) /\left\{2 \sqrt{\binom{m}{2}}\right\}\right] A_{0}^{\#(0,2)} \boldsymbol{\theta}_{2}, A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}$ and $A_{1}^{\#(u, u)} \boldsymbol{\theta}_{u}(u=1,2)$ are estimable, and $A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}$ is not estimable (see Table 3.1.(i)). Thus from (2), $A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}+A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{1}$ is estimable, and the general mean is confounded with some of the two-factor interaction. On the other hand, under the assumption that the four-factor and higher-order interactions are negligible,
Table 4.1. $2^{m}-\mathrm{BFF}$ designs of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<v_{3}(m)(m \geq 6)$

Theorem 4.1		Existence conditions ($\lambda_{x_{i}} \neq 0\left(i=1,2, \cdots, \mathrm{NSV}_{0}\right)$)	Estimable parametric functions	$\begin{array}{\|l\|} \hline \text { Resolution } \mathrm{R}\left(\omega \mid \Omega_{3}\right) \\ \hline \omega=\{1\} \end{array}$
(i)	(1)	$m=6 ; \quad x_{1}=1, x_{2}=2, x_{3}=5$, or its CSA	$\begin{aligned} & A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+(\sqrt{5} / 3) A_{0}^{\#(0,3)} \boldsymbol{\theta}_{3}: \text { estimable, } \\ & A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}: \text { estimable, } \\ & A_{0}^{\#(2,2)} \boldsymbol{\theta}_{2}-(1 / \sqrt{3}) A_{0}^{\#(2,3)} \boldsymbol{\theta}_{3}: \text { estimable, } \\ & A^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(u=1,2,3), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}-\sqrt{2} A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}: \text { estimable, } \\ & A_{3}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \end{aligned}$	
	(2)	$m=9 ; \quad x_{1}=1, x_{2}=2, x_{3}=7$, or its CSA	$\begin{aligned} & A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\left\{28 /(3 \sqrt{21}\} A_{0}^{\#(0,3)} \boldsymbol{\theta}_{3}:\right. \text { estimable, } \\ & A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}: \text { estimable, } \\ & A_{0}^{\#(2,2)} \boldsymbol{\theta}_{2}-(\sqrt{7 / 3}) A_{0}^{\#(2,3)} \boldsymbol{\theta}_{3}: \text { estimable, } \\ & A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=1,2), \\ & A_{3}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \end{aligned}$	
	(3)	$m=6 ; x_{1}=1, x_{2}=3, x_{3}=5$	$\begin{aligned} & A_{1}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(u=0,1,2), \\ & A_{0}^{\#(1,3)} \boldsymbol{\theta}_{3}: \text { not estimable, } \\ & A_{\nu}^{(u, u, u} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=1,3), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}: \text { estimable, } \\ & A_{2}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \\ & \hline \end{aligned}$	$\omega=\{0,1,2\}$
(ii)	(1)	$x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-1$, or its CSA	$\begin{aligned} & A_{\gamma}^{(u(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left\{\left(2 x_{3}-m\right) / \sqrt{m-4}\right\} A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}: \end{aligned}$	$\omega=\{0,1\}$
	(2)	$x_{1}=0, x_{2}=1, x_{3}=m-2, x_{4}=m-1$, or its CSA	$A_{\gamma}^{\#(3,3)} \boldsymbol{\theta}_{3}$: not estimable estimable,	
	(3)	$m=6 ; \quad x_{1}=0, x_{2}=2, x_{3}=4, x_{4}=6$	$\begin{aligned} & A_{\gamma}^{(H, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,2), \\ & A_{1}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(u=1,2), \\ & A_{\gamma}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable }(\gamma=1,3) \\ & \hline \end{aligned}$	$\omega=\{0,1,2\}$

Table 4.1. (Continued)

