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Abstract

This paper presents a SAS macro to estimate adaptive spatial sampling, which has been used to survey rare species.
This technique is computationally difficult because of use of algorithms with GIS features such the creation of a
grid, points inside polygons and contiguity. The results indicates that the SAS macro that was developed was
capable of incorporating these GIS features, as well as estimating the parameters of the adaptive spatial sampling.
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1. Introduction

The purpose of sampling is to obtain information based on the results of a sample. According to Cochran (1977),
sampling theory was developed to achieve the most efficient sampling, that is, to produce more accurate estimates
with the lowest possible cost. Thus, the basic problem of any sampling procedure is to obtain reliable estimates of
some characteristic of the population of interest, based on only part of this population.

A procedure that has been studied and tested in surveys of populations of rare species that display aggregated
pattern distribution is adaptive sampling. In this kind of sampling, the selection of sampling units depends on
observations made during the survey because if a criterion is met, the close sample is added to the initial sample.
Thus, this type of sampling has advantages such as more extensive use of the sample and greater sampling intensity
depending on the observations made during the survey; in addition, it can help find the local maximum (Thompson
and Seber, 1996).

The adaptive sampling literature includes the following: algorithms that address the effects of mutations on the
properties of folding RNA, the purpose of which is to decipher the principles of conduction and molecular evo-
lution for the design of new molecules, in other words, these algorithms are for unbiased adaptive sampling that
allows RNAmutants to sample regions of the mutational landscape that have not been fully addressed by previ-
ous techniques (Waldispühl and Ponty, 2011); designs for clinical study that focus on adaptation projects for two
stage sample size re-estimation (Chang, 2008, 2009); mining applications that have a large amount of data, where
random sampling may not be applicable due to the diffculty of determining an appropriate sample size (Domingo
et al., 2002); and, finally, cases where the available algorithms for mining information on a large database are
prohibitive due to computational constraints (time and memory) (Satyanarayana and Davidson, 2005).

In the case presented by Thompson (1990), another kind of adaptive sampling was considered, where the spatial
distribution of aggregate data influences the formation of the sample selection of the data into clusters. This sample
design, in which the procedure for the selection of units can be added to the initial sample based on an area and its
spatial distribution, will be referred to from now on as adaptive spatial sampling.

Thus, adaptive spatial sampling provides a viable solution to the longstanding problem of estimating the abundance
of rare populations and it has gained rapid acceptance in the natural and social sciences (Seber, 1986; Ramsey and
Seber, 1992; Brown, 1994, 1996; Khan and Muttlak, 2002; Stein and Ettema, 2003; Sengupta and Sengupta, 2011;
Jain and Chang, 2004; Thompson, 2011; Yu et al., 2012). However, adaptive procedures are more complicated to
design and analyze, and computational implementations are few as a results of the complexity of the algorithms
for spatial analysis (Thompson, 2011).

This implementation requires at least three steps: the development of a computational design for a regular grid; the
selection of specific areas of the grid to identify which part of the grid the data are in; and identifying the neighbors
of the selected areas: upper, lower, right and left. Thus, the objective of this work is to implement computationally
adaptive spatial sampling in SAS software.
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2. A Basic Outline of Adaptive Spatial Sampling

It has been observed that adaptive spatial sampling is performed in cluster sampling, because the data to be analyzed
are divided into distinct subpopulations and have the geographical coordinates of a given area. Thus, the process
of adaptive spatial sampling involves selecting certain areas, recording their geographical coordinates and defining
the areas in which the data are located. Usually, these data are grouped in a particular area as shown in Figure 1(a),
which characterize the clusters.

The first step is to draw a grid based on the geographical coordinates of the area to be analyzed, as shown in Figure
1(b). Then, some areas of the grid are selected by Simple Random Sampling (S RS ) and it is determined whether
there are data points within these areas, as shown in the blue areas of Figure 1(c). Next, the neighbors of these
selected units are identified successively - top, bottom, right and left - until the selection criterion of the adaptive
spatial sampling is exhausted. This adaptive spatial sampling is represented by one population sample (n) of the
regular grid, as in Figure 1(d).

Figure 1. Steps of adaptive spatial cluster sampling

In summary, adaptive cluster sampling or simply adaptive spatial sampling refers to designs in which an initial set
of units is selected by some probability sampling procedure and, whenever the variable of interest of a selected unit
satisfies a given criterion, additional units in the neighborhood of that unit are added to the sample (Thompson,
1990). In the models considered in this paper, the initial sample can be selected by Simple Random Sampling with
replacement S RS R or without replacement S RS WR.

2.1 Estimators

Classical estimators for the population mean are biased under an adaptive sampling design, in contrast with S RS .
In this section two unbiased estimators for the population mean under an adaptive spatial sampling design will be
addressed.

2.1.1 Estimators Using Initial Intersection Probabilities

This section shows an estimator based on a modification of a Horvitz-Thompson estimator (Thompson, 1990) and
it is compared to the sample mean of the initial sample, given by

y =
1
n1

n1∑
i=1

yi (1)

where yi is the variable in study of the unit i and n1 is the initial sample size.

When an initial sample n1 of units is selected by a S RS WR, these units in the first sample are distinguished not as
a result of replacement. However, the data itself may contain repeated observations if more than one unit in the
cluster is selected in the initial sample. The unit i will be included in the final sample if any unit of Ai (including i
itself), where Ai is a neighborhood of the point i, is selected as part of the initial sample, or if any unit of a network
of which unit i is an edge unit is selected, where an edge unit is a neighborhood of the point i but without sample
points.

