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Abstract

Researchers in many fields including biomedical often make statistical inferences involving the analysis of count
data that exhibit a substantially large proportion of zeros. Subjects in such research are broadly categorized into
low-risk group that produces only zero counts and high-risk group leading to counts that can be modeled by
a standard Poisson regression model. The aim of this study is to estimate the model parameters in presence
of covariates, some of which may not have significant effects on the magnitude of the counts in presence of a
large proportion of zeros. The estimation procedures we propose for the study are the pretest, shrinkage, and
penalty when some of the covariates may be subject to certain restrictions. Properties of the pretest and shrinkage
estimators are discussed in terms of the asymptotic distributional biases and risks. We show that if the dimension
of parameters exceeds two, the risk of the shrinkage estimator is strictly less than that of the maximum likelihood
estimator, and the risk of the pretest estimator depends on the validity of the restrictions on parameters. A Monte
Carlo simulation study shows that the mean squared errors (MSE) of shrinkage estimator are comparable to the
MSE of the penalty estimators and in particular it performs better than the penalty estimators when the dimension
of the restricted parameter space is large. For illustrative purposes, the methods are applied to a real life data set

Keywords: adaptive LASSO, asymptotic bias and risk, LASSO, likelihood ratio test, shrinkage and pretest esti-
mators, zero-inflated data.

1. Introduction

Data with large number of zeros are often encountered in many studies including medical and public health. Failure
to account for the extra zeros may result in biased parameter estimation and misleading inference. In recent years
the regression method for modelling such data has become very popular. It is based on the assumption that the
response is generated by a mixture of a degenerate distribution at zero and a standard Poisson distribution. For
example, the National Medical Expenditure Survey data contain an excessive number of zeros in the hospital
admission, and the probability mass at point zero exceeds that allowed under a standard parametric family of
distributions. We will analyze this survey data in Section 5 where the number of hospital admission ranges from
0 to 8, and 80.4% of the respondents have no hospital admission, which presents possible zero-inflation. The
zero-inflated Poisson regression (ZIPR) model can be used to analyze this data which assumes that the population
of respondents can be divided into two subpopulations. The first of which generates counts (number of hospital
admissions) that follow a Poisson distribution with the usual parameter, λ and the second subpopulation generates
only the zeros (no hospital admission) with probability, p that follows binomial distribution with logit model.

The ZIPR models were first introduced by Mullahy (1986) in the econometric literature. Their use has become
very broad since the publication of the pioneering work by Lambert (1992) in which manufacturing defects were
considered. Ridout et al. (1998) cited examples of data with too many zeros from various disciplines including
medicine, agriculture, and the use of recreational facilities. Hall (2000) considered ZIPR and zero-inflated binomial
models with random intercept, and provided an EM algorithm for model estimation. Hinde & Demetrio (1998)
reviewed the literature of ZIPR model and cited examples from agriculture, econometrics, manufacturing, road
safety, species abundance, and medical sciences. Jansakul & Hinde (2002) extended the van den Broek (1995)
score test to the more general situation where the zero probability is allowed to depend on covariates. Feng & Zhu
(2011) studied a semiparametric ZIP mixture model, and a Monte Carlo EM algorithm was provided for model
estimation. For other aspects of ZIPR models, see among others, Dietz & Bohning (2000) and Ridout et al. (2001).
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The motivation of the present paper comes from the need to be able to identify the significant covariates of the
ZIPR model in presence of a higher proportion of zeros in the response variable. With this motivation, we consider
an unrestricted model that includes all covariates and possible extraneous variables and a restricted model that
includes some covariates of concern while leaving out extraneous variables. One way to deal with this framework
is to use the pretest procedures that test whether the coefficients of the extraneous variables are zero and then
estimate the parameters in the model that include coefficients that are rejected by the test. Another approach is to
use Stein type shrinkage estimators where the estimated regression coefficient vector is shrunk in the direction of
linear restriction among the parameters. Sapra (2003) considered the pretest method to estimate the parameters of
the Poisson regression model. For the properties of pretest and shrinkage estimation strategies for parametric and
semiparametric linear models, see Nkurunziza (2013), Hossain et al. (2012), and Liang & Song (2009), among
others.

This paper also studies the penalty estimators such as, least absolute shrinkage and selection operator (LASSO) and
adaptive LASSO and compares their performances in terms of biases and mean squared errors with the shrinkage
and pretest estimators through a simulation study. The LASSO was developed by Tibshirani (1996) for simulta-
neous variable selection and parameter estimation. Unlike LASSO, the adaptive LASSO proposed in Zou (2006)
permits different weights for different parameters. The adaptive LASSO has been shown to have the oracle prop-
erty, that is, consistency in variable selection and asymptotic normality. Hossain & Ahmed (2012) considered the
shrinkage and penalty methods for estimating the Poisson regression model when some of the covariates may be
inactive for the response. Zeng et al. (2014) proposed a variable selection approach for ZIPR models via adaptive
LASSO.