Theorem 4.1 (4)		Existence conditions ($\lambda_{x_{i}} \neq 0\left(i=1,2, \cdots, \mathrm{NSV}_{0}\right)$)		Estimable parametric functions	Resolution $\mathrm{R}\left(\omega \mid \Omega_{3}\right)$
		$x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2$, or its CSA		$\begin{aligned} & A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u} \text { : estimable }(\gamma \leq u \leq 3 ; \gamma=0,1,2), \\ & A_{3}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \end{aligned}$	$\omega=\{0,1,2\}$
	(5)	$x_{1}=0, x_{2}=2, x_{3}=m-2, x_{4}=m-1$, or its CSA			
	(6)	$m \geq 7 ; \quad x_{1}=1, x_{2}=2, x_{3}=m-2, x_{4}=m-1$			
	(7)	$m=7 ; x_{1}=0, x_{2}=1, x_{3}=4, x_{4}=7$, or its CSA		$\begin{aligned} & A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u} \text { : estimable }(\gamma \leq u \leq 3 ; \gamma=0,3), \\ & A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}: \text { estimable, } \\ & A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}-\sqrt{2} A_{1}^{\#(1,3)} \boldsymbol{\theta}_{3}: \text { estimable, } \\ & A_{2(2,2)}^{\#(2)} \boldsymbol{\theta}_{2}+\sqrt{1 / 3} A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3} \text { : estimable } \end{aligned}$	$\omega=\{0,1\}$
	(8)	$x_{1}=0, x_{2}=1, x_{3}=3, x_{4}=m-1$, or its CSA		$\begin{gathered} A_{\gamma}^{(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1,3), \\ A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left\{\left(2 x_{3}-m\right) / \sqrt{m-4}\right\} A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}: \\ \text { estimable, } \\ \left.A_{2}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable (if } 2 x_{3}-m=0\right) \end{gathered}$	$\begin{gathered} \omega=\{0,1,2\} \text { (if } m=6 \text {) } \\ \{0,1\} \quad \text { (if } m \geq 7) \end{gathered}$
	(9)	$m \geq 7 ; \quad x_{1}=0, x_{2}=1, x_{3}=m-3, x_{4}=m-1$, or its CSA			$\omega=\{0,1\}$
	(10)	$m=8 ; x_{1}=0, x_{2}=1, x_{3}=4, x_{4}=7$, or its CSA			$\omega=\{0,1,2\}$
(iii)	(1)	$x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-1, x_{5}=m,$ or its CSA		$\begin{aligned} & A_{\nu}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1), \\ & A_{2}^{\#(2,2)} \boldsymbol{\theta}_{2}+\left\{\left(2 x_{3}-m\right) / \sqrt{m-4}\right\} \\ & A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}: \\ & { }_{3}^{\#(3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \\ & e_{3} \end{aligned}$	$\omega=\{0,1\}$
	(2)	$x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2, x_{5}=m,$ or its CSA		$\begin{aligned} & A_{\gamma}^{\left(\tilde{(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1,2),\right.} \\ & A_{3}^{\left(A_{3}^{(1,3)} \boldsymbol{\theta}_{3}:\right. \text { not estimable }} \end{aligned}$	$\omega=\{0,1,2\}$
	(3)	$\begin{array}{ll} m \geq 7 ; & x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2, x_{5}=m-1, \\ & \text { or its CSA } \end{array}$			
	(4) (5)		$x_{1}=0, x_{2}=1, x_{3}=3, x_{4}=m-1, x_{5}=m,$ or its CSA (if $m \geq 7$) $x_{1}=0, x_{2}=1, x_{3}=4, x_{4}=7, x_{5}=8$	$\begin{gathered} A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1,3), \\ A_{2}^{\#(1,2)} \boldsymbol{\theta}_{2}+\left\{\left(2 x_{3}-m\right) / \sqrt{m-4}\right\} A_{2}^{\#(2,3)} \boldsymbol{\theta}_{3}: \\ \text { estimable, } \\ \left.A_{2}^{\#(1,3)} \boldsymbol{\theta}_{3}: \text { not estimable (if } 2 x_{3}-m=0\right) \end{gathered}$	$\begin{gathered} \omega=\{0,1,2\} \text { (if } m=6) \\ \{0,1\} \quad(\text { if } m \geq 7) \end{gathered}$
(iv)		$\begin{array}{ll} m=8 ; & x_{1}=0, x_{2}=1, x_{3}=4, x_{4}=7, x_{5}=8 \\ \hline m \geq 7 ; & x_{1}=0, x_{2}=1, x_{3}=2, x_{4}=m-2, x_{5}=m-1, \\ & x_{6}=m \end{array}$		$\begin{aligned} & A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u}: \text { estimable }(\gamma \leq u \leq 3 ; \gamma=0,1,2), \\ & A_{3}^{\# 3,3)} \boldsymbol{\theta}_{3}: \text { not estimable } \end{aligned}$	$\omega=\{0,1,2\}$

$$
\begin{aligned}
& \text { r-rank }\left\{F_{0}(1, m-1)\right\} \\
& =\text { r-rank }\left\{\left(\begin{array}{cc}
1 & \begin{array}{c}
1 \\
-(m-2) \\
(m-1)(m-4) / 2
\end{array} \\
-(m-1)(m-2)(m-6) / 6 & (m-1)(m-4) / 2 \\
(m-1)(m-2)(m-6) / 6
\end{array}\right)\right\} \\
& =2<4, \\
& \text { r-rank }\left\{F_{1}(1, m-1)\right\} \\
& =\operatorname{r-rank}\left\{\left(\begin{array}{cc}
1 \\
-(m-2) \\
(m-2)(m-3) / 2 & (m-2)(m-3) / 2
\end{array}\right)\right\} \\
& =2<3
\end{aligned}
$$

and

$$
\mathrm{r}-\operatorname{rank}\left\{F_{2}\right\}=\mathrm{r}-\operatorname{rank}\left\{F_{3}\right\}=0 .
$$

Thus the third row of $F_{0}(1, m-1)$ equals $(m-1)(m-4) / 2$ times the first and its last row equals $(m-1)(m-6) / 6$ times the second, and the last row of $F_{1}(1, m-1)$ equals $(m-2)(m-3) / 2$ times the first. Hence from Lemma 2.4, $A_{0}^{\#(0,0)} \boldsymbol{\theta}_{0}+\{(m-4) \sqrt{(m-1) /(2 m)}\} A_{0}^{\#(0,2)} \boldsymbol{\theta}_{2}, A_{0}^{\#(1,1)} \boldsymbol{\theta}_{1}+[(m-6) \sqrt{(m-1) /\{6(m-2)\}}] A_{0}^{\#(1,3)} \boldsymbol{\theta}_{3}, A_{1}^{\#(1,1)} \boldsymbol{\theta}_{1}+\left\{\sqrt{\binom{m-2}{2}}\right\} A_{1}^{\#(1,3)} \boldsymbol{\theta}_{3}$ and $A_{1}^{\#(2,2)} \boldsymbol{\theta}_{2}$ are estimable, and $A_{\gamma}^{\#(u, u)} \boldsymbol{\theta}_{u}(2 \leq \gamma \leq u \leq 3)$ are not estimable. This implies that the main effect is confounded with some of the three-factor interaction. Therefore if the three-factor and higher-order interactions are negligible, then T is of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$, and hence it is also of resolution $\mathrm{R}\left(\{1\} \mid \Omega_{2}\right)$. However if the three-factor interaction is not negligible, then the main effect is not estimable, and hence it is not of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.

