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Abstract 

The variations of the Face-centered Central Composite Design under partial replications of design points are 

studied. The experimental conditions include replicating the cube points while the star points and center point are 

held fixed or not replicated, replicating the star points while the cube points and the center point are held fixed or 

not replicated and replicating the center point while the cube points and the star points are held fixed or not 

replicated. As a measure of goodness of the designs, D- and G-efficiency criteria are utilized. Results show that 

for the two- and three-variable quadratic models considered, the Face-centered Central Composite Design 

comprising of two cube portions, one star portion and a center point performed better than other variations under 

D-optimality criterion as well as G-optimality criterion. When compared with the traditional method of 

replicating the center point, the two cube portions, one star portion and a center point variation was relatively 

better in terms of design efficiency. 

Keywords: Replication, cube points, star points, center point, D-efficiency, G-efficiency 

1. Introduction  

Unreplicated designs are very widely used in experimental situations. However, fitting full model for 

unreplicated designs results in zero degrees of freedom for error and hence tests about main and interaction 

effects of factors cannot be carried out. This constitutes a potential problem in statistical testing (Farrukh, 2014). 

Two common approaches to this problem require either pooling high-order interactions, assumed to be negligible, 

to estimate the error or replicating one or more experimental runs. Generally, replication of design points offers 

an independent and more precise estimate of experimental error. 

In model building, designs with factors that are set at two levels implicitly assume that the effect of the factors 

on the response variable is linear and one would usually anticipate fitting the first-order model. When it is 

suspected that the relationship between the factors in the design and the response variable is not linear, there is 

the need to include one or more experimental runs. The first-order models with the presence of interaction terms 

are capable of representing some curvature in the response function. However, in some cases, the curvature in 

the response function is not adequately modeled and therefore the need to consider the second-order model for 

better representation.  

Central Composite Designs (CCDs) originally proposed by Box & Wilson (1951) have been the practically used 

designs for estimating second-order response surfaces. They are so advantageous in Response Surface 

Methodology (RSM) for building models of the response variables without needing to carry out complete 

three-level factorial experiments. Applications of Central Composite Designs can be seen in various fields of study 

including biological, chemical, pharmaceutical fields. The CCD is particularly useful in the determination of 

optimum values of influential parameters of a response variable (see e.g. Alalayah et al. (2010)). A review of some 

aspects of Central Composite Designs in spherical region is presented in Chigbu et al. (2009).  

A CCD consists of three distinct sets of experimental runs: 

i. A set of factorial or fractional factorial design (cube portion) in the factors studied and each having two 

levels; 

ii. A set of axial points (star portion); 

iii. A set of center points. 

In augmenting Central Composite Designs, the common practice has been the replication of only the center point 

http://en.wikipedia.org/wiki/Factorial_design
http://en.wikipedia.org/wiki/Fractional_factorial_design
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for estimation of the experimental error, improvement of the precision of the experiments and to maintain 

minimum number of design runs which an experimenter can afford. Two ways of replicating design are the 

DESIGNREP procedure which involves replicating the entire design and the POINTREP procedure which 

involves replicating each point in the design. When it is not possible to replicate the full design, the experimenter 

can obtain an estimate of pure error by replicating only some of the points in the design. One challenge of partial 

replications of design points is that the experimenter faces the problem of choosing the points to be replicated 

and the points not to be replicated in the design. Authors including Cochran and Cox (1957), Montgomery (1997) 

and Atkinson and Donev (1992) have discussed extensively the analysis of such replicated experiments.  

Quite recently, many experimenters have focused on the effect of replicating the non-center points as against the 

usual replication of the center point in exploring response surfaces. Chigbu and Ohaegbulem (2011) considered the 

preference of replicating factorial runs to axial runs in restricted second-order designs. They observed in general 

that under orthogonality and rotatability restrictions, the replicated cubes plus one star variation was better than the 

one cube plus replicated star variation in the sense of D-optimality. The number of experimental runs employed 

was N =   2
k
 +   2k +   where   is the number of cubes,    is the number of stars and    is the number of 

center point. Although allowing for partial replication of the cubes and the stars, every point in the cube as well as 

the star was utilized. Ukaegbu and Chigbu (2014) considered the performance of the partially replicated cube and 

star portions of orthogonal Central Composite Designs in spherical regions. One particular focus was the 

replication of the cube and star portions without replicating the center point in k-factor experiment. Also, the 

performance of the Central Composite Designs with respect to stability, small predictive variance and prediction 

capability was studied using graphical techniques and single-value optimality criteria. Results indicate that 

replicating the star portions of the Central Composite Designs considerably reduces the prediction variance and 

thus improves G-efficiency than replicating the cube portion. 

Oyejola and Nwanya (2015) considered the performance of five varieties of Central Composite Design when the 

axial portions are replicated and the center point increased one and three times. Ahn (2015) devised a new CCD 

called the CCD-R for experiments not just at the center but also at non-center points. The flexibility of the CCD-R 

is seen in the existence of a myriad of perfectly orthogonal and nearly rotatable designs. Ahn (2015) considered 

that when a two-level full or fractional experiment is conducted, a few center runs would be adequate to detect the 

quadratic effects over the region of exploration. However, in situations where the parameters of quadratic model 

are to be separately estimated, more runs at some more design points are needed. In addressing this problem, the 

augmentation of the two-level full or fractional factorial design with a center and 2k axial points was proposed, 

where k is the number of independent factors in the experiment. 

