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Abstract

We consider statistical inference of the unknown parameters of a two-parameter bathtub-shaped distribution (Chen,
2000) [Stat. & Prob. Letters 49 (2000) 155-161]. The inference will be conducted for Type-II censored and pro-
gressively Type-II censored data using the maximum likelihood and Bayes techniques. There are no explicit
expressions for the estimators of the parameters. In the case of the maximum likelihood estimator (MLE), we
propose a simple fixed point algorithm to compute the MLE and construct different confidence intervals and con-
fidence regions of the unknown parameters. Bayes analyses of the unknown parameters are also discussed under
fairly general priors for the unknown parameters. We propose to use the Markov Chain Monte Carlo (MCMC) and
simulation-based technique to compute the Bayes estimates and the two-sided Bayesian probability intervals of
the parameters. Also, we use the rejection sampling algorithm to produce the exact Bayes estimates. The methods
developed will be applied in the analyses of two real data sets and a simulated data set. A Monte Carlo simulation
is used to compare the results from the MLE and Bayes techniques.

Keywords: maximum likelihood estimator, MCMC, rejection sampling, simulation-based.

1. Introduction

The cumulative distribution function (cdf) of the Weibull distribution with scale parameter α and shape parameter
β denoted by W(α, β) is

FW (x;α, β) = 1 − e−α xβ , x ≥ 0, α, β > 0. (1)

The hazard rate function of W(α, β), hW (x;α, β) = αβxβ−1, is increasing in x when β > 1, decreasing when β < 1
and constant when β = 1.

The two parameter Weibull distribution is a very popular distribution for modeling phenomenon with monotone
hazard rates. Its negatively and positively skewed density makes it an initial choice for modeling monotone hazard
rates. However, Weibull distribution does not provide a reasonable fit in modeling phenomenon with non-monotone
hazard rate such as the bathtub-shaped hazard rate. A distribution with a bathtub-shaped hazard rate provides an
appropriate conceptual model for some electronic and mechanical products as well as the lifetime of humans.

There is extensive literature on parametric probability distributions with bathtub-shaped hazard rate function (e.g.,
Smith and Bain (1975), Leemis (1986), Gaver and Acar (1979), Hjorth (1980), and Mudhilkar and Srivastava
(1993)). Among several extensions of the Weibull distribution, with 4 parameters, are the exponentiated gener-
alized exponential linear distribution (Sarhan et. al, 2013 ) and the exponentiated modified Weibull extension
distribution (Sarhan and Apaloo, 2013).

Chen (2000) revisited a two parameter distribution with the following survival function (sf)

S (x;α, β) = e
α
(
1−exβ

)
, x > 0, (2)

where α > 0 is a parameter which does not affect the shape of the failure rate function and β > 0 is the shape
parameter. The corresponding probability density function (pdf) is

f (x;α, β) = αβxβ−1exβe
α
(
1−exβ

)
, x > 0. (3)
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The corresponding hazard rate function (hrf) of this distribution is

h(x;α, β) = αβxβ−1exβ , x > 0. (4)

The hrf can be either (1) an exponentially increasing function when β ≥ 1; or (2) of bathtub-shape when β < 1. For
simplicity, we will refer to this distribution as TPBT(α, β). It has been observed in Nadarajah and Kotz (2007) and
Pham and Lai (2007), that TPBT(α, β) is a special case of the distribution considered by Gurvich et al. (1997) and
by Haynatzki et al. (2000). However, TPBT(α, β) has an advantage over all bathtub hazard shaped distributions
since it has only two parameters.

The TPBT(α, β) distribution has been considered for a type-II censored data (Chen, 2000), type-II right censored
data (Wu et al., 2004), for a progressively type-II censored data (Wu, 2008). In Chen (2000), exact onfidence
interval for β and exact joint confidence regions for (α, β) were presented while Wu et al. (2004) presents statistical
inference about the shape parameter. Sarhan et al. (2012) derived both the maximum likelihood estimates (MLE)
and Bayes estimates (BE) of the two unknown parameters using a complete sample. They applied the simulation-
based (SB) method, the Monte Carlo integration (MCI) technique and Lindley approximation (LA) method to
approximate the Bayes estimates of the parameters and reported that the SB method was the best among the three
methods used.

The aim of this paper is to discuss Bayes inferences of the TPBT distribution’s parameters using different tech-
niques when the data are complete, cenceored and progressively censored. We use Markov-Chain Monte-Carlo
(MCMC), rejection sampling (RS) algorithms and compare them with the SB algorithm.

The rest of the paper is organized as follows. In section 2 we present the censored data scheme and the maximum
likelihood estimation procedure. Confidence interval estimations are discussed in section 3. Bayes procedure is
discussed in section 4. Two approximation techniques (the RS and MCMC) are presented in section 5. Progres-
sively Type-II censored data is used in section 6. Two real and a simulated data sets are analyzed in section 7.
A large simulation study is provided in section 8 to compare the maximum likelihood technique with Bayesian
techniques. Concluding remarks are made in section 9.

2. Maximum Likelihood Estimation

In Type-II censored data, it is assumed that n independent and identical units are put on the life test at the same
time. The life test is terminated after a predetermined number of failures m results. For unit i, i = 1, 2, · · · , n, a
pair of two quantities (Xi, δi) is observed, where Xi represents the testing time of unit i and δi is a binary variable
that takes the value of 1 when unit i has failed at time Xi, or 0 if it is tested up to time Xi without failure (Xi is a
censored time).

In this section we use the maximum likelihood method to estimate the two unknown parameters α and β, using
Type-II censored data. Suppose (X1, δ1), (X2, δ2), . . . , (Xn, , δn) is a random sample from TPBT(α, β), then the
likelihood function of the observed data is

L = (αβ)m

 n∏
i=1

xδii

β−1

e
∑n

i=1

{
δi xβi +α

(
1−exβi

)}
, (5)

where m =
∑n

i=1 δi. The log-likelihood function becomes

L = m(lnα + ln β) + (β − 1)
n∑

i=1

δi ln xi +

n∑
i=1

{
δi xβi + α

(
1 − exi

β
)}
. (6)

Taking derivatives with respect to α and β of (6), we obtain

∂L
∂α

=
m
α
+ n −

n∑
i=1

exβi , (7)

∂L
∂β

=
m
β
+

n∑
i=1

δi ln xi +

n∑
i=1

δi xβi ln xi − α
n∑

i=1

exi
β

xβi ln xi . (8)
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The second partial derivatives of L with respect to α and β are

L11 =
∂2L
∂α2 = −

m
α2 ,

L12 =
∂2L
∂αβ

= −
n∑

i=1

xβi exβi ln xi = L21 ,

L22 =
∂2L
∂β2 = −

m
β2 +

n∑
i=1

δi xβi (ln xi)2 − α
n∑

i=1

xβi
(
1 + xβi

)
(ln xi)2 exβi .