The rest of this paper is organized as follows. The model and suggested estimators are introduced in Section
2. The asymptotic properties of the proposed estimators and their asymptotic distributional biases and risks are
presented in Section 3. The results of a simulation study are reported in Section 4. Application to real life data and
a comparison of our methods are described in Section 5. Finally, concluding remarks are given in Section 6.

2. Models and the Proposed Estimators

2.1 Models and Estimation Method

Suppose that the counts, Yi, i = 1, 2, · · · , n are generated independently according to a zero-inflated Poisson
distribution. The zeros are assumed to arise in two distinct underlying processes. The first process occurs with
probability pi and produces only zeros, while the second process occurs with probability 1 − pi and leads to a
standard Poisson model with parameter λi and hence a chance of further zeros. In general, the inevitable zeros
from the first process are called structural zeros and those from the Poisson process are called sampling zeros,
see for example, Ridout et al. (1998) and Jansakul & Hinde (2002). These two processes give rise to a simple
two-component mixture distribution with probability mass function

Pr(Y = yi) =

pi + (1 − pi)exp(−λi), yi = 0
(1 − pi)

exp(−λi)λyi

yi!
, yi ≥ 1, 0 ≤ pi ≤ 1

(1)

and E(Yi) = (1 − pi)λi, var(Yi) = λi +
(

pi
1−pi

)
λ2

i . The ZIPR model reduces to a Poisson regression model when
pi = 0, and exhibits overdispersion when pi > 0. Lambert (1992) incorporated covariates using a log link for λi

and logit link for pi.

log(λi) = x⊤i β and log
(

pi

1 − pi

)
= z⊤i γ, (2)

where xi = (xi1, xi2, · · · , xip)⊤ and zi = (zi1, zi2, · · · , ziq)⊤ are the covariate vectors, and β and γ are the p × 1
and q × 1 vectors of unknown regression parameters. Let us assume θ = (β⊤,γ⊤)⊤. The covariates that affect
the Poisson parameter of the first process may or may not be the same that affect the probability of the second
process. When the covariates are the same and λi and pi are not functionally related, then xi = zi and in that case
the ZIPR involves twice as many parameters as the Poisson regression. In model (2), we are interested in testing
the following hypothesis:

H0 : Hθ = h versus HA : Hθ , h,

where H is an r × (p + q) matrix of full rank and h is a r × 1 vector of constant terms.
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For a random sample, y = (y1, y2, · · · , yn), the log-likelihood function is given by

ℓ = ℓ(λ, p; y) =

n∑
i=1

{
I(yi=0)ln[pi + (1 − pi)exp(−λi)] + I(yi>0)[ln(1 − pi) − λi + yilnλi − ln(yi!)]

}
=

n∑
i=1

{
I(yi=0)ln[exp(z⊤i γ) + exp(−exp(x⊤i β))]

+ I(yi>0)[yix⊤i β − exp(x⊤i β) − ln(yi!)]
}
−

n∑
i=1

ln(1 + exp(z⊤i γ)). (3)

where I(·) is an indicator function, which is equal to 1 if the event is true and 0 otherwise.

The log-likelihood function (3) of the ZIPR model is quite complicated, especially as the first term involves both
β and γ. Also, the responses are from a mixture distribution that includes both sets of the parameters pi and λi.
The computation thus becomes quite challenging in terms of the variance-covariance matrix and accuracy when
using the Newton-Raphson algorithm. And it is due to the additional number of parameters to be estimated for the
proposed model from the complicated nature of the likelihood function (3). To avoid this complication, we use the
EM algorithm to maximize the log-likelihood function, see, Hall (2000) and Lambert (1992).

The EM algorithm is based on a latent variable Ui, where we observe Ui as 1, when Yi is from the perfect, zero state
(or first process) and Ui as 0, when Yi is from the Poisson state (or second process). To formulate the log-likelihood
for the complete data, we use the conditional probability:

Pr (Yi = yi,Ui = ui|xi, zi,β,γ)

= Pr (Yi = yi|Ui = ui, xi, zi,β,γ) × Pr (Ui = ui|xi, zi,β,γ)

=

(
exp(z⊤i γ)

1 + exp(z⊤i γ)

)ui (exp(yix⊤i β − exp(x⊤i β))
yi!(1 + exp(z⊤i γ))

)1−ui

Thus, the complete log-likelihood based on (Y,U) is

Lc(β,γ; U, xi, zi) = ln

 n∏
i=1

Pr (Yi = yi,Ui = ui|xi, zi,β,γ)


=

n∑
i=1

{ui z⊤i γ − uiln(1 + exp(z⊤i γ))}

+

n∑
i=1

(1 − ui)
[
(yix⊤i β − exp(x⊤i β) − ln(yi!) − ln(1 + exp(z⊤i γ)))

]
= Lc1(γ; U, xi, zi) + Lc2(β; U, xi, zi) −

n∑
i=1

(1 − ui)ln(yi!)), (4)

where Lc1 =
∑n

i=1{ui z⊤i γ − ln(1 + exp(z⊤i γ))}, Lc2 =
∑n

i=1(1 − ui)(yix⊤i β − exp(x⊤i β)), and U = {ui; i = 1, 2, · · · , n}.
To implement the EM algorithm, we first initialize (β,γ) by letting Ui = I(yi=0). In the E-step, we use the initial
values of (β,γ) to calculate the expectation of Ui, and use it as the estimator of Ui. In the M-step, we use the
estimate Ui to maximize Lc(β,γ; U, xi, zi), which gives the unrestricted maximum likelihood estimator for β and
γ. The iteration (k + 1) of the EM algorithm requires the following steps.