Let mi denote the number of units in Ai; N is the population size; and ai, the total number of units in the network
(neighbors of the selected grid: upper, lower, right and left), of which unit i is an edge unit. Note that if the unit
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satisfies the criterion C, i.e., some data point is found inside the selected grid, then ai = 0, but if the unit i does not
satisfy this condition, then mi = 1. The selection probability of unit i in either n1 observations is pi =

mi+ai
N . The

probability that unit i is included in the sample is given by (Thompson, 1990):

Πi = P(Ii = 1) = 1 −
[(

N − mi − ai

n1

)
/

(
N
n1

)]
(2)

When the selection of the initial sample is taken by S RS R, repeated observations in the data can occur either
because of possible repeated selections in the initial sample or the initial selection of more than one unit in the
cluster. In this sample design, selection probability of unit i in either n1 observation is pi =

mi+ai
N , and the probability

of inclusion is given by (Thompson, 1990):

αi = 1 − (1 − pi)n1 = 1 −
(
1 − mi + ai

N

)n
(3)

If the values of Πi are known for all sample units, one can use the Horvitz-Thompson estimator given by µ̂HT =
1
N

∑n
i=1

yi
Πi

. However, although the values of mi in Equation (2) for all units in the sample are known, only a few
values of ai are known. This means that i is a unit of edge somewhere in a cluster belonging to the sample, and
thus, all clusters that this unit is related to do not need to be sampled. Thus, the value of ai is unknown. To solve
this problem, (Thompson, 1990) adopted the practice of dropping the value of ai in Equation (2) and considering
only the partial inclusion probability. Thus,

Π′i = 1 −
[(

N − mi

n1

)
/

(
N
n1

)]
(4)

This probabilityΠ′i is now considered for n1 networks instead of n1 clusters and can be understood as the probability
of the sample initial intercept Ai, the network for the unit i, to be used in the estimator. Thus, one obtains an
unbiased estimator of the population mean based on the initial intersection probabilities as the following:

µ̂ =
1
N

N∑
i=1

yiI′i
Π′i

(5)

where I′i takes the value 1 (with probability Π′i) if the initial sample intersects Ai, and 0 otherwise. In addition

µ̂HT =
1
N

n∑
i=1

yi

Πi
=

1
N

N∑
i=1

yiIi

Πi
(6)

where y1 . . . yn represent the n distinct values of units in the final sample and Ii has the value 1 when the unit is
included in the sample and 0 otherwise.

Using the properties of mathematical expectation it turns out that the estimator of Equation (5) is unbiased,

E[̂µ] = E

 1
N

N∑
i=1

YiI′i
Π′i

 = 1
N

N∑
i=1

YiE(I′i )
Π′i

=
1
N

N∑
i=1

YiΠ
′
i

Π′i
=

1
N

N∑
i=1

Yi = µ (7)

The classical estimator of the population mean under adaptive spatial sampling design is a biased estimator as
follows:

E[y] = E

 1
n1

n1∑
i=1

yi

 = E
(∑N

i=1 yiI′i
)

n1
=

∑N
i=1 YiE(I′i )

n1
=
Π′i Nµ

n1
, µ (8)

To facilitate the analysis of Equation (5) it is more convenient to rewrite it in terms of distinct networks because
the probability of intersection Π′i is the same (also called αk) for each unit i in the kth network. Thus,

αk = 1 −
[(

N − xk

n1

)
/

(
N
n1

)]
(9)
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Similar to the equations of the probability of inclusion and as p jk is the probability that kth and jth networks do
not intersect, so

p jk = P(J j , 1 ∩ Jk , 1) =
(
N − x j − xk

n1

)
/

(
N
n1

)
(10)

where x j is the number of units in the k-th network and Jk is the initial sample intersect of the kth network and
takes the value 1 (with probability αk) and 0 otherwise.

Using Equations (9) and (10) we obtain α jk (the probability of intersection of the kth and jth networks) as

α jk = α j + αk − (1 − p jk)

= 1 −
[(

N − x j

n1

)]
/

(
N
n1

)
+ 1 −

[(
N − xk

n1

)
/

(
N
n1

)]
−

[
1 −

(
N − x j − xk

n1

)
/

(
N
n1

)]

= 1 −

(
N−x j

n1

)
(

N
n1

) + 1 −

(
N−xk

n1

)
(

N
n1

) − 1 +

(
N−x j−xk

n1

)
(

N
n1

)
= 1 −

[(
N − x j

n1

)
+

(
N − xk

n1

)
−

(
N − x j − xk

n1

)]
/

(
N
n1

)
(11)

Therewith,

µ̂ =
1
N

K∑
k=1

y∗k J′k
αk
=

1
N

K∑
k=1

y∗k
αk

(12)

where y∗k is the sum of the y-values for kth network, K is the total number of distinct networks in the population,
and k is the number of distinct networks in the sample.