Appendix

In this Appendix, we provide the proofs of Theorems 3.1 and 4.1.
Proof of Theorem 3.1. We shall prove the claim by listing out all possible cases. In these cases, since $S V_{0} \supset S V_{1} \supset S V_{2}$, we have $\mathrm{NSV}_{0} \geq \mathrm{NSV}_{1} \geq \mathrm{NSV}_{2}$, and $\mathrm{NSV}_{\gamma}-\mathrm{NSV}_{\gamma+1} \leq 2$ for $\gamma=0$, 1 . Furthermore when $\mathrm{NSV}_{0} \geq 5$, we have $N \geq 1+1+m+m+\binom{m}{2}>v_{2}(m)$ for $m \geq 4$, and hence $\mathrm{NSV}_{0} \leq 4$. Then the proof starts with case $\mathrm{NSV}_{2}=0$.
[A] When $\mathrm{NSV}_{2}=0$, i.e., $\lambda_{x^{* *}}=0$ for any $x^{* *} \in V_{2}$, from Theorem 2.2, it must be that $1 \leq \mathrm{NSV}_{1} \leq 2$ and $\mathrm{NSV}_{0} \geq 2$. In addition,
[a] when $\operatorname{NSV}_{1}=1$, i.e., $x_{1}^{*}=1$ or $m-1$, we have $\mathrm{r}-\operatorname{rank}\left\{F_{1}\left(x_{1}^{*}\right)\right\}=1<2$. Thus from (8 b), the last row of $F_{1}\left(x_{1}^{*}\right)$ must be 0 , i.e., $2 x_{1}^{*}-m=0$, where $m=2 s \geq 4$. However $2 x_{1}^{*}-m=-(m-2)<0$ and $m-2>0$ for $m \geq 4$ according as $x_{1}^{*}=1$ and $m-1$, respectively. Therefore in this case, there does not exist a $2^{m}-\operatorname{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$.
[b] When $\operatorname{NSV}_{1}=2$, i.e., $x_{1}^{*}=1$ and $x_{2}^{*}=m-1$, we have $\mathrm{r}-\mathrm{rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2$.
[1] When $\operatorname{NSV}_{0}=2$, i.e., $x_{i}=x_{i}^{*}(i=1,2)$, we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}\right)\right\}=2<3$. Thus from (8a), the elements of the last row of $F_{0}\left(x_{1}, x_{2}\right)$ must be the same, i.e., $f_{0}\left(x_{1} ; m\right)=f_{0}\left(x_{2} ; m\right)$, where $f_{0}(x ; m)$ is given by (9). Since $x_{1}+x_{2}-m=0$ and $v_{2}(m)-N \leq v_{2}(m)-2 m=(m-4)(m+1) / 2+3>0$ for $m \geq 4$, it follows from Lemma 3.1 that case (i) is established.
[2] When $\operatorname{NSV}_{0}=2+p(p=1,2)$, i.e., $x_{1}=0$ or m (if $\left.p=1\right)\left(x_{1}=0\right.$ (if $\left.p=2\right)$) and $x_{i+1}=x_{i}^{*}(i=1,2)$ (and $x_{4}=m$ (if $p=2$), we have $\operatorname{r}-\operatorname{rank}\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{2+p}\right)\right\}=3$. Then $v_{2}(m)-N \leq(m-4)(m+1) / 2+(3-p)>0$ for $m \geq 4$ and $p=1,2$. Thus cases (ii)(1) and (iii) are proved.
[B] When $\operatorname{NSV}_{2}=1$, i.e., $2 \leq x_{1}^{* *} \leq m-2$, we have r-rank $\left\{F_{2}\left(x_{1}^{* *}\right)\right\}=1$. When $\operatorname{NSV}_{1}=3$, we have $N \geq 2 m+\binom{m}{2}>v_{2}(m)$ for $m \geq 4$, and hence $\left(\mathrm{NSV}_{2}=1 \leq\right) \mathrm{NSV}_{1} \leq 2$. Furthermore from Theorem 2.2, it must be $\mathrm{NSV}_{0} \geq 2$.
[a] When $\operatorname{NSV}_{1}=1$, i.e., $x_{1}^{*}=x_{1}^{* *}$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}\right)\right\}=1<2$. Thus from (8 b), it must be $2 x_{1}^{*}-m=0$, and hence $x_{1}^{*}=m / 2$, where $m=2 s \geq 4$. Furthermore
[1] when $\operatorname{NSV}_{0}=2$, i.e., $x_{1}=0$ or m and $x_{2}=x_{1}^{*}$, we have $\operatorname{r-rank}\left\{F_{0}\left(x_{1}, x_{2}\right)\right\}=2<3$. Thus it must be $f_{0}\left(x_{1} ; m\right)=f_{0}\left(x_{2} ; m\right)$ for $m \geq 4$. However $x_{1}+x_{2}-m \neq 0$ for $m \geq 4$, and hence, from Lemma 3.1, there does not exist a $2^{m}-B F F$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$.
[2] When $\operatorname{NSV}_{0}=3$, i.e., $x_{1}=0, x_{2}=x_{1}^{*}$ and $x_{3}=m$, we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3$. When $m=4$, we have $8 \leq N<v_{2}(4)=11$, and when $m=2 s \geq 6, v_{2}(m)-N \leq v_{2}(m)-\left\{2+\binom{m}{s}\right\} \leq\binom{ m}{2}+m-\binom{m}{3}-1=$ $-(m-6)\{(m-6)(m+6)+35\} / 6 \leq 0$ for $m=2 s \geq 6$. Thus we get $m=4$, and hence $x_{1}=0, x_{2}=m / 2=2$ and $x_{3}=4$, which is case (ii)(2).