E-Step: Estimate U(l)
i by using the means given γ(l) and β(l),

U(l)
i = E(Ui|yi, γ

(l),β(l))

= E(Ui = 1|yi, γ
(l),β(l))

=
Pr(Yi = yi|Ui = 1)Pr(Ui = 1)

Pr(Yi = yi|Ui = 1)Pr(Ui = 1) + Pr(Yi = yi|Ui = 0)Pr(Ui = 0)

=
[
1 + exp(−exp(x⊤i β

(l)) − z⊤i γ
(l))

]−1
, if yi = 0, and 0, if yi ≥ 1.
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M-Step: Given Ui = U(l)
i , maximize Lc1(γ; U(l), xi, zi) and Lc2(β; U(l), xi, zi) with respect to γ and β, respectively:

γ(l+1) = argmin
γ

{
−Lc1(γ; U(l), yi, xi, zi)

}
(5)

β(l+1) = argmin
β

{
−Lc2(β; U(l), yi, xi, zi)

}
(6)

The iteration stops when (5) and (6) converge simutaneously. The final estimate θ̂ = (β̂⊤, γ̂⊤)⊤ is known as the
unrestricted maximum likelihood estimator (UMLE).

Let I(β,γ) be the information matrix of the estimator θ̂. If 1
n I(β,γ) has a positive definite limit satisfying some

regularity conditions, as in the work of McCullagh (1983), the quantity
√

n
(
θ̂ − θ

)
is asymptotically normally

distributed with mean vector 0 and information matrix I−1
(β,γ) (Lambert, 1992). The matrix I(β,γ) can be partitioned

as (
Iβ,β Iβ,γ
Iγ,β Iγ,γ

)
,

where the elements Iβ,β, Iβ,γ = I⊤γ,β, and Iγ,γ are, respectively,

−E
[
∂2l
∂β∂β⊤

]
,−E

[
∂2l
∂β∂γ

]
, and − E

[
∂2l
∂γ∂γ⊤

]
with

∂2l
∂β j∂βk

=

n∑
i=1

{
I(yi=0)

[
−exp(−λi)[(1 − λi)pi + (1 − pi)exp(−λi)](1 − pi)λi

[pi + (1 − pi)exp(−λi)]2

]
+ I(yi>0)(−λi)

}
xi jx jk,

∂2l
∂β j∂γr

=
∂2l
∂γ j∂βr

=

n∑
i=1

{
I(yi=0)

[
λiexp(−λi)

[pi + (1 − pi)exp(−λi)]2

]}
xi jzir,

∂2l
∂γr∂γs

=

n∑
i=1

{
I(yi=0)

[
−(1 − exp(−λi))2

[pi + (1 − pi)exp(−λi)]2

]
+ I(yi>0)

[
−1

(1 − pi)2

]}
zirzis,

where j, k = 1, 2, · · · , p and r, s = 1, 2, · · · , q.

Suppose now that our interest centers in estimating the parameters β and γ from (4) under the linear restriction
Hθ = h. The steps of the EM-algorithm for estimating the parameters using log-likelihood (4) under the above
restriction are the same. We simply replace θ(l+1) = (β(l+1),γ(l+1)) by θ(l+1)

c = (β(l+1)
c ,γ(l+1)

c ) in the M-step. The
resulting estimator, θ̃ = (β̃⊤, γ̃⊤)⊤ is known the restricted maximum likelihood estimator (RMLE).

The likelihood ratio test statistic can be used to test H0 : Hθ = h vs. Ha : Hθ , h. If θ̃ maximizes the log
likelihood of the ZIPR model under H0 of dimension k − r, where k = p + q and θ̂ maximizes the log likelihood of
the ZIPR model under a nested alternative hypothesis HA of dimension k, then the test statistic Dn is

Dn = 2[l(θ̂) − l(θ̃]

=
(
Hθ̂ − h

)⊤
[Hvar(θ̂)H⊤]−1

(
Hθ̂ − h

)
+ op(1) (7)

Under H0 and suitable regularity conditions, Dn is asymptotically distributed as chi-square with r degrees of
freedom (Lambert, 1992). So that a likelihood ratio test can be performed using approximate critical values from
the chi-square distribution.