The information function is a two-by-two symmetric matrix

I(α, β) =
[
I11(α, β) I12(α, β)
I21(α, β) I22(α, β)

]
= −

[
L11 L12
L21 L22

]
. (9)

For a relative maximum of L, which occurs at the MLE of the parameters α̂ and β̂, the matrix I(α̂, β̂) must be
positive definite.

Setting the right hand side of (7) to zero and solving for α, we get

α̂(β) =
m∑n

i=1 exβi − n
, (10)

Substituting (10) into the right side of (8) and setting it equal to zero, we get the following non-linear equation in β

m
β
+

n∑
i=1

δi ln xi +

n∑
i=1

δi xβi ln xi −
m

∑n
i=1 exi

β

xβi ln xi∑n
i=1 exβi − n

= 0 . (11)

The MLE of β, β̂, is the solution of (11) in β. A closed-form solution of (11) does not exist, so a numerical
technique, e.g Newton-Raphson method, should be used to find β̂ for any given data set. Once we get β̂, we can
use (10) to get α̂ = α̂(β̂).

3. Confidence Intervals (CIs)

We can use different techniques to approximate (1 − ϑ)100% confidence intervals of the two parameters α and β.
In the following, we describe two of such techniques.

3.1 Likelihood Intervals

A 100p% likelihood interval (LI), p ∈ (0, 1), for a parameter θ is the range of all values of θ for which the relative
likelihood function, R(θ) = L(θ)

L(θ̂)
, is greater than or equal to p, for more details we refer to Kalbfleisch (1985). For

simplicity, we can take the natural logarithm of R(θ), therefore the 100p% LI of θ becomes the range of all values
of θ which satisfy that r(θ) ≥ ln p. Here, r(θ) is the log-relative likelihood function, given by r(θ) = L(θ) − L(θ̂).
To determine the 100p% LI for θ, we can either use the the graph of r(θ) against θ or use the Newton-Raphson
Method to get the bounds of the LI by solving r(θ) − ln p = 0.
When θ is a vector of two unknown parameters, say θ = (α, β)

′
, as in the case studied here, the 100p% likelihood

region is the set of parameter values (α, β) such that r(α, β) ≥ ln p, where r(α, β) is the joint log-relative likelihood
function of α and β, r(α, β), given by

r(α, β) = L(α, β) − L(α̂, β̂). (12)

Substituting from (6) into (12), we get

r(α, β) = m(lnα + ln β) + (β − 1)K0 + K1(β) − αK2(β) − L(α̂, β̂), (13)

where K0 =
∑n

i=1 δi ln xi, K1(β) =
∑n

i=1 δi xβi and K2(β) =
∑n

i=1 exβi − n. The 100p% likelihood contour is boundary
of 100p% likelihood region, which is formed by the curve r(α, β) = ln p. The 100p% likelihood region for (α, β)
is an approximate 100(1 − ϑ)% confidence region when p = e−χ

2
1(ϑ)/2, where χ2

1(ϑ) is the upper ϑ quantile of the
chi square distribution with one degree of freedom.

Another way to get the 100p% LI is to use the maximum log-relative likelihood function of β, which is given by

rmax(β) = m[ln(mβ) − 1] − ln(K2(β)) + (β − 1)K0 + K1(β) − L(α̂, β̂). (14)
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A 100p% LI for β, say [β1, β2], is the set of all β values such that

rmax(β) ≥ ln p . (15)

Inequality (15) has no closed form solution in β, therefore a numerical method, such as Newton-Raphson, should
be used to get [β1, β2]. Using [β1, β2], we can derive a 100p% LI for α as

m∑n
i=1 exβ2i − n

≤ α ≤ m∑n
i=1 exβ1i − n

. (16)

3.2 Large-sample Intervals

The MLE of the parameters α and β are asymptotically normally distributed with means equal to the true values of
α and β and variances given by the inverse of the information matrix. In particular,(

α̂

β̂

)
∼ N2

((
α
β

)
, Î−1

)
, (17)

where Î−1 is the inverse of I(α̂, β), with main diagonal elements Î11 and Î22 given by

Î11 =
Î22

Î11Î22 − Î2
12

and Î22 =
Î11

Î11Î22 − Î2
12

.

Using (17), large-sample (1 − ϑ)100% confidence intervals for α and β are

α̂ ± Zϑ/2
√
Î11 and β̂ ± Zϑ/2

√
Î22 ,

where Zϑ/2 is the upper ϑ/2 quantile of the standard normal distribution.

4. Bayes Inferences

To make Bayes inferences about the parameters α and β, we assume that α and β are independent random variables
having gamma prior distributions with parameters (a1, a2) and (b1, b2), respectively. Using the results in Sarhan et
al. (2012), we can get the posterior joint pdf of (α, β), the marginal posterior distributions of α and β, the Bayes
point estimates of α and β and the corresponding minimum Bayes risks, and the two-sided Bayesian probability
intervals for α and β, by replacing Px =

∏n
i=1 xi and K1(β) =

∑n
i=1 xβi by Px =

∏n
i=1 xδii and K1(β) =

∑n
i=1 δix

β
i ,

respectively, and using the same K2(β) =
∑n

i=1

(
exβi − 1

)
. The posterior density of (α, β) is

π(α, β|data) =
1

I(0,0)
αm+a1−1βm+b1−1 e−[a2+K2(β)]α−b2β+K1(β)+(β−1)

∑n
i=1 δi ln xi , (18)

where

I(0,0) = Γ(m + a1)
∫ ∞

0

βm+b1−1[
a2 + K2(β)

]m+a1
e−b2β+K1(β)+(β−1)

∑n
i=1 δi ln xi dβ , (19)

K1(β) =
∑n

i=1 δi xβi and K2(β) = −n +
∑n

i=1 exβi .

As it is stated in Sarhan et al. (2012), all Bayes results have no analytic solutions in the general case. Therefore,
numerical approximations and/or simulation techniques should be used.

5. Approximation to Bayes Estimates

Sarhan et al. (2012) used (i) Simulation-based method (SB); (ii) Monte-Carlo integration (MCI) method; and (iii)
Lindley approximation method (LA), to make Bayes inferences about the two parameters and they concluded,
based on a simulation study, that SB method provides better estimates than the other two methods. In this paper we
use rejection sampling (RS) algorithm and Markov Chain Monte Carlo (MCMC) techniques to perform Bayesian
inferences about the model parameters and compare it with SB method.