[b] When $\mathrm{NSV}_{1}=2$, i.e., $x_{1}^{*}=1$ or $m-1$ and $x_{2}^{*}=x_{1}^{* *}$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2$. In this case, $N \geq m+\binom{m}{2}=$ $v_{2}(m)-1$, and hence it must be $\mathrm{NSV}_{0}=2$, i.e., $x_{i}=x_{i}^{*}(i=1,2)$. Then we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}\right)\right\}=2<3$. Thus from (8a), it must be $f_{0}\left(x_{1} ; m\right)=f_{0}\left(x_{2} ; m\right)$ for $m \geq 4$. However $x_{1}+x_{2}-m \neq 0$ for $m \geq 4$, and hence, from Lemma 3.1, a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$ does not exist.
[C] When $\operatorname{NSV}_{2}=q \geq 2$, where $(m-2)-1 \geq q$, we have $N \geq q\binom{m}{2} \geq 2\binom{m}{2}>v_{2}(m)$ for $m \geq 3+q$. Thus in this case, there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{2}\right)$ with $N<v_{2}(m)$ for $m \geq 3+q$.
Proof of Theorem 4.1. Similarly to the proof of Theorem 3.1, it will be done by listing out all possible cases. In these cases, we have $S V_{0} \supset S V_{1} \supset S V_{2} \supset S V_{3}$, and hence $\mathrm{NSV}_{0} \geq \mathrm{NSV}_{1} \geq \mathrm{NSV}_{2} \geq \mathrm{NSV}_{3}$, and $\mathrm{NSV}_{\gamma}-\mathrm{NSV}_{\gamma+1} \leq 2$ for $\gamma=0,1,2$. Moreover when $\operatorname{NSV}_{0} \geq 7, N \geq 1+1+m+m+\binom{m}{2}+\binom{m}{2}+\binom{m}{3}>v_{3}(m)$ for $m \geq 6$, and hence $\operatorname{NSV}_{0} \leq 6$. We also begin the proof with $\mathrm{NSV}_{3}=0$.
[A] When $\mathrm{NSV}_{3}=0$ (and hence $\mathrm{NSV}_{2} \leq 2$), i.e., $\lambda_{x^{* * *}}=0$ for any $x^{* * *} \in V_{3}$, it follows from Theorem 2.2 that $\mathrm{NSV}_{1} \geq 1$ and $\mathrm{NSV}_{0} \geq 2$. Moreover
[a] when $\mathrm{NSV}_{2}=0$ (and hence $\mathrm{NSV}_{1} \leq 2$), and furthermore
[1] when $\operatorname{NSV}_{1}=1$, i.e., $x_{1}^{*}=1$ or $m-1$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}\right)\right\}=1<3$. Thus from Lemma 4.1.(II)(i), there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2] When $\operatorname{NSV}_{1}=2$, i.e., $x_{1}^{*}=1$ and $x_{2}^{*}=m-1, \operatorname{r-rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2<3$. Then we have $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+$ $(m-2)=-(m-2)(m-3)<0$ for $m \geq 6$. Therefore from Lemma 4.1.(II)(ii), a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ does not exist.
[b] When $\operatorname{NSV}_{2}=1$ (and hence $\operatorname{NSV}_{1} \leq 3$), i.e., $x_{1}^{* *}=2$ or $m-2$, we have r-rank $\left\{F_{2}\left(x_{1}^{* *}\right)\right\}=1<2$.
[1] When $\operatorname{NSV}_{1}=1$, i.e., $x_{1}^{*}=x_{1}^{* *}$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}\right)\right\}=1<3$. Then from Lemma 4.1.(II)(i), there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2] When $\mathrm{NSV}_{1}=2$, i.e., $x_{1}^{*}=1$ or $m-1$ and $x_{2}^{*}=x_{1}^{* *}$, we have $\mathrm{r}-\mathrm{rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2<3$. When $x_{1}^{*}=1$, $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=(m-2)(m-3)>0$ and $-(m-2)(m-5)<0$ for $m \geq 6$ according as $x_{2}^{*}=2$ and $m-2$, respectively. Thus, it follows from Lemma 4.1.(II)(ii) and the relation of the CSA that there does not exist a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[3] When $\operatorname{NSV}_{1}=3$ (and hence $\operatorname{NSV}_{0} \leq 5$), i.e., $x_{1}^{*}=1, x_{2}^{*}=x_{1}^{* *}$ and $x_{3}^{*}=m-1$, $\operatorname{r-rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)\right\}=3$. In addition,
[3.1] when $\operatorname{NSV}_{0}=3$, i.e., $x_{i}=x_{i}^{*}(i=1,2,3), \operatorname{r}-\operatorname{rank}\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Then $x_{1}+x_{2}-m \neq 0$ for $x_{2}=2$ or $m-2$, and $m \geq 6$. Furthermore from Lemma 4.1.(I)(ii), we have $\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-\right.$ $m)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+(3 m-2)=-(m-1)(m-6)=0$ for $x_{2}=2$ or $m-2$. Thus we get $m=6$, and hence $x_{3}=m-1=5$. In this case, $27 \leq N<v_{3}(6)=42$. Therefore case (i)(1) is established. Here if $x_{2}=2$, then $d_{0}=10 / 3$ and $d_{2}=-2 / 3$, and if $x_{2}=m-2=4$, then $d_{0}=-10 / 3$ and $d_{2}=2 / 3$, where d_{k} ($k=0,2$) are constants given in Lemma 4.1.(I)(ii).