Let zk = y∗k/αk, y∗k =
∑N

i=1 yi ΠK = αk and Π jk. From the properties of mathematical expectation, variance,
covariance and the definitions above, one can obtain the expected value and the variance of Equation (5) by the
following:

E[̂µ] =
1
N

K∑
k=1

zkE(Jk) =
1
N

K∑
k=1

zkαk =
1
N

K∑
k=1

y∗k =
1
N

N∑
i=1

y∗i = y =
τ

N
= µ (13)

var[̂µ] = var

 1
N

K∑
k=1

zk Jk

 = 1
N2

 K∑
k=1

zk Jk +

K∑
j=1

∑
j,k

cov
(
z jJ jzk Jk

)
=

1
N2

 K∑
j=1

z2
jΠ j(1 − Πk) +

K∑
j=1

∑
j,k

z jzkΠ jk − ΠiΠk


=

1
N2

 K∑
j=1

K∑
k=1

z jzk(Π jk − Π jΠk)


=

1
N2

 K∑
j=1

K∑
k=1

y∗jy
∗
k

(
α jk − α jαk

α jαk

) (14)

and an unbiased estimator of the variance of Equation (14) is:
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v̂ar[̂µ] =

K∑
j=1

K∑
k=1

z jzk J jJk

(
Π jk − Π jΠk

Πi j

)

=
1

N2

 K∑
j=1

K∑
k=1

y∗jy
∗
k

(
α jk − α jαk

α jkα jαk

)
J jJk


=

1
N2

 K∑
j=1

K∑
k=1

y∗jy
∗
k

(
α jk

α jkα jαk
− 1
α jk

)
=

1
N2

 K∑
j=1

K∑
k=1

y∗jy
∗
k

α jk

(
α jk

α jαk
− 1

) (15)

Another known estimator for adaptive spatial cluster sampling is one that uses the expected number of initial
intersection as follows.

2.1.2 Estimators Using the Expected Number of Initial Intersection

The estimator given by Equation (5) can be rewritten as:

µ̃ =
1
N

N∑
i=1

yi
fi

E[ fi]
(16)

where fi represents the number of units in the initial sample that fall in network Ai, which includes the unit i; N
is the number of regular grids. If during the estimation process the units edge of clusters is ignored, fi would be
interpreted as the number of times the ith unit of the final sample appears in the estimator. Then one realizes that
fi = 0 if no units in the initial sample intersect Ai.

The estimator in Equation (16) is unbiased because

E
[̃
µ
]
= E

 1
N

N∑
i=1

yi
fi

E[ fi]

 = 1
N

N∑
i=1

E(yi)
E[ fi]
E[ fi]

=
1
N

N∑
i=1

Yi = µ (17)

Because mi is the number of units on the network to which i belongs, using the Horvitz-Thompson estimator,
another unbiased estimator can be found: As fi units are selected from mi units in Ai, fi follows a hypergeometric
distribution with the following parameters: (N,mi, n1) (Thompson, 1991). Thus, E[ fi] = n1mi

N and substituting the
expected value in Equation (16) we obtain the following:

µ̃ =
1
N

N∑
i=1

yi
fi

n1mi
N
=

N
N

N∑
i=1

yi fi
n1mi

=
1
n1

N∑
i=1

yi fi
mi

(18)

To find the variance of the estimator of Equation (18), the approach in terms of n1 networks being connected is
used, although this is not necessarily distinct. Because mi has the same value for all units in Ai and wi is the average
of mi observations Ai (Thompson, 1990), then

µ̃ =
1
n1

n1∑
i=1

1
mi

∑
jϵAi

y j =
1
n1

n1∑
i=1

wi = w (19)

Thus, µ̃ is the sample mean obtained by taking a selection of an S RS of size n1 of a population of wi values rather
then yi values. Because wi = vk is the same for each unit in the kth network, where vk is the mean of the y-values
in βk, there are xk units in the kth network and BK is a set of units in the kth network; thus,

E(̃µ) = E(w) = E

 1
N

N∑
i=1

wi

 = 1
N

K∑
k=1

xkvk =
1
N

K∑
k=1

∑
iϵBk

yi = µ (20)
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From the equations of cluster sampling in two stages, we obtain an unbiased estimator of this variance:

var[̃µ] = var

 1
N

N∑
i=1

wi

 = N − n1

Nn1(N − 1)

N∑
i=1

(wi − µ)2 =
σ2

n1

(
1 − n

N

)
(21)

where σ2 = 1
N−1

∑N
i=1(wi − µ)2.

v̂ar[̃µ] =
N − n1

Nn1(n1 − 1)

n1∑
i=1

(wi − µ̃)2 (22)

As in some populations a priori information may be known; i.e., where aggregations occur, one can use the tech-
nique to reduce the stratified sample variance estimators. To do this, we can use stratified adaptive spatial sampling,
where the population is divided into strata and the number of units are sampled for each stratum that is used.

3. Stratified Adaptive Spatial Cluster Sampling

In the case of adaptive spatial sampling techniques, one must also know the geographic coordinates of the selected
area. Thereafter, one stratifies the area using a priori information and draws the grid throughout the selected area
(including stratified areas) through their respective locations as indicated in Figure 2 (a). After that, a sample is
selected using S RS, as in Figure 2 (b). Then, the units of interest are identified, as in Figure 2 (c). Finally, one
successively adds the neighbors of selected areas - upper, lower, right and left - until the selection criterion of the
adaptive sample is exhausted, as in Figure 2 (d).

Figure 2. Steps of stratified adaptive spatial cluster sampling

In the estimators to be considered, the initial sample can also be selected by S RS R or S RS WR. The next section
will show three unbiased estimators for this kind of sampling.

3.1 Estimators

Suppose that the population total of N units is partitioned into L stratum, with nh units in the hth stratum (h =
1, 2, . . . , L). Define unit (h, i) as the ith unit in the hth stratum with associated y-value yhi. This process begins
with a S RS of nh units that is taken from stratum L, and we now define n0 =

∑L
h=1 nh to be the initial total sample

size. From this, the clusters begin to have neighbors added according to the condition set C (Thompson and Seber,
1996).