5.1 Rejection Sampling (RS)

The rejection sampling technique is used to produce simulated independent samples from a given density function.
For more details about the RS, we refer the readers to Albert (2009) and Gelman et al. (2014). Suppose we want
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to sample from the density p(θ|data), which is not an easy function to simulate from. The rejection sampling
requires a positive function g(θ) defined for all θ for which p(θ|data) > 0 such that: (1) we can draw from a
probability density function proportional to g; (2) it is not required that g(θ) be a density function, but must have
a finite integral; (3) p(θ|data) < Cg(θ) for all θ, where C > 1 is an appropriate bound on p(θ|data)

g(θ) . The functions
p(θ|data) and g(θ) are called the target and proposal functions, respectively. In our case here, the target function is
the posterior density (18). The main task in the rejection sampling is to find a suitable proposal density g(θ) and
constant value C that satisfy the above restriction.
The following is the RS algorithm to simulate draws from (18):

1. Simulate θ = (α, β) from the proposal g(θ).

2. Simulate U from a uniform distribution on the unit interval.

3. If U ≤ π(θ|data)
Cg(θ) , then accept θ as a draw from (18).

4. Repeat steps 1-3 N times.

The main advantage of the RS algorithm is the accepted θ has the correct posterior distribution.

The main problem with this process is that C is generally large in high-dimensional spaces and since P(accept) ∝ 1
C ,

many samples will get rejected.

5.2 Markov Chain Monte Carlo (MCMC)

Since early 1990s, Markov Chain Monte Carlo (MCMC) techniques have been used extensively because of their
generality and flexibility along with the massive development of computing facilities. It has become one of the
main computational tools in modern Bayesian statistical inference. Metropolis et al. (1953) developed a simple
version of MCMC, known as the Metropolis-Hastings algorithm (MHA). A generalization of the MHA was pro-
posed by Hastings (1970). A comprehensive theoretical exposition of this algorithm is given by Tierney (1994)
and an excellent tutorial of this topic is provided by Chib and Greenberg (1995).

MCMC methods enable quantitative scientists to use highly complicated models and estimate the corresponding
posterior distributions with accuracy. For extensive details of the use of MCMC methods, we refer readers to Gilks
et al. (1996) and Chen et al. (2000). In this paper, we use the Metropolis-Hastings algorithm (MHA) to generate
samples from the posterior distribution π(θ|data) in (18).

The MHA can be described by the following iterative steps:

1. Set initial values θ(0) =
(
α(0), β(0)

)′
.

2. For t = 1, · · · , T repeat the following steps:

i. Set θ = θ(t−1).

ii. Generate a new candidate θ∗ from a proposal distribution q(θ∗|θ).
iii. Calculate

κ = min
{

1,
π(θ∗|data)
π(θ|data)

}
iv. Set θ(t) = θ∗ with probability κ; or otherwise set θ(t) = θ.

The MHA converges to its equilibrium distribution regardless of the proposal distribution q. Neverthless, in prac-
tice, choice of the proposal is important since a poor choice considerably delays the convergence towards the
equilibrium distribution. An efficient proposal, for the underlying model, is the bivariate normal with mean of the
MLE of θ and covariance matrix of the Fisher-information matrix evaluated at the MLE of θ (Lecam, 1986).

6. Progressive Type-II Censored Data

In this section, we use progressive type-II censored data from TPBT distribution to make inference about the
distribution parameters using Bayes technique. In this data, it is assumed that n independent and identical units
are placed on a life test simultaneously with m failures to be observed. When the first failure occurs, r1 survived
units are randomly removed from the test. At the second failure, r2 survived units are randomly removed. The test
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stops at the occurrence of m-th failure and the remaining rm = n−∑m−1
i=1 ri −m survived units are all removed. The

likelihood function in this case is

L = αmβm

 m∏
i=1

xi

β−1

exp

 m∑
i=1

xβi + α
m∑

i=1

(ri + 1)
(
1 − exβi

) .
The log-likelihood function is

L = m lnα + m ln β + (β − 1)
m∑

i=1

ln xi +

m∑
i=1

xβi + α
m∑

i=1

(ri + 1)
(
1 − exβi

)
.

Wu (2008) obtained the MLE of the parameters α and β and discussed their confidence intervals and joint confi-
dence region using a progressively type-II censored sample. Wu (2008) addressed that the exact confidence interval
and the exact confidence region are obtained, but (i) numerical approximation is used to get the confidence interval
of β and no confidence interval of α was discussed, and (ii) the confidence limits for β, which are needed to get the
confidence region for (α, β), are obtained numerically.
In this paper we discuss the likelihood intervals for both α and β, the likelihood region for (α, β), and Bayes anal-
ysis of the two parameters α and β using progressively type-II censored sample. Using all results in the previous
sections, we can get the corresponding results for maximum likelihood (such as the likelihood intervals and likeli-
hood region) and Bayes techniques (point estimate and two-sided Bayesian intervals) using a progressively type-II
censored sample by replacing Px =

∏n
i=1 xδii , K1(β) =

∑n
i=1 δix

β
i , and K2(β) =

∑n
i=1

(
exβi − 1

)
by Px =

∏m
i=1 xi,

K1(β) =
∑m

i=1 xβi , and K2(β) =
∑m

i=1(ri + 1)
(
exβi − 1

)
, respectively. Notice that K0 = ln Px.

7. Applications

In this section, two applications are discussed and one illustrative example. All the computations were done
using Matlab 7.11.0 (R2010) programming language, except for RS we used R programming language. In all
calculations, the values of M and T for SB and MCMC are 20000 and N = 10000 for RS, also since we do not
have any prior information, we assume a1 = a2 = b1 = b2 = 0.001. Although these values of the prior parameters
imply improper priors on α and β, but the corresponding joint posterior is proper.

Application 1: Serum data

In this application, the data set refers to the serum-reversal time (days) of 148 children contaminated with HIV from
vertical transmission at the university hospital of the Ribeiro Preto School of Medicine (Hospital das Clnicas da
Faculdade de Medicina de Ribeiro Preto) from 1986 to 2001 (Silva, 2004) . For more details, we refer the readers
to Perdon (2006). We start with the TPBT(α, β) and W(α, β) distributions for fitting and classical inferences. Then,
we will focus on the Bayesian inference of the TPBT(α, β) model.

It is assumed that the lifetimes are independent and identically distributed, and also independent from the censoring
mechanism. Also, we assumed that the lifetimes follow either Weibull or TPBT model. In order to assess which
model is more appropriate to fit this data set, we plot the scaled TTT-transform (Figure 1.a), the parametric hazard
function (Figure 1.b), the empirical and estimated survival functions of the TPBT(α, β) and W(α, β) distributions
(Figure 2). Figure 1.a shows that the scaled TTT-plot for the data set has first a convex shape and then a concave
shape which indicates a bathtub-shaped hrf. Figure 1.b shows that the TPBT model has a bathtub hrf while Weibul
has an increasing hrf. Therefore, the TPBT model would be an appropriate model for the fitting of this data. The
MLEs of the model parameters and the corresponding values of the L (the log-likelihood function), AIC (Akaike
Information Criterion), K-S (Kolmogorov-Smirnov) test statistic and the corresponding p-value are given in Table
1. These results show that the AIC of the TPBT is smaller than that for Weibull which indicates that the TPBT
model is more appropriate to fit this data than the Weibull. Furthermore, based on the K-S test the Weibull model
is rejected at any significance level greater than 0.025 while the TPBT is not rejected.