[3.2] When $\operatorname{NSV}_{0}=3+p(p=1,2)$, i.e., $x_{1}=0$ or m (if $\left.p=1\right)\left(x_{1}=0(\right.$ if $\left.p=2)\right), x_{2}=1, x_{3}=2$ or $m-2$, and $x_{4}=m-1$ (and $x_{5}=m($ if $p=2)$), we have $\operatorname{r-rank}\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{3+p}\right)\right\}=4$. Then $\binom{m}{2}+2 m+p \leq N<v_{3}(m)$ for $m \geq 6$ and $p=1,2$. Thus we obtain cases (ii)(1) and (2), and (iii)(1).
[c] When $\operatorname{NSV}_{2}=2\left(\right.$ and hence $\left.\operatorname{NSV}_{1} \leq 4\right)$, i.e., $x_{1}^{* *}=2$ and $x_{2}^{* *}=m-2, \operatorname{r-rank}\left\{F_{2}\left(x_{1}^{* *}, x_{2}^{* *}\right)\right\}=2$.
[1] When $\operatorname{NSV}_{1}=2$ (and hence $\operatorname{NSV}_{0} \leq 4$), i.e., $x_{j}^{*}=x_{j}^{* *}(j=1,2)$, r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2<3$. Thus from Lemma 4.1.(II)(ii), $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=-(m-3)(m-6)=0$ for $m \geq 6$, and hence we get $m=6$ and $x_{2}^{*}=m-2=4$. In this case, $d^{*}=0$, where d^{*} is a constant given in Lemma 4.1.(II)(ii). Furthermore
[1.1] when $\operatorname{NSV}_{0}=2$, i.e., $x_{i}=x_{i}^{*}(i=1,2)$, $\operatorname{r}-\operatorname{rank}\left\{F_{0}\left(x_{1}, x_{2}\right)\right\}=2<4$. Since $m=6$, from Lemma 4.1.(I)(i)(1), we get $t=1$, and hence $x_{1}=1$ and $x_{2}=5$, which contradict $x_{1}=2$ and $x_{2}=4$. Thus in this case, there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[1.2] When $\mathrm{NSV}_{0}=3$, i.e., $x_{1}=0$ or $m(=6)$ and $x_{i+1}=x_{i}^{*}(i=1,2), r-r a n k\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Since $m=6$, we have $x_{1}+x_{2}-m=-4 \neq 0$ and $\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+$ $(3 m-2)=12 \neq 0$ for $x_{1}=0$. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ does not exist.
[1.3] When $\operatorname{NSV}_{0}=4$, i.e., $x_{1}=0, x_{i+1}=x_{i}^{*}(i=1,2)$ and $x_{4}=m(=6), r-r a n k\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{4}\right)\right\}=4$. In this case, $32 \leq N<v_{3}(6)=42$, and hence case (ii)(3) is proved.
[2] When $\mathrm{NSV}_{1}=3$ (and hence $\mathrm{NSV}_{0} \leq 5$), i.e., $x_{1}^{*}=1$ or $m-1$ and $x_{j+1}^{*}=x_{j}^{* *}(j=1,2)$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)\right\}=3$.
[2.1] When $\operatorname{NSV}_{0}=3$, i.e., $x_{i}=x_{i}^{*}(i=1,2,3), \operatorname{r-rank}\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Then $x_{1}+x_{2}-m=-(m-3)(\neq 0)$ and $1(\neq 0)$ for $m \geq 6$ according as $x_{1}=1$ and $m-1$, respectively. Furthermore $\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+$ $\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+(3 m-2)=-(m-2)(m-9)$ for $x_{1}=1$ or $m-1$. Thus from Lemma 4.1.(I)(ii), we get $m=9$, and hence $x_{1}=1$ or $m-1=8$ and $x_{3}=m-2=7$. In this case, $81 \leq N<v_{3}(9)=130$. Thus case (i)(2) is established. If $x_{1}=1, x_{2}=2$ and $x_{3}=7$, then we get $d_{0}=56 / 3$ and $d_{2}=-7 / 3$, and if $x_{1}=8, x_{2}=2$ and $x_{3}=7$, then $d_{0}=-56 / 3$ and $d_{2}=7 / 3$.
[2.2] When $\operatorname{NSV}_{0}=3+p(p=1,2)$, i.e., $x_{1}=0$ or m (if $\left.p=1\right)\left(x_{1}=0(\right.$ if $p=2)$) and $x_{i+1}=x_{i}^{*}$ $(i=1,2,3)\left(\right.$ and $x_{5}=m($ if $p=2)$), we have $\mathrm{r}-\operatorname{rank}\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{3+p}\right)\right\}=4$. Furthermore $v_{3}(m)-N \leq$ $(m-6)\left(m^{2}+5\right) / 6+(6-p)>0$ for $m \geq 6$ and $p=1,2$. Thus cases (ii)(4) and (5), and (iii)(2) are proved.
[3] When $\operatorname{NSV}_{1}=4$, i.e., $x_{1}^{*}=1, x_{2}^{*}=2, x_{3}^{*}=m-2$ and $x_{4}^{*}=m-1, \operatorname{r-rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}, \cdots, x_{4}^{*}\right)\right\}=3$. Furthermore when $\mathrm{NSV}_{0}=4+p(p=0,1,2)$, i.e., when $p=0$, we have $x_{i}=x_{i}^{*}(i=1,2, \cdots, 4)$, when $p=1, x_{1}=0$ or m and $x_{i+1}=x_{i}^{*}(i=1,2, \cdots, 4)$, and when $p=2, x_{1}=0, x_{i+1}=x_{i}^{*}(i=1,2, \cdots, 4)$ and $x_{6}=m$, we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{4+p}\right)\right\}=4$. Then $v_{3}(m)-N \leq(m-6)\left(m^{2}-1\right) / 6-p=(m-7)\left(m^{2}+m+6\right) / 6+(8-p)$ for $m \geq 6$ and $p=0,1,2$. Thus when $m=6$, we have $v_{3}(6)-N \leq 0$ for $p=0,1,2$, and when $m \geq 7$, $v_{3}(m)-N>0$ for $p=0,1,2$. Therefore we establish cases (ii)(6), (iii)(3) and (iv).