2.2 The Pretest and Shrinkage Estimators

The pretest and shrinkage estimators are based on the test statistic Dn of (7) for testing H0 : Hθ = h. Specifically,
the pretest estimator (PT) of θ is defined as

θ̂PT = θ̂ − (θ̂ − θ̃)I(Dn ≤ χ2
r,α),

where I(A) is an indicator function of a set A, and χ2
r,α is the α-level critical value of the approximate distribution

of Dn under H0. From the above definition, one can see that if the data yield Dn < χ
2
r,α, then θ̂PT = θ̃, otherwise
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θ̂PT = θ̂. So the PT is indeed a simple mixture of the UMLE and RMLE estimators. In an ordinary two-step
procedure, one would test the hypothesis H0 : Hθ = h first, then based on the test result decide which estimator
should be adopted. The PT simply combines these two steps to form a single one. That is, testing and estimation
are done simultaneously. For details, see Hossain et al. (2009) and Ahmed at al. (2006), and others.

Because of extreme choices for either the UMLE or RMLE, the pretest procedures are not admissible for some
models, even though they may improve upon the UMLE, a well-documented fact in the literature (Judge & Bock,
1978). This motivates us to define a shrinkage estimator, which is a smoothed version of θ̂PT :

θ̂S E = θ̃ +
(
1 − (r − 2)D−1

n

)
(θ̂ − θ̃), r ≥ 3. (8)

This estimator is a weighted average of UMLE θ̂ and RMLE θ̃, where the weights are a function of the test statistic
for testing H0 : Hθ = h.

We note that when the test statistic Dn is very small in comparison with r − 2, i.e., when the ratio (r − 2)/Dn is
greater than one in absolute value, the shrinkage estimator θ̂S E tends to shrink θ̂ overly towards θ̃ and reversing the
sign of θ̂. Replacing

(
1 − (r − 2)D−1

n

)
by

(
1 − (r − 2)D−1

n

)
+

in (8), where (x)+ = x1(x≥0), the positive-part shrinkage
estimator, θ̂PS E rectifies this problem. For details, see, Ahmed & Fallahpour (2012).

2.3 Penalty Estimators: LASSO and Adaptive LASSO

Let θ be the parameter of interest and ℓ(θ) be the log-likelihood function of the ZIPR, then the LASSO estimator
(Tibshirani, 1996) is given by

θ̂lasso(τ) = argmin
θ

−ℓ(θ) + τ
p+q∑
g=1

|θg|

 ,
where τ ≥ 0 is a penalization parameter controlling the amount of shrinkage on the regression coefficients. How-
ever, the LASSO applies same penalty to all the coefficients, which over-penalizes the important ones and accord-
ingly results in biased estimators (Zou, 2006).

The adaptive LASSO (ALASSO) (Zou, 2006) offers an effective way to minimize this bias. It has been shown that
the ALASSO enjoys the oracle property that is, the ALASSO is consistent in variable selection, and its estimators
are asymptotically normal and unbiased. More explicitly, it assigns a higher weight to the small coefficients and
lower weight to the large coefficients. The adaptive lasso estimator is defined as

θ̂alasso(τ) = argmin
θ

−ℓ(θ) + τ
p+q∑
g=1

wg|θg|

 , (9)

where w = (w1,w2, · · · ,wp+q) are adaptive weights, which are usually set to ŵ = 1/|θ̂|, here θ̂ are the maximum
likelihood estimators. The ALASSO estimator can be obtained by minimizing penalized log-likelihood function.
First, we expand the likelihood function based on a Taylor series expansion at θ̂:

ℓ(θ) ≈ ℓ(θ̂) + (θ − θ̂)⊤ℓ′(θ̂) + 1
2

(θ − θ̂)⊤ℓ′′(θ̂)(θ − θ̂), (10)

where ℓ′ and ℓ′′ are the first and second derivatives, respectively. Since ℓ(θ̂) is constant and ℓ′(θ̂) = 0, so the
penalized log-likelihood function is equivalent to

1
2

(θ − θ̂)⊤
[
−ℓ′′(θ̂)

]
(θ − θ̂) +

p+q∑
g=1

|θg|. (11)

Let Σ̂ be the estimated variance-covariance matrix of θ̂, which can be obtained from one of many statistical pack-
ages. And it provides an estimate of the Hessian matrix ℓ′′, given as ℓ′′ = −Iθ̂ = −Σ̂−1. Here we use the R statistical
package pscl (Jackman, 2012) in order to calculate Σ̂. Then we construct a pseudo-data set as

X∗ = Σ̂−1/2,Y∗ = Σ̂−1/2θ̂.
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The order of the square matrix X∗ is p + q + 2 and Y∗ is a vector corresponding to X∗. The ALASSO estimator (9)
can now be re-written as

θ̂alasso(τ) ≈ argmin
θ

1
2

(Y∗ − X∗θ)⊤(Y∗ − X∗θ) + τ
p+q∑
g=1

wg|θg|

 , (12)