Table 1. MLEs of the parameters, the corresponding L, AIC, K-S and p-value.

Model (α̂, β̂) L AIC K-S p-value
TPBT (4.6334 × 10−5, 0.4009) -392.0392 788.0784 0.1420 0.1373
Weibull (1.7946 × 10−8, 3.1133) -401.9936 807.9873 0.1821 0.0250

To show that there is a unique maximum value for the likelihood function of β, for every model, the plot of the
profile log-likelihood function of β, Lβ(β), for each model is provided in Figure 3. Also, the plot of log-relative
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Figure 1. a) The Scaled TTT-Transform and b) the parametric hazard functions.

likelihood function of β, r(β), for each model which can be used to decide on the plausible values of β, is provided
in Figure 3.

Table 2 shows the 14.7% LI and 95% asymptotic CI for the TPBT and Weibull model parameters. The LI and
asymptotic CI are not very similar simply because the relative log-likelihood functions of the parameters are not
symmetric. The widths of the LI and Asymptotic interval for α in the TPBT model are 17.26×10−5 and 2.37×10−5

and for β are 0.0504 and 0.0087 respectively. These indicate that the asymptotic interval is more precise than the
LI for both parameters.

Table 2. Confidence intervals.

Parameter LI Asymptotic
TPBT

α
[
9.9023 × 10−6, 1.8252 × 10−4

] [
3.6282 × 10−5, 5.995 × 10−5

]
β [0.3752, 0.4256] [0.3964, 0.4051]

Weibull
α [3.7929 × 10−10, 4.5676 × 10−7] [1.4057 × 10−8, 2.291 × 10−8]
β [2.5465, 3.7855] [3.0707, 3.1560]

We used the three Bayesian techniques RS, MCMC and SB to estimate the TPBT parameters. The point estimates
and the Bayesian intervals with the corresponding widths are shown in Table 3. The acceptance rates for SB,
MCMC and RS are 21.288%, 64.905% and 50.66%, respectively. Figure 4 displays the simulated draws from the
joint posterior distribution along with the contours of the likelihood function from the MCMC and SB procedures
and the simulated draws using the RS algorithm on the contour plot of the posterior density. These plots show: (1) a
good agreement between the likelihood function and the simulated draws from the MCMC; (2) the simulated draws
from the SB are not well distributed within the likelihood contours; (3) the draws from the posterior distribution
using the RS are well distributed on the contours of the exact posterior density. To compare the performance of
the MCMC and SB to RS, we plotted the marginal posterior density functions using the three methods in Figure
5. From Figure 5, one can see that: (1) MCMC gives better estimate of the posterior densities than the SB; (2)
SB provides an approximation to the posterior density with very small spread which explains why the interval
estimates using SB are narrower than those obtained from RS and MCMC; (3) the posterior distribution of α is
right skewed, while that of β is approximately symmetric.
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Figure 3. The profile log-likelihood function of β and the log-relative likelihood of β for both TPBT and Weibull
models.

Table 3. Bayesian results for the TPBT model.

Method Parameter Point estimate Bayesian interval Width
SB α 4.624×10−5 (3.559×10−5, 5.803×10−5) 2.245×10−5

β 0.40094 (0.4001, 0.4017) 0.0070
MCMC α 5.333×10−5 (1.711×10−5, 1.253×10−4) 1.082×10−4

β 0.4006 (0.3835, 0.4177) 0.0341
RS α 4.717 × 10−5 (1.331 × 10−5, 1.598 × 10−4) 1.4648 × 10−4

β 0.3998 (0.3780, 0.4207) 0.0427
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Figure 4. The 100p% likelihood contours along with the simulated draws of (α, β) from MCMC (top left) and
SB (top right) and the simulated draws from the posterior density on contour plot of (α, β) using RS (bottom) for
serum data.

7.2 Application 2: Aarset Data

Aarset data set consists of the failure times of 50 devices put on a life test. This data set was originally analyzed
by Aarset (1987). Ng (2005) simulated progressively Type-II censored data based on the Aarset data as x = (0.1,
0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 18, 18, 18, 18, 21, 32, 36, 45, 47, 50, 55, 60, 63, 63, 67, 67, 75, 79, 82, 84, 84, 85,
86) and r = (0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0). Wu (2008)
assumed that the data have the TPBT(α, β) distribution and obtained the MLE of the two parameters α and β, the
95% CI for only β (as shown in Table ??) and a 95% confidence region for (α, β). The 95% confidence region is
(Wu; 2008)

0.2147 < β < 0.4772,
46.2248

2
∑m

i=1(ri + 1)
(
exβi − 1

) < α < 90.0941

2
∑m

i=1(ri + 1)
(
exβi − 1

)
We obtained the MLE and the corresponding standard error (se), likelihood intervals, likelihood regions and asymp-
totic confidence intervals for the TPBT distribution parameters. The inverse of the information matrix using the
complete data and progressively Type-II censored data, respectively, are[

6.51965 × 10−5 −1.5925 × 10−4

−1.5925 × 10−4 4.39656 × 10−4

]
and

[
1.67091 × 10−4 −2.93646 × 10−4

−2.93646 × 10−4 6.21791 × 10−4

]
Also, we computed Bayes estimates and the two sided Bayesian intervals and their widths, using SB, MCMC and
RS techniques, for the complete and progressively Type-II Aarset data as shown in Table 4. Figure 6 displays the
simulated draws from the joint posterior distribution, using the MCMC procedure, on the contours of the likelihood
function and the 14.7% likelihood region of (α, β) and the simulated draws from the posterior density, using RS,
on the contour plot of (α, β), based on the complete and progressively Type-II censored Aarset data. We did not
include the plot of the simulated draws obtained from SB in Figure 6 because, as we noticed in the first example,
it does not provide representative samples.

Based on the results in Table 4 and plots in Figure 6, we can conclude that: (1) Bayesian intervals are more
precise than the asymptotic and likelihood intervals; (2) MCMC gives more reasonable approximations to the
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Figure 5. The marginal posterior density function using the three methods for serum data.

Bayes estimates than the SB; and (3) As expected, the complete version of the data gives more precise results than
the progressively Type-II censored version.

Table 4. MLE and Bayes results for the Aarset data.