[B] When $\mathrm{NSV}_{3}=1$ (and hence $\mathrm{NSV}_{2} \leq 3$), i.e., $3 \leq x_{1}^{* * *} \leq m-3$, it follows from Theorem 2.2 that $\mathrm{r}-\mathrm{rank}\left\{F_{3}\left(x_{1}^{* * *}\right)\right\}=1$, and it must be $\mathrm{NSV}_{0} \geq 2$. In addition,
[a] when $\operatorname{NSV}_{2}=1$ (and hence $\operatorname{NSV}_{1} \leq 3$), i.e., $x_{1}^{* *}=x_{1}^{* * *}$, we have r-rank $\left\{F_{2}\left(x_{1}^{* *}\right)\right\}=1<2$.
[1] When $\operatorname{NSV}_{1}=1$, i.e., $x_{1}^{*}=x_{1}^{* *}, \operatorname{r}-\operatorname{rank}\left\{F_{1}\left(x_{1}^{*}\right)\right\}=1<3$. Thus from Lemma 4.1.(II)(i), there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2] When $\operatorname{NSV}_{1}=2$ (and hence $\operatorname{NSV}_{0} \leq 4$), i.e., $x_{1}^{*}=1$ or $m-1$ and $x_{2}^{*}=x_{1}^{* *}, \operatorname{r-rank}\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2<3$. Then from Lemma 4.1.(II)(ii), it must be $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=0$ for $m \geq 6$. We consider case $x_{1}^{*}=1$. Then we have $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=-(m-2)\left\{2 x_{2}^{*}-(m+1)\right\}=0$ for $m \geq 6$, and hence $x_{2}^{*}=(m+1) / 2$, where $m=2 s+1 \geq 7$. Moreover
[2.1] when $\operatorname{NSV}_{0}=2$, i.e., $x_{i}=x_{i}^{*}(i=1,2)$, we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}\right)\right\}=2<4$. Since $x_{1}=1$, from Lemma 4.1.(I)(i)(1), we get $t=1$, and hence $m=6$ and $x_{2}=5$. However $m=6<7$ and $5 \notin S V_{3}$ for $m=6$. Thus from Lemma 4.1.(I)(i)(1) and the relation of the CSA, a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ does not exist.
[2.2] When $\operatorname{NSV}_{0}=3$, i.e., $x_{1}=0$ or m and $x_{i+1}=x_{i}^{*}(i=1,2)$, we have r-rank $\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Then it holds $x_{p}+x_{q}-m \neq 0$ for any $\{p, q\} \subset\{1,2,3\}$ and $m \geq 7$. However when $x_{2}=1,\left(2 x_{1}-m\right)\left(2 x_{2}-\right.$ $m)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-m\right)+(3 m-2)=m(m-1)>0$ and $-m(m-5)<0$ for $m \geq 7$ according as $x_{1}=0$ and m, respectively. Therefore it follows from Lemma 4.1.(I)(ii) and the relation of the CSA that there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2.3] When $\operatorname{NSV}_{0}=4$, i.e., $x_{1}=0$ and $x_{i+1}=x_{i}^{*}(i=1,2)$ and $x_{4}=m, \operatorname{r-rank}\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{4}\right)\right\}=4$. In this case, when $m=7$, we have $44 \leq N<v_{3}(7)=64$, and when $m=2 s+1 \geq 9, v_{3}(m)-N \leq$ $\binom{m}{2}+\binom{m}{3}-\binom{m}{4}-1<\binom{m}{2}+\binom{m}{3}-\binom{m}{4}=-\left[(m-9)\left\{(m-9)\left(m^{2}+8 m+74\right)+682\right\} / 24+6\right]<0$ for $m \geq 9$. Thus we get $m=7$, and hence $x_{1}=0, x_{2}=1$ or $m-1=6, x_{3}=(m+1) / 2=4$ and $x_{4}=m=7$. Therefore case (ii)(7) is proved.
[3] When $\operatorname{NSV}_{1}=3$ (and hence $\left.\operatorname{NSV}_{0} \leq 5\right)$, i.e., $x_{1}^{*}=1, x_{2}^{*}=x_{1}^{* *}$ and $x_{3}^{*}=m-1$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)\right\}$ $=3$.
[3.1] When $\operatorname{NSV}_{0}=3$, i.e., $x_{i}=x_{i}^{*}(i=1,2,3), \operatorname{r}-\operatorname{rank}\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Then $x_{1}+x_{2}-m<0$ for $m \geq 6$. Furthermore from Lemma 4.1.(I)(ii), it must be $\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-\right.$ $m)+(3 m-2)=-(m-1)(m-6)=0$ for $m \geq 6$. Thus we get $m=6$, and hence, $x_{1}=1, x_{2}=3$ and $x_{3}=m-1=5$. In this case, $32 \leq N<v_{3}(6)=42$, and hence we have case (i)(3), and $d_{0}=d_{2}=0$.