The estimator in equation (12) is similar to the least squares estimator with adaptive LASSO penalization (Zou,
2006). Various efficient algorithms, such as the least angle regression algorithm (Efron et al., 2004), the predictor-
corrector algorithm (Park & Haste, 2007), and the coordinate descent algorithm (Friedman et al., 2010) can be used
to conduct the minimization of Equation (12). Here we adopt the predictor-corrector algorithm which computes
solutions along the entire penalization path of the coefficient estimates as τ varies. Starting at τ = τmax, where
τmax is the largest τ that makes all the coefficients of θ̂(τ) nonzero. This algorithm computes a series of solutions,
each time estimating the coefficients with a smaller τ. The penalization parameter τ is selected using k-fold cross
validation. For each fold, we obtain a series of models based on Schwarz’s Bayesian criterion, commonly referred
to as Bayesian information criterion corresponding to the values of τ and compute the right side of (12) using the
omitted fold. Then we choose the value of τ for which the average cross-validation in the right side of (12) is
minimized.

In the case of pretest and shrinkage estimators, it is possible to determine theoretically when they have smaller
asymptotic risks than the unrestricted MLE. Similar results are not available for LASSO and adaptive LASSO
estimators.

3. Asymptotic Results

In this section we study the asymptotic behavior of the proposed estimators and develop the results in terms of θ̂∗,
which could be any one of the estimators considered in this paper: θ̂, θ̃, θ̂PT , θ̂S E , and θ̂PS E . In order to proceed with
the asymptotic results, we first partition θ = (θ⊤1 , θ

⊤
2 )⊤, where θ2 is the coefficient vector of the inactive covariates

for the ZIPR model. The main focus here is to evaluate the performance of these estimators when θ2 is close to the
null vector. To derive any meaningful results we consider a sequence of local alternatives

Kn : Hθ = h +
ω
√

n
, (13)

where ω = (ω1, ω2, · · · , ωr)⊤ ∈ ℜr is a given vector of real numbers. In this framework, θ= (θ⊤1 , 0
⊤)⊤, and the

quantity ω√
n is the magnitude of the distance between the true model and the restricted model. For any fixed ω, this

distance shrinks as the sample size increases.

To study the asymptotic risks (ADR) of the estimators, we define a quadratic loss function by using a positive
definite matrix W, namely

L(θ̂∗; W) =
[√

n(θ̂∗ − θ)
]′

W
[√

n(θ̂∗ − θ)
]
,

where θ̂∗ is any one of the estimators. The usual quadratic loss is defined when W is chosen as I, the identity
matrix. A general W gives a loss function that weighs differently for different θ’s.

If V is the asymptotic variance-covariance matrix of θ̂∗, the ADR of
√

n(θ̂∗ − θ) is given by tr(WV). We assume
that the cumulative distribution function of θ̂∗ under Kn exists and can be denoted as

F(x) = lim
n→∞

P
[√

n(θ̂∗ − θ) ≤ x|Kn

]
,

where F(x) is a nondegenerate distribution function. The ADR of θ̂∗ is then defined as

R(θ̂∗; W) =

∫
· · ·

∫
x′Wx dF(x)

= trace(WV), (14)

where V =
∫
· · ·

∫
xx′dG(x) is the dispersion matrix for the distribution function F(x).

The shrinkage estimators are, in general biased, the bias, however is accompanied by a reduction in variance. The
asymptotic distributional bias (ADB) of an estimator θ̂∗ is defined as

ADB(θ∗) = lim
n→∞

E
{
n

1
2 (θ̂∗ − θ)

}
.
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Under the local alternatives (13), the following theorems help the derivation and numerical computation of the
ADB and the ADR of the estimators.

Theorem 3.1 If Iβ,γ is nonsingular and ∆ = ω⊤(HI−1
β,γH⊤)−1ω, then under the local alternatives Kn in (13) and

regularity conditions, we have as n→ ∞

1.
√

n(Hθ̂ − h)
L−→ N(ω,HI−1

β,γH⊤).

2. The test statistic Dn in (7) converges to a non-central chi-squared distribution χ2
r (∆) with r degrees of free-

dom and non-centrality parameter ∆.

For a concise statement of the results, we use the following notations:

ζ = I−1H⊤(HI−1H⊤)−1

gr+i(∆) = Hr+i(r − 2,∆), h j,r+i(∆) = E
(
χ
−2 j
r+i (∆)

)
k j,r+i(∆) = Hr+i(r − 2,∆) + (r − 2) jE

(
χ
−2 j
r+i (∆)I(χ2

r+i)(∆) < r − 2
)
, and

O j,r+i(∆) = E
(
(1 − (r − 2)E(χ−2 j

r+i (∆)))2I(χ2
r+i)(∆) < r − 2

)
where i = 2, 4, j = 1, 2 and for simplicity we assume that Iβ,γ = I. Here Hr+2(·,∆) is the distribution function of
the χ2

r (∆) distribution.

Theorem 3.2 Using the definition of ADB and Theorem 3.1, the ADBs of the estimators are,

ADB(θ̂) = 0, ADB(θ̃) = −ζω, ADB(θ̂PT ) = −ζωgr+2(∆)
ADB(θ̂S E) = −(r − 2)ζωh1,r+2(∆), ADB(θ̂PS E) = ADB(θ̂S E) − ζωk1,r+2(∆).