Complete Progressively censored
MLE Point estimate(se) α: 0.019381(0.008074435) 0.0315359(0.01292637)

β: 0.347272(0.02096798) 0.310619 (0.02493574)
95% CI α: [0.0035553, 0.0352065] [0.00620065, 0.0568711]
(width) 0.0316512 0.05067045

β: [0.3061760, 0.3883690] [0.261746, 0.359492]
(width) 0.082193 0.097746
14.7% LI α: [0.0085446, 0.0397264] [0.0142684, 0.061713]
(width) 0.0311818 0.0474446

β: [0.3049220, 0.3870650] [0.260251, 0.357761]
(width) 0.082143 0.09751

Bayes
SB Point estimate α: 0.0194307 0.0316467

β: 0.347281 0.310603
95%TBPI α: [0.01548, 0.0238742] [0.0246732, 0.0395873]
(width) 0.0083942 0.0149141

β: [0.344872, 0.349751] [0.306733, 0.31445]
(width) 0.004879 0.007717

MCMC Point estimate α: 0.0201862 0.0327917
β: 0.346937 0.310308

95%TBPI α: [0.0110438, 0.0336883] [0.0177349, 0.0540883]
(width) 0.0226445 0.0363534

β: [0.319192, 0.375192] [0.277445, 0.344355]
(width) 0.056 0.06691

RS Point estimate α: 0.01956508 0.0348011
β: 0.34516 0.3072039

95%TBPI α: [0.009702193, 0.03812835] [0.01600871, 0.06126564]
(width) 0.02842616 0.04525693

β: [0.3103567, 0.3787636] [0.2620167, 0.3467852]
(width) 0.0684069 0.08476856
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Figure 6. The 100p% likelihood contours along with the simulated draws of (α, β) from MCMC (top row) and the
simulated draws from the posterior distribution of (α, β) on the contour plot using RS (bottom row) for complete
(left column) and progressively censored (right column) Aarset data.

7.3 Simulated Data

To compare our proposed technique with technique in Wu (2008), we use the same simulated data in Wu (2008).
Wu (2008) generated a progressively Type-II censored sample with n = 15 from the TPBT distribution with
α = 0.02 and β = 0.5, with censoring scheme r = (1,0,2,0,0,0,1,0,1,0) and got the observations x = (0.78, 3.15,
5.15, 6.69, 7.09, 7.40, 14.28, 15.72, 15.92, 22.59). Wu (2008) calculated the 95% CI for β as given in table ??, and
the 95% confidence region as

0.2299 < β < 0.7075,
8.5737

2
∑10

i=1(ri + 1)
(
exβi − 1

) < α < 36.7141

2
∑10

i=1(ri + 1)
(
exβi − 1

)
Table 5 shows the results obtained from the maximum likelihood and Bayes techniques. Based on the percentage
errors, MCMC gives better estimation than both SB and RS algorithms for this simulated data set. The inverse of
the information matrix is

Î−1 =

[
3.2484 × 10−4 −1.00961 × 10−3

1.00961 × 10−3 3.8504 × 10−3

]
Figure 7 displays The likelihood contours, the 95% confidence region along with the simulated draws from the
posterior distribution using MCMC and SB, contour plot of the parameters (α, β) of the posterior density and
of the transformed parameters (lnα, β). The contour plot of (α, β) shows the skewness in the posterior density,
especially towards when α gets larger. This is why we consider the transformation (lnα, β). The skewness has
been reduced and the distribution becomes more symmetric as shown in the bottom right plot in Figure 7. We also
plot the simulated draws from the RS on the contour plot of the log posterior density in Figure 7. As expected,
most of the draws fall within the contour of the exact posterior density.
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Figure 7. The 100p% likelihood contours, 95% confidence region along with the simulated draws of (α, β) using
MCMC (top left) and SB (top right), contour plot of (α, β) (bottom left) and of (logα, β) (bottom right) along with
simulated draws from the posterior density using RS for the progressively censored simulated data.

Table 5. Point estimates and the corresponding percentage errors and interval estimates of the parameters for the
simulated data.

Method Statistic α β

MLE Point Estimate 0.0245174 0.494714
Percentage Error 22.5869 1.05723
Wu’s 95% CI – [0.2551, 0.6785]
width – 0.423366
Approximate 95% CI (0, 0.0598424] [0.373095, 0.616333]

0.0598424 0.243238
14.7% LI [0.00564596, 0.076716] [0.361701, 0.605369]
width 0.07107004 0.243668

Bayes
SB Point Estimate 0.0243745 0.494892

Percentage Error 21.8725 1.0216
95% TBPI [0.0114819, 0.0387302] [0.48498, 0.514757]
width 0.0272483 0.029777

MCMC Point Estimate 0.0229747 0.500086
Percentage Error 14.8737 0.0172637
95% TBPI [0.00728443, 0.0627655] [0.417348, 0.57805]
width 0.05548107 0.160702

RS Point Estimate 0.01653803 0.4907907
Percentage Error 17.3099 1.84186
95% TBPI [0.003723937, 0.0628734] [0.3717111, 0.6053621]
width 0.05914946 0.233651

8. Simulation Studies

To evaluate the performance of maximum likelihood and Bayes procedures (using the SB, MCMC and RS tech-
niques) based on the sample and the censored sizes, a large simulation study using Monte Carlo method is carried
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out according to the following scheme:

1. Specify the sample size n.

2. Specify the censored size n − m as a percentage of n.

3. Generate a random sample with sizes n and m from TPBT(α, β).

4. Compute MLEs of α and β.

5. Compute the Fisher information matrix at the MLE’s of α and β.

6. Compute Bayes estimates of α and β using SB, MCMC, and RS methods.

7. Compute the squared deviation of the point estimate of each parameter using each of the four procedures
from the corresponding true value.

8. Repeat Steps 3-7 1000 times.

9. Calculate the average of the point estimates of every parameter and the mean squared error (MSE) associated
with each estimate for the two parameters using the four techniques.

10. Steps 2-9 are performed when n − m = 0%, 10%, 20%, · · · , 70% of n.

11. Steps 1-10 are performed when n = 10, 15, 20, · · · , 55.

12. Steps 1-11 are carried out when α = 0.1 and β = 0.5.

Table 6 presents the average estimates (first row) and the corresponding MSE (second row) corresponding to every
parameter at different set of values of (n,m).

Based on the simulation results, one can conclude that: (1) the MSE decreases when n increases for all cases at
every level of censoring, (2) the MSE increases when the percentage of censorship increases mainly for large n, (3)
there is no significant difference in the values of the MSE corresponding to the three techniques. However, based
on the MSE, (i) the MCMC generally provides better approximations than SB; (ii) RS produces 75.62% better
estimations than MCMC.

9. Conclusion

This paper extends the work of Sarhan et al. (2012) which considered a two parameter bathtub shaped distribu-
tion that was revisited by Chen (2000). We provide statistical inference of the two parameters using maximum
likelihood and Bayesian methods. For Bayesian, the simulation based, Markov Chain Monte Carlo and rejection
sampling techniques are applied. The specific interest is in the MCMC and RS methods. The estimation techniques
were applied to two real data sets and a simulated data set. In addition, the estimation methods were compared by
a Monte Carlo simulation.