[3.2] When $\operatorname{NSV}_{0}=3+p(p=1,2)$, i.e., $x_{1}=0$ or m (if $\left.p=1\right)\left(x_{1}=0(\right.$ if $\left.p=2)\right), x_{i+1}=x_{i}^{*}(i=1,2)$ and $x_{4}=m-1\left(\right.$ and $x_{5}=m($ if $p=2)$), $\operatorname{r-rank}\left\{F_{0}\left(x_{1}, x_{2}, \cdots, x_{3+p}\right)\right\}=4$. When $x_{3}=3$ or $m-3$ (if $m \geq 7$), $v_{3}(m)-N \leq(m-6)(m+3) / 2+(10-p)>0$ for $m \geq 6$ and $p=1,2$, and hence we obtain cases (ii)(8) and (9), and (iii)(4). When $x_{3}=4$ and $m=8, v_{3}(8)-N \leq 7-p>0$ for $p=1,2$. Thus cases (ii)(10) and (iii)(5) are obtained. Furthermore when $4 \leq x_{3} \leq m-4$ and $m \geq 9$, then $N \geq p+2 m+\binom{m}{x_{3}} \geq p+2 m+\binom{m}{4}$, and hence $v_{3}(m)-N \leq\binom{ m}{2}+\binom{m}{3}-m-\binom{m}{4}-(p-1)<\binom{m}{2}+\binom{m}{3}-\binom{m}{4}<0$ for $m \geq 9$ and $p=1,2$ (see [B][a][2][2.3] above). Thus there does not exist a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<v_{3}(m)$ for $m \geq 9$.
[b] When $\operatorname{NSV}_{2}=2\left(\right.$ and hence $\left.\operatorname{NSV}_{1} \leq 4\right)$, i.e., $x_{1}^{* *}=2$ or $m-2$ and $x_{2}^{* *}=x_{1}^{* * *}$, we have r-rank $\left\{F_{2}\left(x_{1}^{* *}, x_{2}^{* *}\right)\right\}=2$.
[1] When $\operatorname{NSV}_{1}=2$, i.e., $x_{j}^{*}=x_{j}^{* *}(j=1,2)$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)\right\}=2<3$. Thus from Lemma 4.1.(II)(ii), it must be $\left(2 x_{1}^{*}-m\right)\left(2 x_{2}^{*}-m\right)+(m-2)=0$ for $m \geq 6$. When $x_{1}^{*}=2$, we have $x_{2}^{*}=(m+1) / 2+1 /(m-4)$, which is an integer for $m=6$ only, and hence $x_{2}^{*}=4$. However 4 does not belong to $S V_{3}$ for $m=6$. Therefore from Lemma 4.1.(II)(ii) and the relation of the CSA, there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2] When $\operatorname{NSV}_{1}=3$ (and hence $\operatorname{NSV}_{0} \leq 5$), i.e., $x_{1}^{*}=1$ or $m-1$ and $x_{j+1}^{*}=x_{j}^{* *}(j=1,2)$, we have r-rank $\left\{F_{1}\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)\right\}=3$. In this case, $N \geq m+\binom{m}{2}+\binom{m}{x_{3}^{*}}$ for $m \geq 6$. Thus when $4 \leq x_{3}^{*} \leq m-4$ and $m \geq 8, N \geq m+\binom{m}{2}+\binom{m}{4}>v_{3}(m)$, and hence we only consider case $x_{3}^{*}=3$ or $m-3$ (if $m \geq 7$) for $m \geq 6$.
[2.1] When $\operatorname{NSV}_{0}=3$, i.e., $x_{i}=x_{i}^{*}(i=1,2,3)$, we have $\mathrm{r}-\mathrm{rank}\left\{F_{0}\left(x_{1}, x_{2}, x_{3}\right)\right\}=3<4$. Then $x_{s}+x_{t}-m \neq 0$ for any $\{s, t\} \subset\{1,2,3\}$. Moreover when $x_{1}=1,\left(2 x_{1}-m\right)\left(2 x_{2}-m\right)+\left(2 x_{2}-m\right)\left(2 x_{3}-m\right)+\left(2 x_{3}-m\right)\left(2 x_{1}-\right.$ $m)+(3 m-2)=3\left(m^{2}-7 m+14\right),-\left(m^{2}-15 m+30\right),-\left(m^{2}-11 m+22\right)$ and $-\left(m^{2}-7 m-2\right)$ according as $x_{2}=2$ and $x_{3}=3, x_{2}=2$ and $x_{3}=m-3, x_{2}=m-2$ and $x_{3}=3$, and $x_{2}=m-2$ and $x_{3}=m-3$, respectively. However $m^{2}-7 m+14=(m-6)(m-1)+8>0$ for $m \geq 6$, and furthermore three quadratic equations $m^{2}-15 m+30=0, m^{2}-11 m+22=0$ and $m^{2}-7 m-2=0$ do not have an integer solution for $m \geq 6$. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, there does not exist a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$.
[2.2] When $\operatorname{NSV}_{0}=3+p(p=1,2)$, we have $N \geq p+m+\binom{m}{2}+\binom{m}{3} \geq v_{3}(m)$ for $m \geq 6$ and $p=1,2$. Thus there does not exist a $2^{m}-\mathrm{BFF}$ design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<v_{3}(m)$.
[3] When $\operatorname{NSV}_{1}=4$, we have $N \geq 2 m+\binom{m}{2}+\binom{m}{3}>v_{3}(m)$ for $m \geq 6$. Hence there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<v_{3}(m)$.
[c] When $\operatorname{NSV}_{2}=3$, we have $N \geq 2\binom{m}{2}+\binom{m}{3}>v_{3}(m)$, and hence a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<\nu_{3}(m)$ does not exist.
[C] When $\operatorname{NSV}_{3}=q \geq 2$, where $(m-3)-2 \geq q$, it holds that $\binom{m}{3}>1+m+\binom{m}{2}$ for $m \geq 5+q \geq 7$. Thus we have $N \geq q\binom{m}{3} \geq 2\binom{m}{3}>v_{3}(m)$. Therefore there does not exist a 2^{m}-BFF design of resolution $\mathrm{R}^{*}\left(\{1\} \mid \Omega_{3}\right)$ with $N<v_{3}(m)$ for $m \geq 5+q$.
Therefore the proof is complete.