3.1.1 Estimators Using Initial Intersection Probabilities

Using the full adaptive sample, the first estimator we can consider is given by (5) based on the initial intersection
probabilities, we obtain

µ̂st =
1
N

K∑
k=1

y∗k Jk

αk
(23)

where the K distinct networks are labeled (1, 2, . . . , k) without regard for stratum boundaries, Jk equals 1 (with
probability αk) if the initial sample size n0 intersects network k, and 0 otherwise and, finally, y∗k is the sum of the
y-values for the network k.

To derive αk it is necessary to consider the probabilities of intersecting network k with the initial samples in each
strata. Therefore, we define xhk as the number of units in stratum h that lie in network k. This number assumes the

25



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015

value 0 if the network k lies totally outside stratum h. If the network straddles a boundary, we ignore the network
units that lie outside stratum h in the definition of xhk. Thus, with this definition of xhk, we obtain

αk = 1 −
 L∏

h=1

(
Nh−xhk

nh

)(
Nh
nh

)  (24)

The variance of the estimator of the unbiased average, defined as the probability of the initial sample intercede
network in k and k′, is obtained in the following way:

αkk′ = 1 − (1 − αk) − (1 − αk′ ) +

 L∏
h=1

(
Nh−xhk−xhk′

nh

)(
Nh
nh

)  (25)

Because αkk = αk and from the variance properties, it follows that

var[̂µst] =
1

N2

K∑
k=1

K∑
k′=1

y∗ky∗k′
(
αkk′ − αkαk′

αkαk′

)
(26)

and an unbiased estimator for this variance is given by

v̂ar[̂µst] =
1

N2

K∑
k=1

K∑
k′=1

y∗ky∗k′
(
αkk′ − αkαk′

αkk′αkαk′

)
IkIk′ (27)

Another estimator for this kind of sampling is to use the expected number of the initial intersection, which will be
explained in the next section.

3.1.2 Estimators Using the Expected Number of the Initial Intersection

Let Ahi, the network that contains the unit (h, i), uhi, and Aghi be part of Ahi stratum g. Suppose that fghi is the
number of units from the initial sample in stratum g that fall in Aghi, and let mghi be the number of units in Aghi.
Then, the number of units of an initial sample n0 units is Ahi given by (Thompson and Seber, 1996),

f.hi =

L∑
g=1

fghi (28)

From Equation (16) one obtains the estimator for the mean

µ̃st =
1
N

L∑
h=1

Nh∑
i=1

yhi
f.hi

E[ f.hi]
(29)

As in Equation (7) and from the properties of expectation and variance, this estimator is unbiased.

As with fi in Equation (16), fghi follows a hypergeometric distribution with parameters (Ng, mghi, ng). Therefore,
it is known that E[ fghi] =

ngmghi

Ng
and E[ f f .hi] =

∑L
i=1

ng

Ng
mghi (Thompson, 1991). Thus,

µ̃st =
1
N

L∑
h=1

yhi
f.hi∑L

i=1
ng

Ng
mghi

=
1
N

L∑
h=1

Nh∑
i=1

yhi

L∑
g=1

fghi/

L∑
g=1

ng

Ng
mghi

 (30)

where fghi represents the number of units in the initial sample that is at the intersection of stratum g with the
network drive to which the unit uhi belongs.

If there is a match to add the same neighbors, we obtain an estimator of the independent stratum combined with the
estimator with weights, providing an estimator of the population mean as Equation E[yst] = E

(∑L
h=1

Nh
N yh

)
. This

characteristic aggregation of equal neighbors generates a loss of efficiency, a more efficient system would allow
groups to overlap the boundaries of the strata (Thompson, 1991).
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So, to find the variance estimator of the mean, we use Equation (19) to rewrite µ̃st in terms of the weights of the
sample means. For this, relate the observations to the intercept of the initial sample networks. Thus, the term yhi f.hi

means that Ahi is intersected fhi times by the initial sample, so that µ̃st represents a weighted sum of all units in all
the networks corresponding to the initial sample, with some networks being repeated. Because the weight E[ f.hi]
is the same for each unit in Ahi, we have

µ̃st =
1
N

L∑
h=1

nh∑
i=1

1
E[ f.hi]

∑
(h′,i′)ϵAhi

yh′i′ =
1
N

L∑
h=1

nh∑
i=1

Yhi

E[ f.hi]
(31)

where Yhi is the sum of yth observations in Ahi.

Let wh =
∑nh

i=1
whi
nh

and whi =
nhYhi

NhE[ f .hi] ; then, another way to rewrite Equation (31) is

µ̃st =

L∑
h=1

Nh

N
wh =

1
N

L∑
h=1

Nh

nh

nh∑
i=1

whi (32)

where whi =
Yhi∑
g mghi

; when nh
Nh

have the same value for all strata. Thus, Equation (32) represents a stratified sample
mean from a stratified random sampling without replacement, with the interest of whi variable.

So, the variance estimator for the mean is given by

var[̃µst] =
1

N2

L∑
h=1

Nh(Nh − nh)
σ2

h

nh
(33)

where σ2
h represents the stratum population variance, that is,

σ2
h =

1
Nh − 1

Nh∑
i=1

(whi −Wh)2 (34)

where Wh =
∑nh

i=1 whi

nh
is the stratum population mean.