For the two real data sets, the Bayesian estimates of the parameters from the MCMC and RS methods were not very
similar to those obtained by the SB method. The widths of the Bayesian intervals for the parameters constructed
by the MCMC and RS methods were larger. In each parameter case, the widths of the MCMC and RS intervals are
about 5 times larger than the SB interval widths. The main reason was that the updates from the SB algorithm are
not representative.

Several phenomena can be observed from the results from the Monte Carlo simulation. First the mean squared
error decreases as the sample size increases for fixed level of the number of units censored. For a fixed value of the
sample size beyond some threshold value, the mean squared error increases with increasing level of units censored.
The RS method gives better approximations of the point estimates of the parameters as the corresponding mean
squared errors are generally smaller than those from the other methods.
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Table 6. The mean estimated values and corresponding MSE using MLE and Bayes technique methods.

n m MLE Bayes SB Bayes MCMC Bayes RS
α β α β α β α β

10 10 0.0965938 0.543229 0.0977269 0.54325 0.104814 0.539614 0.108399602 0.537720715
0.00352657 0.0101639 0.00359058 0.0101641 0.00378798 0.00975912 0.003634698 0.010989128

9 0.088357 0.544541 0.0894954 0.544532 0.0966724 0.540575 0.101505992 0.526144192
0.00330554 0.0116283 0.00336196 0.011625 0.00342947 0.0112017 0.003590120 0.009536702

8 0.0796068 0.54592 0.0807074 0.54594 0.0878191 0.541141 0.096275747 0.515060776
0.00343309 0.0132877 0.00346612 0.0132822 0.00339047 0.0127352 0.003175031 0.007210631

7 0.0688228 0.547092 0.0699216 0.547092 0.0768808 0.542017 0.086356682 0.516791911
0.00313645 0.0139212 0.00313905 0.0139168 0.00290339 0.0133409 0.002287333 0.013380657

6 0.0620851 0.54514 0.0632252 0.545137 0.07002 0.539505 0.070573258 0.516746353
0.00355225 0.0174726 0.00354032 0.017462 0.0032198 0.0167929 0.001879280 0.007272028

5 0.0538699 0.544946 0.0550502 0.544956 0.0615898 0.538361 0.055949112 0.550375269
0.00384942 0.0219228 0.00381704 0.0219072 0.00337681 0.0210178 0.003134624 0.017955789

4 0.0438866 0.546227 0.0450433 0.546268 0.0513286 0.53851 0.048060585 0.535066812
0.00449851 0.0254716 0.00444282 0.0254549 0.00388854 0.0245151 0.003836292 0.020156080

3 0.032328 0.55412 0.0335084 0.554039 0.039321 0.544672 0.032985715 0.546116807
0.00536857 0.0309052 0.00527079 0.0309288 0.00460875 0.0295594 0.004838608 0.015649686

15 15 0.100184 0.525084 0.100935 0.525087 0.10605 0.522522 0.103980542 0.529920484
0.00225603 0.00528135 0.00228534 0.0052806 0.00240274 0.00511315 0.002617119 0.007763336

14 0.0909943 0.530283 0.0917494 0.530284 0.0968113 0.527427 0.104149751 0.516204702
0.00209798 0.00640082 0.00211125 0.00640029 0.00213668 0.00618487 0.002845662 0.006203468

12 0.0783714 0.531331 0.0791134 0.531331 0.0840893 0.528149 0.089883498 0.513820595
0.00226732 0.00719851 0.00226286 0.00719396 0.00216391 0.00694955 0.001684704 0.005211331

11 0.0721472 0.526631 0.0729103 0.526627 0.077784 0.523216 0.079724604 0.502702003
0.00225351 0.00698954 0.00224076 0.00698635 0.00206838 0.00676461 0.001860149 0.008583772

9 0.0615553 0.529293 0.0623289 0.529297 0.067142 0.525219 0.066779047 0.516578941
0.00283782 0.00997 0.00281112 0.00996494 0.0025335 0.00964735 0.002150986 0.006713115

8 0.0554091 0.528275 0.0561979 0.528268 0.0609722 0.523734 0.061997086 0.510289929
0.00310942 0.0113079 0.003071 0.0112997 0.00273604 0.0109581 0.002573363 0.008069084

6 0.0405175 0.533492 0.0412645 0.533493 0.0457878 0.527877 0.048064553 0.508517583
0.00429142 0.0135554 0.00423043 0.0135447 0.00377333 0.0130829 0.003283371 0.008654256

5 0.0367048 0.530218 0.0375033 0.530232 0.0419314 0.523801 0.030302738 0.535244630
0.00475745 0.0183476 0.00468999 0.0183348 0.00420218 0.0177115 0.005154421 0.014734452

20 20 0.100025 0.520083 0.100546 0.520087 0.104492 0.518093 0.110610084 0.506698229
0.002008 0.00397173 0.00202168 0.00397055 0.002108 0.00388291 0.002264086 0.003449096

18 0.0901603 0.517461 0.0907292 0.517449 0.094601 0.515299 0.097528212 0.510816129
0.00160633 0.00389142 0.00160836 0.00389002 0.00160002 0.00379748 0.001500577 0.004353692

16 0.0780805 0.521752 0.0786473 0.521749 0.0823812 0.519374 0.089504714 0.505521191
0.00181521 0.0048663 0.00180555 0.00486482 0.00170788 0.00474747 0.001520748 0.004244547

14 0.0688834 0.523839 0.0694442 0.523841 0.0731434 0.521107 0.075618078 0.511536977
0.00213282 0.00606386 0.00211471 0.00606354 0.00194819 0.00591089 0.001764872 0.005174954

12 0.0585814 0.522823 0.0591269 0.52282 0.0628395 0.519677 0.068418164 0.507210644
0.00260232 0.00624033 0.00257161 0.00623965 0.00232439 0.00607496 0.001996491 0.005806728

10 0.0516951 0.518968 0.0522706 0.518957 0.0559389 0.515271 0.058972871 0.504314342
0.00318661 0.00813416 0.00314724 0.00813041 0.00284923 0.00792296 0.002485735 0.007082680

8 0.0416027 0.520105 0.0422094 0.520129 0.0457422 0.515628 0.049264789 0.502262124
0.00398774 0.00939556 0.00393447 0.00939277 0.0035661 0.00914802 0.003227021 0.009296318

6 0.0311785 0.524733 0.0317564 0.524733 0.0351537 0.519104 0.038595322 0.496787510
6 0.00515314 0.0132197 0.00508979 0.0132057 0.00466518 0.0128178 0.004166036 0.010517184