Acknowledgments

The authors would like to thank the editor and the reviewer for their helpful comments and suggestions that have lead to an improved version of this paper.

References

Bailey, R. A. (2004). Association Schemes: Designed Experiments, Algebra and Combinatorics. Cambridge University Press, Cambridge.

Bose, R. C., \& Srivastava, J. N. (1964). Multidimensional partially balanced designs and their analysis, with applications to partially balanced factorial fractions. Sankhyä: The Indian Journal of Statistics, 26, 145-168.
Chakravarti, I. M. (1956). Fractional replication in asymmetrical factorial designs and partially balanced arrays. Sankhyä: The Indian Journal of Statistics, 17, 143-164.

Ghosh, S., \& Kuwada, M. (2001). Some estimable parametric functions for balanced fractional 3^{m} factorial designs. Technical Report \#01-6, Statistical Research Group, Hiroshima University, Japan.

Hyodo, Y. (1989). Structure of fractional factorial designs derived from two-symbol balanced arrays and their resolution. Hiroshima Mathematical Journal, 19, 457-475.

Hyodo, Y. (1992). Characteristic polynomials of information matrices of some balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$. Journal of Statistical Planning and Inference, 31, 245-252. http://dx.doi.org/10.1016/0378-3758(92)90033-O

Hyodo, Y., \& Yamamoto, S. (1988). Algebraic structure of information matrices of fractional factorial designs derived from simple two-symbol balanced arrays and its applications. In K. Matusita (Ed.), Statistical Theory and Data Analysis II (pp. 457-468). North-Holland, Amsterdam.
Hyodo, Y., Yumiba, H., \& Kuwada, M. (2015). Existence conditions for balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$ derived from simple arrays. Communications in Statistics-Theory and Methods, 44, 2564-2570. http://dx.doi.org/10.1080/03610926.2013.788716

Kuriki, S., \& Yamamoto, S. (1984). Nonsimple 2-symbol balanced arrays of strength t and $t+2$ constraints. TRU Mathematics, 20, 249-263.
Kuwada, M. (1982). On some optimal 2^{m} factorial designs of resolution V. Journal of Statistical Planning and Inference, 7, 39-48. http://dx.doi.org/10.1016/0378-3758(82)90018-0

Kuwada, M., Hyodo, Y., \& Han, D. (2003). Characterization of balanced fractional 2^{m} factorial designs of resolution $\mathrm{R}^{*}(\{1\} \mid 3)$ and GA-optimal designs. Journal of the Japan Statistical Society, 33, 181-201.
Shirakura, T. (1975). On balanced arrays of 2 symbols, strength $2 \ell, m$ constraints and index set $\left\{\mu_{0}, \mu_{1}, \cdots, \mu_{2 \ell}\right\}$ with $\mu_{\ell}=0$. Journal of the Japan Statistical Society, 5, 53-56.
Shirakura, T. (1977). Contributions to balanced fractional 2^{m} factorial designs derived from balanced arrays of strength 2८. Hiroshima Mathematical Journal, 7, 217-285.

Shirakura, T. (1980). Necessary and sufficient condition for a balanced array of strength 2ℓ to be a balanced fractional 2^{m} factorial design of resolution 2ℓ. The Australian Journal of Statistics, 22, 69-74. http://dx.doi.org/10. 1111/j.1467-842X.1980.tb01155.x
Shirakura, T., \& Kuwada, M. (1975). Note on balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$. Annals of the Institute of Statistical Mathematics, 27, 377-386. http://dx.doi.org/10.1007/BF02504657

Shirakura, T., \& Kuwada, M. (1976). Covariance matrices of the estimates for balanced fractional 2^{m} factorial designs of resolution $2 \ell+1$. Journal of the Japan Statistical Society, 6, 27-31.
Srivastava, J. N. (1970). Optimal balanced 2^{m} fractional factorial designs. In R. C. Bose, I. M. Chakravarti, P. C. Mahalanobis, C. R. Rao, \& K. J. C. Smith (Eds.), Essays in Probability and Statistics (pp. 689-706). The University of North Carolina Press, Chapel Hill.

Srivastava, J. N. (1972). Some general existence conditions for balanced arrays of strength t and 2 symbols. Journal of Combinatorial Theory, 13, 198-206.
Srivastava, J. N., \& Chopra, D. V. (1971). On the characteristic roots of the information matrix of 2^{m} balanced factorial designs of resolution V, with applications. Annals of Mathematical Statistics, 42, 722-734. http://dx.doi.org/10.1214 /aoms/1177693421

Yamamoto, S., \& Hyodo, Y. (1984). Extended concept of resolution and the design derived from balanced arrays. TRU Mathematics, 20, 341-349.
Yamamoto, S., Shirakura, T., \& Kuwada, M. (1975). Balanced arrays of strength 2ℓ and balanced fractional 2^{m} factorial designs. Annals of the Institute of Statistical Mathematics, 27, 143-157. http://dx.doi.org/10.1007/BF025 04632

Yamamoto, S., Shirakura, T., \& Kuwada, M. (1976). Characteristic polynomials of the information matrices of balanced fractional 2^{m} factorial designs of higher $(2 \ell+1)$ resolution. In S. Ikeda, T. Hayakawa, H. Hudimoto, M. Okamoto, M. Siotani, \& S. Yamamoto (Eds.), Essays in Probability and Statistics (pp. 73-94). Shinko Tsusho, Tokyo.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