An unbiased estimator of variance of the mean (33) can be obtained by replacing σ2
h by sample variance, s2

h =
1

nh−1
∑nh

i=1(whi − wh)2.

3.1.3 Estimators that Ignore Units Added through Crossing Boundaries

According to Thompson (1991), the estimator that ignores units added through crossing stratum boundaries is
given by the following:

µ
′′

st =

L∑
h=1

Nh

N
µ̃h =

1
N

L∑
h=1

Nh∑
i=1

yhi

L∑
g=1

Ng

ng
fghi/

L∑
g=1

mghi

 (35)

where µ̃h =
∑nh

i=1
w
′′
hi

nh
and w

′′

hi is the total of the y-values in the intersection of the stratum h with Ahi divided by the
number of units in the intersection; i.e., this value represents the network mean for that part of the network Ahi in
stratum h.

The mathematical expectation of µ
′′
st is given by

E[µ
′′

st] =
L∑

h=1

Nh

N
µh =

1
N

L∑
h=1

Nh∑
i=1

yhi = µ (36)

The variance var[µ
′′
st] is given by

var[̃µ
′′

st] =
1

N2

L∑
h=1

Nh(Nh − nh)
σ2

nh
(37)

where the stratum population variance is σ2
h =

1
Nh−1

∑Nh
i=1(w

′′

hi − Wh)2 and the stratum population mean is Wh =∑Nh
i=1

whi
Nh

. The sample estimate is given by (32) replacing σ2
h by s2

h =
1

nh−1
∑nh

i=1(whi − wh)2.
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4. SAS Macros

The SAS Macros basically use the IML Procedure and GMAP and SQL Procedures. The computational imple-
mentation of adaptive spatial sampling requires four steps: 1) development of the computational design of regular
grids (Figure 3(a)); 2) selection of specific areas of the grid, that is, identifying a sample and determining in which
part of the grid the data are located (Figure 3(b)); 3) identification of the neighbors of the selected areas: upper,
lower, right and left (Figure 3(c)(d)); 4) calculation of the parameters.

Figure 3. Steps of adaptive spatial sampling

4.1 Drawing a Regular Grid

To create regular grids it is necessary to create four points with coordinates entered clockwise (lines of Table 1) or
counterclockwise.

Table 1. Coordinates of a square

Reference Values Points
1 (Min, Min) (0,0)
2 (Min, Max) (0,1)
3 (Max, Max) (1,1)
4 (Max, Min) (1,0)

In the case of a square, beginning with the clockwise points, i.e., the reference points in the following order: 1, 2,
3, 4, the polygon appears to be like Figure 4 (Square). If that order is not followed, the result is a distorted polygon,
as shown in Figure 4 (Distorted Polygon).

Figure 4. Square and distorted polygon.

As one wishes to draw a grid on a field of study, it is necessary to know the upper and lower boundaries of
the region, i.e., the minimum and maximum coordinates of the y axis (latitude) and minimum and maximum
coordinates of the x axis (longitude). The definition of the size of each polygon is given by %grid macro:

%grid(minx =, maxx =, miny =, maxy =, dim =, anno =, printN = YES );
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where the parameters are: MINX = the minimum value of the x coordinate; MAXX= the maximum value of the
x coordinate. Similarly, for the y coordinates we have: MINY= and MAXY=. Another parameter of this macro
is the size of the square drawn given by DIM= (for instance, if DIM= 20, 202 = 400 squares will be created).
Finally, the last two parameters, ANNO= and PRINTN = YES, indicate the dataset with the location of samples
and whether the numbering of each square will be printed using the command YES(Figure 5 (a)) or NO (Figure 5
(b)), respectively.

Figure 5. Regular grid for N = 400.

Next, we define the element, id to the coordinates of the square. Thus, the first square has the points (0, 0), (0, 1), (1, 0), (1, 1),
id = 1 and so on. This is achieved by joining the table with the coordinates with the table set out below:

data id&dim;

do id=1 to &dim*&dim;

do i=1 to 4;

output;

end;

end;

run;

This numbering starts from a unit numeric value and goes to the value of N to count the vertical direction, starting
from left to right. In the case of Figure 5, it is found that the size of the square is N = 20 × 20 = 400, varying the
id from 1 to 400.

The next step is to make the selection of specific areas of the grid; i.e., the grids are drawn by S RS , and if there
are samples inside a grid, it is selected by its neighbors.

4.2 Selection of Specific Areas of the Grid

The samples to be drawn in adaptive spatial sampling correspond to the polygons of the grid. This selection can be
done by a generator corresponding to the number of grid squares of random numbers. In SAS, this can be done by
PROC SURVEYSELECT, where a S RS is obtained with a seed value of size n given by the variable SEED. The
parameter OUT indicates where the sample will be stored.

proc surveyselect data=&data sampsize=&n out=&saida seed=&seed noprint;

run;

The identification of the neighbors of the selected areas in the next section involves three concepts: check point
inside the polygon; definition of the neighbors; and identification of neighboring polygons.
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4.3 Identification of the Neighbors

The selection of neighbors is the trickiest and the most important part of the adaptive spatial sampling technique,
as it is from the selected grids that the process of adapting the sample areas begins.

4.3.1 Checking if the Point is Inside the Polygon

The determination of points inside the polygon is shown in Figure 6. The main idea consists in making a radius
from the selected point p to infinity in any direction and computing the amount of times that this line passed through
the edges of the polygon. Thus, if the number of crossings is odd, the point is inside the polygon (Kunigami, 2010).