25 25 0.0979555 0.517154 0.0983677 0.517147 0.101477 0.515601 0.103888994 0.510443337
0.00143602 0.00309556 0.00144151 0.00309435 0.00147783 0.00302777 0.001439089 0.002989788

23 0.0911666 0.516757 0.0915688 0.516752 0.0947404 0.515049 0.093075773 0.511015683
0.00142217 0.00355025 0.00142239 0.00354986 0.00141908 0.00348646 0.001348822 0.003458540

20 0.0779644 0.518965 0.0783778 0.518969 0.0814824 0.516957 0.086790467 0.506201220
0.00154373 0.0037997 0.00153332 0.00379991 0.00144077 0.00370779 0.001188499 0.003196711

18 0.0688486 0.523022 0.0692769 0.523026 0.0722687 0.520835 0.079904018 0.504490909
0.00185523 0.00435935 0.00183745 0.00435874 0.0016931 0.00423545 0.001366548 0.003535451

15 0.0599343 0.517435 0.0603883 0.517439 0.063386 0.514951 0.067194003 0.504849203
0.00236278 0.00506006 0.00233574 0.0050565 0.00213315 0.00494708 0.001843134 0.004277783

13 0.0519465 0.51907 0.0524132 0.519074 0.0553559 0.516249 0.056684709 0.497956849
0.00299153 0.00608319 0.0029569 0.00608104 0.00271389 0.00595449 0.002489124 0.005447762

10 0.0417998 0.516557 0.0422673 0.516556 0.0451913 0.512843 0.047737408 0.496585558
0.0038927 0.00714924 0.00384858 0.00714308 0.00354092 0.00697894 0.003186006 0.006461775

8 0.0333519 0.518054 0.0338114 0.518048 0.0366399 0.513668 0.039214367 0.495359818
0.00483082 0.0095539 0.00477984 0.00955074 0.00443303 0.00931808 0.004065767 0.007788294

30 30 0.0972154 0.515079 0.0975349 0.515085 0.10021 0.513688 0.1060592628 0.506283227
0.00111359 0.00245533 0.00111618 0.00245524 0.00113271 0.00240554 0.0012332344 0.002325400

27 0.0887368 0.51338 0.0890602 0.51338 0.0916946 0.511908 0.0953604072 0.505068810
0.00111084 0.00256706 0.0011075 0.00256683 0.00108281 0.00253086 0.0011058401 0.002363809

24 0.0807674 0.511062 0.0811108 0.511066 0.0838238 0.509323 0.0850070459 0.505923054
0.00121665 0.00264025 0.00120795 0.00263942 0.00113795 0.00259585 0.0010669811 0.002755070

21 0.0704814 0.51272 0.070829 0.512721 0.0734354 0.510873 0.0763238677 0.502793470
0.00163933 0.0035076 0.00162409 0.00350678 0.00150204 0.00345702 0.0013449374 0.003226490

18 0.0602792 0.513873 0.0606465 0.51387 0.0632074 0.511759 0.0665972335 0.501458937
0.00220679 0.00399115 0.0021832 0.00398996 0.0020086 0.00391676 0.0017751811 0.003921401

15 0.0505121 0.514852 0.0508903 0.514848 0.0533945 0.512296 0.0570783302 0.499624204
0.00296213 0.00494479 0.00293033 0.00494297 0.00270905 0.00483695 0.0024065128 0.004355206

12 0.0411194 0.511906 0.0415022 0.511914 0.044003 0.508708 0.0473113451 0.495747118
0.0038711 0.0059779 0.00383284 0.00597479 0.00356323 0.00586353 0.0031819949 0.005362933

9 0.0319218 0.510458 0.0323116 0.510445 0.0347173 0.506466 0.0357581412 0.499010244
0.00495134 0.00796539 0.0049055 0.0079599 0.00460138 0.00782591 0.0044219334 0.007251997

35 35 0.10033 0.510093 0.100576 0.510096 0.102921 0.508967 0.1050598843 0.504776950
0.00102623 0.00204779 0.00102869 0.00204781 0.00105844 0.00202386 0.0009980059 0.001837138

32 0.0920323 0.510244 0.0922977 0.510249 0.0946753 0.508911 0.0957556311 0.505687660
0.00101627 0.00226071 0.00101504 0.00226079 0.00100571 0.00223067 0.0009993649 0.002263441

28 0.0805466 0.509987 0.0808194 0.509989 0.0831057 0.508521 0.0860528455 0.501269403
0.00113601 0.00245633 0.0011274 0.00245604 0.00106022 0.00241068 0.0009560736 0.002318271

25 0.0710553 0.511721 0.071354 0.511728 0.0736569 0.510039 0.0765145830 0.498257832
0.00147962 0.00273333 0.00146566 0.00273284 0.00135798 0.00268661 0.0012302975 0.002742438

21 0.0604706 0.510207 0.0607729 0.510205 0.0630212 0.508302 0.0650159865 0.501368529
0.00208918 0.00321931 0.00206922 0.00321875 0.00191287 0.00317459 0.0017600030 0.002939498

18 0.0529151 0.509529 0.0532462 0.509529 0.0554463 0.507349 0.0582921469 0.496170424
18 0.0027137 0.00414855 0.0026869 0.00414556 0.00250154 0.00409144 0.0022509046 0.003775513
14 0.0410745 0.510033 0.0414086 0.510038 0.0435476 0.507386 0.0462818421 0.496623113

0.00380462 0.0046829 0.0037698 0.00468083 0.00353613 0.0046115 0.0032510249 0.004686905
11 0.0330037 0.5108 0.0333461 0.510807 0.0354775 0.507396 0.0347878456 0.490382611

0.00476481 0.00637757 0.00472357 0.00637076 0.00445849 0.0062901 0.0045029202 0.006254630
40 40 0.099592 0.50994 0.0998086 0.509943 0.101859 0.508928 0.1027110237 0.505816211

0.000915641 0.00173877 0.000916745 0.00173886 0.000938836 0.00171816 0.0008710900 0.001739452
36 0.0896171 0.511357 0.0898316 0.511361 0.0919229 0.510193 0.0936502366 0.504116166

0.00092654 0.00210103 0.000924203 0.00210072 0.000903531 0.00206905 0.0007803555 0.001802891
32 0.0796949 0.510414 0.0799226 0.510421 0.0819627 0.509117 0.0843232337 0.503439167

0.00108337 0.00226917 0.00107639 0.00226871 0.00101375 0.00224361 0.0009535063 0.001986631
28 0.070364 0.510544 0.0706078 0.510542 0.0726423 0.509069 0.0743081046 0.502956681

0.00145944 0.00241471 0.00144698 0.00241445 0.00134653 0.00238228 0.0012230970 0.002212039
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n m MLE Bayes SB Bayes MCMC Bayes RS
α β α β α β α β