The outline of the proof is similar to that of Theorem 3.1 of Ahmed & Fallahpour (2012).

Clearly, the bias of the estimators is a function of ∆. Therefore, for bias comparisons, it suffices to compare
the scalar factor ∆ only. It is clear that the ADB of RMLE is an unbounded function of ∆. The ADB(θ̂S E) and
ADB(θ̂PS E) start from the origin, and as ∆ increases, they increase to a maximum and then decrease to 0. Note
that, h1,r+2(∆) is a decreasing log-convex function of ∆ and the ADB of θ̂PT is a function of ∆ and α. For a fixed α,
ADB(θ̂PT ) starts at zero, increases to a point, then decreases gradually to zero.

Theorem 3.3 Under the local alternatives Kn in (13) and the assumptions of Theorem 3.1, the ADRs of the estima-
tor are

ADR(θ̂; W) = tr(W I−1)
ADR(θ̃; W) = ADR(θ̂; W) − tr(WζHI−1) + ω⊤(ζ⊤Wζ)ω
ADR(θ̂PT ; W) = ADR(θ̂; W) − gr+2(∆)tr(WζHI−1) + ω⊤(ζ⊤Wζ)ω(2gr+2(∆) − gr+4(∆))
ADR(θ̂S E ; W) = ADR(θ̂; W) + ((r − 2)2h2,r+2(∆) − 2(r − 2)h1,r+2(∆))tr(WζHI−1)

+ ω⊤(ζ⊤Wζ)ω((r − 2)2h2,r+4(∆) + 2(r − 2)h1,r+2(∆) − 2(r − 2)h1,r+2(∆))
ADR(θ̂PS E ; W) = ADR(θ̂S E ; W) − O1,r+2(∆)tr(WζHI−1) − O1,r+4(∆)ω⊤(ζ⊤Wζ)ω

+
1
2

(3gr+2(∆) + k1,r+2(∆))ω⊤(ζ⊤Wζ)ω.

The outline of the proof is similar to that of Theorem 3.2 of Ahmed & Fallahpour (2012).

By comparing the ADRs of the estimators, we see that, as ∆moves away from 0, the risk of θ̃ becomes unbounded.
That is, the RMLE θ̃ dominates the unrestricted estimator at and near ∆ = 0. The risk of θ̂PS E is asymptotically
superior to θ̂S E for all values of ∆, with strict inequality holds for some ∆. Thus, not only does θ̂PS E confirm the
inadmissibility of θ̂S E , but it also provides a simple superior estimator. Further, the largest risk improvement of
θ̂PS E over θ̂S E is at and near the null hypothesis. Also, by comparing the ADRs of θ̂S E , θ̂PS E , and θ̂, it can be easily
shown that, under certain conditions ADR(θ̂PS E ,W) ≤ ADR(θ̂S E ,W) ≤ ADR(θ̂; W) for all ∆ ≥ 0. For a given α,
PT is not uniformly better than the unrestricted estimator near the null hypothesis. One may determine an α such
that PT has a minimum guaranteed risk. For any given H, I, and h, the relative efficiency (inverse of risk) of PT
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to UMLE is a function of α and λ. If the minimum efficiency required is RE0, then we can choose α by solving
the equation min

λ
{Relative Efficiency(α,∆)} = RE0. The exact solution may not be available, but one can use a

numerical method to search for the minimum.

In order to explain and quantify the properties of the theoretical results, we conduct a simulation study to compare
the performance of the suggested estimators.

4. Simulation Studies

The zero-inflated count responses are generated from the following mixture of two models:

log(λi) = x⊤i β and log
(

pi

1 − pi

)
= z⊤i γ,

where xi are generated from a multivariate normal distribution Np(0,Σ), with elementsσi j = ρ
|i− j| (i, j = 1, 2, · · · , 20)

and zi are generated from uniform, and Poisson distributions. We consider the correlation, ρ = 0.50 among the
covariates, and sample sizes n = 150 and 350. For small samples, say n = 50, the likelihood function does not
converge. The estimations of the variance-covariance matrix as well as the regression coefficients in such cases
are unstable for the ZIPR model. We tried different sample sizes. In order for the likelihood function to converge,
it needed a minimum sample of size 150. We set α = 0.05 for the pretest method. Our objective is to test the
hypothesis

H0 : θ2 = 0 versus HA : θ2 , 0.

We set the true values of θ = (θ⊤1 , θ
⊤
2 )⊤ = {(β1,γ1)⊤, (β2,γ2)⊤} as:

θ = ((1.1,−0.36,−0.36, 1.08, 0.92)⊤,−0.2⊤), b⊤),

where b = θ2 = (β2,γ2) is a zero vector with different lengths. The number of replications is set to 1, 000 for all
cases. We define the distance between the simulation model and the restricted model by

∆ = ||θ − θ(0)||2,

where θ(0) = (θ⊤1 , 0
⊤)⊤, is a 6 × 1 true parameter vector in the simulation model and || · || is the Euclidian norm.