Figure 6. Point inside polygon.

The selection of these points within the regular grid is done by %ginside macro.

%ginside(map = , id = , where = , data = , out = );

where the elements of the macro are: MAP = dataset containing the coordinates of the study area; ID= name of
the ID variable that defines the polygon; WHERE = selecting a specific point to check if it is inside the polygon;
DATA = dataset containing the points to be checked if they are inside the polygon; OUT = dataset in which the
points inside the polygons will be stored.

4.3.2 Definition of the Neighbors

The definition of the neighbors is as follows: The neighborhood is a set of squares that are added to the same
sample if the grid satisfies the same condition of containing elements of interest in the selected square. We define
the neighborhood of type ROOK as the polygons that share more than one point in common, in this case the square:
up, down, right and left, as shown in Figure 3(c), and the neighborhood of type QUEEN as the polygons that share
at least one point in common, i.e., the neighborhood ROOK adding the corners.

The %neighborhood macro is given by:

%neighborhood(id = , pt = , map = , anno = , out = , type = ROOK );

where the parameters are: ID= name of the ID variable that defines the polygon; PT= ID of the grid in which the
neighbors will be defined; MAP= the dataset containing the coordinates of the study area; ANNO= the dataset
containing the coordinates of the samples; OUT= the dataset in which the neighbors will be stored; TYPE=
indicates that the pattern of selection of the neighbors is of type ROOK (default) or QUEEN.

4.3.3 Identifying Neighboring Polygons

The identification of neighboring polygons is generated by combining the identification of neighbors with the
points inside the polygon; this is the final sample of adaptive spatial sampling.

Finally, given the base with the selected units and their respective score points, the next step is to compute the
estimators presented in Section 2.

4.4 Estimators of Adaptive Spatial Sampling

In this section the formulas for the estimators of Section 2 were implemented. Thus, for adaptive spatial sampling
we have implemented the estimator of the mean (u1), Equation (19), the estimator of the variance of the estimator
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of the mean (varu1), Equation (21) the estimator of the total (Totu1) given by multiplying the number of grids by
the estimator u1, i.e., Totu1 = NN× u1, and the estimator of the variance of Totu1, named TotVaru1.

The %as macro computes the estimators and automatically uses the macros presented previously.

%as(data = , n = , sample = , out = , strata = , seed = , map = , id = ,

anno = , typen = ROOK , printN = YES );

where the parameters are the same as those presented earlier, and n= the sample size and SAMPLE= a dataset
containing a predefined sample.

5. Illustration

5.1 An Example of Adaptive Spatial Cluster Sampling

Thompson (1990) presents an example of how adaptive spatial sampling works and compares the results obtained
from the S RS estimator and from S RS with adaptive spatial sampling, which is given by changing the denominator
of Equation (19) to the denominator of Equation (8). This example could represent a reserve of animals that are
grouped (as herds of elephants) or deposits of minerals (such as gold, diamond, iron) spread over large areas.

Initially, a regular grid is drawn on the area to be sampled, and then, n units (squares) are selected by the S RS
method. In this example, the initial sample consists of 10 units (total squares on the grid in red) selected in a total
of N = 400 units (representing the total number of regular square grids, where each side has a length of 20, or
20 × 20 = 400), with a total of 190 points (Figure 7 (c)).

Selecting the neighbors (by the ROOK methodology) of the initial units containing at least one unit in the initial
sample, we obtain the final sample, as shown in Figure 7(d). The upper unit has an element that intersects with the
network m1 = 6 units, containing a total of y∗1 = 36 units of interest. Another point in which there is unity within
the polygon that intersects the network m2 = 11 units and contains y∗2 = 107 units. For the other 8 units of the
initial sample, the values are yi = 0 and mi = 1.

There are also 20 edge units that are not used in calculating the estimates; these are selected for adaptive selection,
but they do not contain units of interest. In Figure 7(d) networks within the two groups that are described as being
adaptively added are in the color red.

Figure 7. Example of adaptive cluster sampling.

For w1 =
36
6 = 6 objects per unit, for w2 =

107
11 = 9.727 and for the remaining wi = 0, one can calculates the values

for the mean estimators, µ̃, and from the total of the adaptive sampling:

µ̃ =
1
10

[
36
6
+

107
11
+

(
0
1

)
+ . . . +

(
0
1

)]
= 1.573

Nµ̃ = 400 × 1.573 = 629

v̂ar[̃µ] =
(400 − 10)

400(10)(10 − 1)
[(6 − 1.573)2 + . . . + (0 − 1.573)2] = 1.147

N2v̂ar[̃µ] = 4002 × 1.147 = 183, 520

For S RS , where N is the total number of square areas selected and n is the number of selected squares of the initial
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sample, one obtains the values for the estimators of the mean y and for the total Ny:

y =
11 + 1

10
= 1.2

Ny = 400 · 1.2 = 480
v̂ar[y] = 1.165

N2v̂ar[y] = 186, 506

For the 45 units, which includes the 25 edge units of the final sample, the values for the estimators of the average
yAD for adaptive S RS are calculated; that is, the amount of S RS Equation in Equation (19) is used. Thus,

yAD =
143
45
= 3.178

NyAD = 400 × 3.178 = 1, 271
v̂ar[yAD] = 1.004

N2v̂ar[yAD] = 4002 · 1.004 = 160, 687

Table 2 presents the estimates found and it appears that the variance, mean and total sampling of the adaptive S RS
is the lowest compared to the others. However, their estimated average is higher, because there is a bias when
using the estimator of S RS in this sample. Comparing the ratio of the variances yAD and µ̃, we observe that there
is a reduction of 13% in this value. Thus, given that it has a total of 190 points and the actual population mean is
µ = 190

400 = 0.475, adaptive spatial sampling in this case was very close to the S RS ; however as will be seen later,
adaptive spatial sampling varies much less when N varies.