24 0.0589237 0.511938 0.0591778 0.511944 0.0611501 0.510222 0.0637834036 0.503850526
0.00212529 0.0028013 0.00210674 0.00280073 0.00196249 0.0027554 0.0017856161 0.002760099

20 0.0508943 0.508294 0.0511654 0.508289 0.0531312 0.506295 0.0545042108 0.500074972
0.00276204 0.00325971 0.00273818 0.00325978 0.00255928 0.00322043 0.0024751614 0.003288732

16 0.0407576 0.51077 0.0410403 0.510777 0.0429512 0.508298 0.0448721380 0.498912840
0.00381568 0.00453387 0.0037857 0.00453127 0.00357632 0.00446909 0.0033527216 0.004070938

12 0.0313449 0.507069 0.0316441 0.507074 0.0335126 0.503964 0.0350569184 0.494194384
0.00493557 0.00519936 0.00489815 0.00519722 0.0046553 0.00512012 0.0044477989 0.005417482

45 45 0.099404 0.509762 0.0995777 0.509761 0.101452 0.508819 0.1034950866 0.504796789
0.000700984 0.00147888 0.000701514 0.00147869 0.000715174 0.00145551 0.0007970579 0.001383290

41 0.0905794 0.508827 0.0907641 0.50883 0.0925778 0.507828 0.0919737663 0.503814669
0.000774688 0.00169698 0.000772756 0.00169676 0.000753132 0.0016712 0.0007955076 0.001582602

36 0.0804721 0.507271 0.0806633 0.507273 0.0824927 0.506152 0.0847056266 0.501305058
0.00100127 0.00193854 0.00099529 0.00193842 0.000939194 0.00191766 0.0008736683 0.001776347

32 0.071167 0.507539 0.0713656 0.507544 0.0732112 0.506228 0.0011178763 0.002072463
0.00131079 0.00204462 0.0013009 0.00204486 0.00121075 0.00202527 0.0758102308 0.502013931

27 0.0596875 0.510219 0.0599065 0.510229 0.0616798 0.50867 0.0638147000 0.504241774
0.00202708 0.00241344 0.00201171 0.00241312 0.00188221 0.00237689 0.0017339790 0.002463779

23 0.0525129 0.506082 0.0527449 0.506091 0.0545259 0.504284 0.0532987239 0.498539769
0.0026475 0.00300329 0.00262761 0.00300276 0.00247301 0.00297257 0.0025246835 0.002869696

18 0.0396012 0.512335 0.0398377 0.512338 0.0415572 0.510104 0.0453582536 0.493997303
0.00391486 0.00394246 0.00388864 0.00394025 0.00369323 0.00386819 0.0032401918 0.003322612

14 0.0311549 0.511945 0.0314102 0.511951 0.0330341 0.509314 0.0361276242 0.493710912
0.00492781 0.00473281 0.0048952 0.00472983 0.00468179 0.00464864 0.0042821305 0.004457198

50 50 0.0995724 0.508182 0.0997171 0.508187 0.101381 0.50738 0.1035335180 0.503039498
0.000655787 0.00136083 0.000656443 0.00136084 0.000665895 0.00134662 0.0007241307 0.001301183

45 0.0904489 0.507345 0.090604 0.507347 0.092247 0.506425 0.0943669027 0.501332417
0.000714751 0.00148269 0.000712485 0.00148247 0.00069268 0.00146682 0.0006399489 0.001346615

40 0.0781412 0.510993 0.0782879 0.510994 0.0799672 0.509953 0.0832603379 0.504195263
0.000971694 0.00179197 0.000966141 0.00179182 0.000907772 0.0017728 0.0007927074 0.001652673

35 0.069269 0.509038 0.0694478 0.509039 0.0710814 0.507872 0.0751999064 0.499655530
0.00135772 0.00186597 0.001348 0.00186576 0.00126008 0.0018419 0.0011150765 0.001811460

30 0.0591685 0.509075 0.0593578 0.509078 0.060997 0.507634 0.0655125831 0.497755539
0.00201064 0.00215451 0.00199666 0.00215454 0.00187466 0.00212469 0.0015827993 0.001960856

25 0.0503399 0.507663 0.0505373 0.507669 0.0521508 0.506057 0.0547102650 0.499009974
0.00275415 0.00260065 0.00273601 0.00259974 0.00258774 0.00256945 0.0023687057 0.002506362

20 0.0399768 0.511354 0.040192 0.511351 0.0417161 0.509403 0.0439064657 0.498555889
0.00384476 0.00348622 0.00382065 0.00348563 0.00364728 0.00343041 0.0033724790 0.003115709

15 0.0308155 0.506553 0.0310507 0.506561 0.032579 0.503916 0.0343540871 0.496051442
0.00496856 0.00451572 0.0049381 0.00451354 0.00473602 0.00445921 0.0044776877 0.004107279

55 55 0.0999156 0.507076 0.100043 0.50708 0.101586 0.506317 0.1025671133 0.504709426
0.000605656 0.00118931 0.000606407 0.00118933 0.000618069 0.0011795 0.0006159297 0.001119474

50 0.0896197 0.508431 0.0897495 0.508432 0.0912528 0.507659 0.0941894391 0.502748280
0.000657108 0.00131065 0.000655005 0.00131069 0.000636228 0.00130038 0.0005941511 0.001231337

44 0.0790223 0.508002 0.0791718 0.508003 0.0806547 0.507122 0.0830742540 0.502139363
0.000896261 0.00149798 0.00089051 0.00149778 0.000839479 0.00148533 0.0007791093 0.001454397

39 0.0713882 0.507398 0.0715437 0.507401 0.0730488 0.506403 0.0735465362 0.500035985
0.00119633 0.00167253 0.00118811 0.00167254 0.00111315 0.00165792 0.0011417480 0.001741524

33 0.0596584 0.507667 0.0598219 0.507673 0.0612978 0.506414 0.0646420676 0.498748827
0.00193851 0.00197268 0.00192602 0.00197214 0.0018161 0.00194866 0.0016278846 0.002142306

28 0.0510951 0.507843 0.0512697 0.507851 0.0527337 0.506403 0.0543184546 0.500949336
0.00265338 0.00216282 0.00263717 0.00216224 0.00250405 0.00213783 0.0023899234 0.002317586

22 0.0405079 0.506676 0.0407017 0.506683 0.0421262 0.504859 0.0438771961 0.497455014
0.00374537 0.00289383 0.00372366 0.00289281 0.00356261 0.00285924 0.0033688235 0.002975789

17 0.0311658 0.510179 0.0313687 0.510182 0.0327539 0.507893 0.0333519673 0.493075804
0.00489078 0.00388375 0.00486439 0.00388256 0.00468169 0.00382626 0.0045952979 0.004124284
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