Samples are generated using ∆ between 0 and 1.

Based on the simulated data, we estimate the mean squared errors (MSE) of all the estimators studied in this paper.
We calculate the simulated mean squared error (SMSE) by using the the empirical formula

S MS E(θ∗) =
p+q∑
i=1

(θ∗i − θi)2,

where θ̂∗ as before denotes any one of the estimators θ̂, θ̃, θ̂PT , θ̂S E , θ̂PS E , θ̂lasso, and θ̂alasso . The simulated
relative efficiency (SRE) between two estimators is defined as S RE(θ̂, θ̂∗) = S MS E(θ̂)/S MS E(θ̂∗), where θ̂ is the
unrestricted estimator, treated as benchmark. A value of S RE(θ̂, θ̂∗) greater than one indicates that θ̂∗ performs
better than θ̂, and vice versa. Table 1 and Figure 1 give results for ∆ ≥ 0 and (k1, r)=(6, 3), (6, 6), (6, 11), (6, 14),
where k = p + q = (k1, r). All analyses are performed using the statistical software R.

We observe from Table 1 and Figure 1 that when ∆ = 0, the RMLE outperforms all other estimators for both the
cases considered. As ∆ moves away from 0, the RMLE becomes unbounded. That is, the SRE curve for RMLE
with respect to UMLE sharply decays and that it goes below the horizontal line when ∆ > 0. The positive-shrinkage
estimator converges to 1 at a slower rate as ∆ moves away from 0. This indicates that in the event of imprecise
auxiliary information about the regression parameters, the PSE has the smallest risk among all other estimators
for a range of ∆ irrespective of the value of ρ. Pretest estimator dominates the shrinkage estimators when the
restriction is nearly correct. Otherwise, it becomes unbounded at a faster rate than the RMLE. However, with the
increase in ∆, the SRE of PT approaches 1 at some point from below. This suggests that neither PT nor RMLE is
uniformly better when ∆ > 0.

The simulated relative efficiency of the shrinkage estimator typically lies above that of the UMLE, and is nearly as
good as the RMLE at and near the null hypothesis ∆ = 0. This improvement relative to the RMLE is substantial
for the increasing number of inactive covariates. Some readers may be surprised by the strong performance of
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Figure 1. Simulated Relative efficiencies with respect to θ̂ of the estimators for ∆ ≥ 0. Here k1 = 6, r = 2, 10, 18;
n = 150 for the first column (Figures a-c); k1 = 6, r = 2, 10, 18; n = 350 for the second column (Figures d-e).
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the shrinkage estimators relative to the UMLE. However, this is precisely the lesson of Theorems 3.2 and 3.3.
Shrinkage strictly improves the asymptotic risk, and the improvement can be especially strong in high-dimensional
cases. This holds true for other n and r values.

For the LASSO and adaptive LASSO estimators, we use the local quadratic approximation algorithm of Ulbricht
(2010) for finding the entire solution path. We also use a k-fold cross validation procedure in order to choose the
value of the penalization parameter τ that achieves the lowest BIC score. Table 1 shows that when r < 6, the
LASSO and adaptive LASSO estimators are better than the PSE while it performs well for r ≥ 6. The PSE is
preferable in the presence of many inactive predictors in the model.

Table 1. Simulated relative efficiency of RE, SE, PSE, LASSO, and adaptive LASSO with respect to θ̂ when the
restricted parameter space Hθ = h is correct (∆ = 0).

n=150
Method p2 = 3 p2 = 6 p2 = 11 p2 = 14

RE 3.58 3.70 4.08 4.11
PT 2.31 2.62 3.11 3.02
SE 1.39 1.93 2.76 2.87

PSE 1.47 2.23 2.87 3.07
LASSO 1.48 1.86 2.51 2.75

ALASSO 1.51 1.95 2.61 2.83
n=350

RE 2.71 2.30 2.77 3.17
PT 2.14 2.04 2.11 2.59
SE 1.27 1.62 2.06 2.43

PSE 1.41 1.79 2.23 2.67
LASSO 1.43 1.53 1.63 1.67

ALASSO 1.49 1.60 1.72 1.81

5. Application to Real Life Data

The data are from the National Medical Expenditure Survey (NMES) conducted in 1987 and 1988 to provide a
comprehensive picture of how Americans use and pay for health services. It includes 4406 respondents aged 66 or
older and covered by Medicare program. Details of the data can be found in Deb & Trivedi (1997). In this example,
the number of hospital stays (hosp) is used as the response variable and the covariates are self-perceived health
status (poorhlth and exclhlth), number of chronic conditions (numchron), gender (male), age, number of years of
education (school), family income (faminc), and private insurance indicator (privins). Approximately 80% of the
responses are equal to zero, which corresponds to patients with zero day stay in the hospital. We first look at the
count portion of the data, which refers to the respondents who have stayed at least one day in the hospital. On
the other hand, if we look at the logistic portion (i.e. inflation part) of the data, which predict whether outcome is
positive or zero. All covariates are included in both portions of the model to predict the number of hospital stays.
To assess the effect of covariates on the hosp on each portion, ZIPR model is fitted. The AIC and BIC criteria for
the mixture model (Wang et al., 1996) show that poorhlth, exclhlth and numchron are the important factors for
the Poisson part and poorhlth, numchron, age, and male are the important factors for the logistic part of the ZIPR
model. So the other six covariates in the Poisson part and five covariates in the logistic part are not significantly
related to the response hosp. In this example, our hypothesis is Hθ = 0 where H is a 7×18 matrix and θ is a 18×1
vector of covatiates.