The computational output of the program implemented in SAS software for this example is given in Figure 8 (the
results are the same as in Thompson (1990)). Thus, there is the number of observations (n = 10), population size
(N = 400), the estimators for the mean and total and their respective variances in the three cases analyzed: adaptive
spatial cluster sampling, S RS and adaptive S RS sampling (biased).

Figure 8. Output of adaptive spatial cluster sampling.
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Table 2. Table of comparison of the estimators of adaptive sampling, S RS and adaptive S RS

Estimator µ̃ y yAD
Mean 1.57 1.20 3.17
Total 629 480 1,271

Variance of the mean 1.147 1.165 1.004
Variance of the total 183,520 186,506 160,687

5.2 Comparison between Different Population Sizes

In this section, interference variation for the total areas (grids) in the estimates will be checked, i.e., the variation
in N. Thus we have simulated different sizes of squares and the initial samples were set to have the same sample as
the sample (Thompson, 1990). Thus, we obtained the results in Table 3, with the respective values of the estimators
of the mean and their estimated variances.

Figure 9. Analysis of the mean when the population size increases (ROOK).

Figure 9 shows how the estimated average is influenced in the case of population variation. We can see that adap-
tive spatial cluster sampling (solid green line) had the lowest average interference with the change in population,
undergoing a decrease with an increase in the size of the regular grid, except when N = 7. S RS (blue dotted line)
underwent a large change throughout the process. In addition, adaptive S RS sampling - S RS AD (dashed red line)
- shows a decrease with a slight increase when N = 8.
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Table 3. Comparison between the estimators of Mean: adaptive sampling, S RS , adaptive S RS (ROOK)

Matrix N µ v̂ar(µ) y v̂ar(y) yAD v̂ar(yAD)
4x4 16 2.82 1.35 7.60 10.30 11.87 0
5x5 25 3.08 3.43 11.60 42.33 10.00 6.06
6x6 36 3.48 5.99 12.60 62.66 8.26 6.64
7x7 49 5.36 11.57 3.30 3.89 5.96 5.50
8x8 64 3.40 4.70 4.00 7.52 6.78 4.28
9x9 81 3.72 5.41 10.40 47.76 5.93 3.88

10x10 100 3.58 5.13 0.80 0.27 4.76 4.01
11x11 121 2.72 3.01 5.40 13.54 4.61 2.50
12x12 144 2.98 3.85 1.80 1.42 4.61 3.13
13x13 169 2.73 3.10 9.00 36.88 4.76 4.51
14x14 196 2.13 2.31 1.90 1.95 4.08 1.83
15x15 225 2.73 3.22 4.80 10.82 4.20 1.77
16x16 256 2.09 1.91 6.90 22.69 3.67 1.71
17x17 289 1.79 1.44 5.00 15.55 3.49 1.42
18x18 324 1.79 1.45 1.30 0.73 3.40 1.06
19x19 361 2.06 2.03 4.00 7.69 3.76 1.21
20x20 400 1.57 1.15 1.20 1.16 3.18 1.00

Figure 10 represents how the estimate of the variance of the average is influenced in the case of variation in the
population. It is apparent that the variance in adaptive sampling is less affected by population size, having a range
of 0 to 15, while S RS ranges from 10 to 75 and S RS AD from 0 to 15.

Figure 10. Analysis of the variance when the population size increases (ROOK).

Similarly, we obtain the results in Table 4 for the estimators of the Total. Figure 11 shows the behavior of the
total estimator when the population size varies. For this case, the estimator of the total adaptive sampling - Nµ - is
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the one with less variation when compared with the other two (Ny and NyAD). The variation of the estimator Ny
increases when the population increases.

Table 4. Comparison between the estimators of the total: adaptive sampling, S RS , adaptive S RS (ROOK)

Matrix N Nµ N2v̂ar(µ) Ny N2v̂ar(y) NyAD N2v̂ar(yAD)
4x4 16 45.20 345.46 121.60 2,637.23 190.00 0
5x5 25 77.02 2,143.20 290.00 26,460.00 250.00 3,786.84
6x6 36 125.28 7,765.19 453.60 81,207.36 297.40 8,605.68
7x7 49 262.97 27,775.32 161.70 9,344.79 291.96 13,224.14
8x8 64 217.60 19,232.25 256.00 30,796.80 434.29 17,532.08
9x9 81 301.72 35,516.02 842.40 313,391.16 480.94 25,485.92

10x10 100 358.33 51,362.50 80.00 2,760.00 476.00 40,096.05
11x11 121 330.16 44,136.80 653.40 198,241.56 558.16 36,596.89
12x12 144 429.60 79,976.56 259.20 29,501.44 664.25 64,971.73
13x13 169 461.13 88,303.16 1,521.00 1,053,343.20 805.57 128,886.39
14x14 196 417.20 89,039.35 372.40 74,896.83 800.80 70,609.67
15x15 225 613.93 162,971.10 1,080.0 548,035.00 946.32 89,533.50
16x16 256 534.75 125,050.12 1,766.40 1,486,863.40 938.67 111,878.68
17x17 289 517.31 120,309.52 1,445.00 1,299,055.00 1,007.97 118,269.46
18x18 324 579.96 151,800.29 421.20 76,980.24 1,103.14 111,112.35
19x19 361 742.75 265,244.93 1,444.00 1,002,424.80 1,358.50 157,809.51
20x20 400 629.09 183,534.21 480.00 186,506.67 1,271.11 160,687.90

Figure 11. Analysis of the total when the population size increases (ROOK).

Figure 12 represents how the estimator of the variance in the estimator of the total changes with the variation in
the population. We can observed that the estimator N2v̂ar(µ) and N2v̂ar(yAD) are closer and N2v̂ar(y) has large
variation throughout the process.
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Figure 12. Analysis of the variance of the total when the population size increases (ROOK).

Figure 13 represents how the estimator of the variance in the estimator of the total changes with the variation in
the population, with the largest values of N2v̂ar(y) removed. Notably, the variance is not constant as in Figure 12,
showing disorganized growth for S RS and similar growth in the other two cases.

Figure 13. Analysis of the variance of the total when the population size increases (ROOK).
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5.3 Stratified Adaptive Spatial Cluster Sampling

Thompson (1990) shows an example of how the stratified adaptive spatial cluster sampling technique works and
compares the obtained results when considering whether the boundaries are present between the stratum. Initially,
a regular grid is drawn on top of the area to be surveyed, and then, n units (squares) are selected by the S RS
method.

Figure 13. Stratified adaptive spatial cluster sampling.

The number of objects found in the analyzed area in Figure 14 (a) is 397 elements, within a total of N = 400
squares. Thus, it follows that the population mean is µ = 397

400 = 0.9925. For this example, the region was divided
into two strata, where for S RS , an initial n = 10 elements was selected with stratified adaptive spatial cluster
sampling with equal sizes in each stratum. In stratum 1, we see a total of N = 200 squares and n = 5 elements for
the initial sampling units, whereas in stratum 2, the others are N = 200 squares and n = 5, the total for the area.

As an example of adaptive spatial cluster sampling, the unit satisfies the condition if in each selected square one or
more elements of interest is found. Because this condition is verified, it selects its neighbors. The neighborhood
of each unit includes all adjacent units. Thus, a neighborhood can be analyzed in two ways: ignoring the existing
boundary between strata to select the neighbors of a unit, or considering this limit.

In the first case, a unit to be selected as an element and that is in the square that has contact with the division of
the stratum will have four neighbors - top, bottom, right and left - regardless of whether it is in a different stratum.
Thus, the value of w′hi for the estimator µ̃′, which ignores the limits of the strata, is zero for all units that do not
satisfy the condition.

The first network intersect stratum 1, given in Figure 14 (d), and has a value of w′11 =
96
6 = 16. For the second

network of intersection, the value is given by w′12 =
78
5 = 15.6, based only on the units of stratum 1. Thus, there

is no intersection in stratum 2. Therefore, the estimate of the mean of the population and the estimated variance of
µ̃′, given by Equations (35) and (37), respectively, is:

µ̃” =
1

400

[
200
5

(16 + 15.6 + 0 + 0 + 0) +
200
5

(0 + 0 + 0 + 0 + 0)
]
= 3.16

v̂ar(̃µ”) =
1

4002

[
200(200 − 5)(74.9)

5
+ 0

]
= 3.65

where 74.9 is the variance of the five numbers (16; 15.6; 0; 0; 0).

In the second case, a unit to be selected as an element and that is in the square that has contact with the division
of the stratum will have three neighbors: top, bottom, right (or left), depending on whether this is in a different
stratum. Thus, to calculate the estimator µ̃ (32), it is used for the same stratum nh

Nh
.

This obtains the variables whi, i.e., w11 =
96
6 = 16 for the first network and w12 =

192
11 = 17.45 for the second. The

estimate for the mean and its variance given by Equations (32) and (33), respectively, is:

µ̃ =
1

400

[
200
5

(16 + 17.45 + 0 + 0 + 0) + 0
]
= 3.35

v̂ar(̃µ) =
1

4002

[
200(200 − 5)(84.2)

5
+ 0

]
= 4.10
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where 84.2 is the variance given by the five values of w1i.

Table 5 presents the calculated estimates and Figure 15 shows the output of SAS; it appears that there is no
significant difference between the estimators of the mean and variance of the estimated average if the boundaries
of the strata are considered.

Table 5. Comparison between the estimators of stratified adaptive spatial cluster sampling.

Estimators No crossing Crossing
stratum boundaries stratum boundaries

Estimators of the mean 3.16 3.35
Variance estimate of the mean 3.65 4.10

Figure 15. Output of the stratified adaptive spatial cluster sampling.

6. Final Remarks

This study shows that adaptive spatial cluster sampling suffers less variation between S RS and adaptive S RS ,
which demonstrates that it is a biased estimate. In Section 5, a comparison between different population sizes
indicated that adaptive spatial sampling by cluster suffers less variation in the estimators than the other two samples.

Stratified adaptive spatial cluster sampling showed no significant difference between the estimators of the mean,
or the estimated average, regardless of whether we consider the limits of the strata variances.

In conclusion, it follows that the computational algorithm for adaptive spatial sampling in this work is important,
as this new technique has a variety of applications and users thus far do not have a computational tool to use it.
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