We apply the bootstrap method (see, Jung et al., 2005) to examine the performance of the proposed estimation
strategies for estimating the coefficients of the other seven covariates. We draw 1000 bootstrap samples of size
n = 2000 by drawing 2000 rows with replacement from the data matrix (yi, xi j) and compute the point estimates,
standard errors, and relative efficiencies of the proposed estimators. Here, the empirical distribution function F̂
based on original 4406 individuals is regarded as the true distribution, and the coefficients of the ZIPR closest to
F̂ are regarded as true parameter values. The results given in Table 2 reveal that the restricted, pretest, shrinkage,
positive shrinkage, LASSO, and adaptive LASSO estimators are superior to the maximum likelihood estimator,
which is in agreement with our simulation results.

73



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

Table 2. Estimate (first row) and standard error (second row) for poorhlth (β1), exclhlth (β2), numchron (β3) of the
Poisson part and poorhlth (γ1), numchron (γ2), age (γ3), and male (γ4) of logistic part on the number of hospital
stays. The SRE column gives the relative efficiency based on bootstrap simulation of the estimators with respect
to UMLE.

Estimators β1 β2 β3 γ1 γ2 γ3 γ4 SRE
UMLE -0.99 -0.313 0.123 -0.637 -0.302 -0.446 -0.381 1.000

0.502 0.125 0.048 0.256 0.095 0.153 0.246
RMLE -0.715 -0.335 0.118 -0.555 -0.297 -0.375 -0.286 1.444

0.186 0.127 0.042 0.230 0.079 0.086 0.107
PT -0.882 -0.321 0.122 -0.609 -0.301 -0.421 -0.354 1.194

0.448 0.126 0.046 0.255 0.090 0.131 0.214
SE -0.861 -0.323 0.121 -0.601 -0.300 -0.414 -0.342 1.226

0.334 0.124 0.045 0.243 0.086 0.117 0.182
PSE -0.863 -0.322 0.121 -0.602 -0.300 -0.415 -0.343 1.226

0.332 0.124 0.044 0.244 0.086 0.117 0.182
LASSO -0.543 -0.190 0.121 -0.435 -0.254 -0.069 -0.417 1.178

0.267 0.128 0.057 0.291 0.106 0.089 0.099
ALASSO -0.473 -0.197 0.121 -0.439 -0.257 -0.068 -0.445 1.221

0.231 0.136 0.058 0.248 0.106 0.073 0.098

6. Conclusion

In this paper, we have introduced the pretest, shrinkage, LASSO, and ALASSO estimators for zero-inflated Poisson
regression model when it is suspected that some of the regression coefficients may be restricted to a subspace. We
have presented ADB and ADR expressions of the pretest and shrinkage estimators. We conducted a Monte Carlo
simulation experiment to examine the performance of the proposed estimators which showed that the RMLE
outperforms the usual UMLE at or near the restriction. However, as we deviate from the the restriction, risk of
the RMLE becomes unbounded. And near the restriction, the risk of the pretest estimator is less than that of the
UMLE. As ∆, the distance between the simulated and restricted models increases, the risk of the pretest estimator
crosses the risk of the UMLE, reaching a maximum, and then decreasing monotonically to the risk of the ULME.
Furthermore, the shrinkage estimators with data based weights perform well if the restriction is true. In fact, the
shrinkage estimators outperform the UMLE in the entire parameter space when the number of inactive parameter
is greater than two. In addition, the performance of the shrinkage estimators improve relative to the UMLE when
the number of inactive covariates increases. The penalty estimators are preferable when there are fewer inactive
covariates. Thus in presence of many inactive covariates, the shrinkage estimators are attractive alternatives to
penalty estimators.

Finally, we applied the proposed strategies to a real life data set to evaluate the relative performance of the proposed
estimators. The results are consistent with our analytical and simulated findings. The theoretical and numerical
results of zero-inflated Poisson can be extended to the entire class of generalized linear models. We are currently
working on this project.

In terms of recommendations, the shrinkage estimators should be used instead of the UMLE when the restriction
on regression coefficients agrees with the data. If we are uncertain of the quality of auxiliary information about the
covariates, we can still use the shrinkage estimation because it offers a lower or at best an equal risk relative to the
UMLE over the entire parameter space.
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