In this work, the effect of partially replicating the factorial points and the star points of the Face-centered Central 

Composite Designs with respect to replicating the center point on response surface designs is investigated. This 

requires  

i. Constructing partially replicated exact designs for two and three variable quadratic models. 

ii. Assessing the goodness of the designs using two single-value criteria, namely D- and G-efficiency criteria. 

For two input variables (i.e. k = 2), the Face-centered Central Composite Design consists of nc center points, four 

factorial points and four axial points. For three input variables (i.e. k = 3), the Face-centered Central Composite 

Design consists of nc center points, eight factorial points and six axial points. The axial points are parallel to each 

variable axis on a circle of radius, α = 1.0 and origin at the center point. The designated α is the radius which 

determines the geometry and defines a square for two input variables and a cube for three input variables. 

According to Montgomery (1997) and Zahran (2002). Face-centered Central Composite Design is the most 

useful cuboidal region in practice because it requires only three levels of each factor.  

Draper and Guttman (1988) observed that the adequacy of an experimental design can be determined from the 

information matrix. Some criteria that are based on the information matrix include A-, D-, E-, G- and 

I-optimality criteria. Rady et al. (2009) gave a concise survey on the optimality criteria with particular attention 

on relationships among the several optimality criteria. Following the definitions of Atkinson and Donev (1992), 

A-optimality criterion seeks to minimize the trace of the variance-covariance matrix. This criterion results in 

minimizing the average variance of the estimated regression coefficients. D-optimality criterion maximizes the 

amount of information in an experimental design. As assessed by the information matrix, D-optimality criterion 

maximizes the determinant of information matrix of the design and equivalently minimizes the determinant of 

the variance-covariance matrix. Hence for a specified model, a D-optimal design minimizes the variances of 

parameter estimates as well as the covariances between parameter estimates. On the other hand, G-optimality 

criterion minimizes the maximium variance of prediction over the design space. 
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A number of standard measures have been proposed in the literature to summarize the efficiency of a design. Some 

of these measures can be seen in Atkinson and Donev (1992), Wong (1994) and Chukwu and Yakubu (2012). To 

assess the goodness of designs, two single-value efficiency criteria, namely, the D- and G-efficiencies are 

commonly employed. As in the literature on optimal designs, efficiency values lie between zero and one, a 

design having efficiency value of 1.0 implies that the design is 100% efficient. Hence in comparing designs, a 

design with a higher efficiency value would be preferred. According to Atkinson and Donev (1992), D-efficiency 

of an arbitrary design, 𝜉𝑁, over an optimal design, ξN
∗  is defined as  

Deff =  
M(ξN )

M(ξN
∗ ) 

 . 

The G-efficiency of an arbitrary design, ξ
N

, is defined as 

Geff = 
d(ξN

∗ ) 

d(ξN) 
 = 

p

d(ξN)
 ; 

Where d(ξ
N
∗ ) is the maximum variance of predicted response associated with ξ

N
∗

 and d(ξ
N
) is the maximum 

variance of predicted response associated with ξ
N

. 

Here, p is the number of model parameters and N is the number of requested runs. The D-efficiency can be 

interpreted as the relative number of runs (in percent) that would be required by an orthogonal design to achieve 

the same value of the determinant |X
T
X|. In practice, an orthogonal design may not be possible in many cases; 

hence orthogonality becomes only a theoretical "yard-stick." Therefore, one should use D-efficiency measure 

rather as a relative indicator of efficiency to compare other designs. D-efficiency measure relates to D-optimality 

criterion as G-efficiency measure relates to the G-optimality criterion, which concentrates on minimizing the 

maximum value of the standard error of the predicted response.  

2. Method 

In this work, the variation of the Central Composite Design (CCD) is studied when 

(i)  The cube points are replicated while the star points and center point are held fixed or not replicated; 

(ii)  The star points are replicated while the cube points and the center point are held fixed or not replicated; 

(iii) The center point is replicated while the cube points and the star points are held fixed or not replicated. 

Efficiencies of the constructed designs are assessed using D- and G- efficiency criteria.  

In studying the partial replication of Central Composite Design, the second-order polynomial model in equation 

(1) is employed. 

y = β0 +∑ 𝛽𝑖
𝑘
𝑖= 𝑥𝑖  + ∑ ∑ 𝛽𝑖𝑗

𝑘
𝑗>𝑖

𝑘
𝑖= 𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑖

𝑘
𝑖= 𝑥𝑖𝑖

  + ε        (1) 

This model can be rewritten as 

Y = Xβ + ε          (2) 

Where 

Y is the Nx1 vector of observed values 

X is the design matrix 

β is the px1 vector of unknown parameters which are estimated on the basis of N uncorrelated observations. 

ε is the random additive error associated with Y and is independently and identically distributed with zero mean 

and constant variance. 

To explore the Face-centered Central Composite Design with partial replication of the cube or the factorial 

points, we observe that the 𝑘-variable second-order full model has p model parameters given by 

p = 
(𝑘+ )(𝑘+ )

 
          (3) 

The factorial portion of the Central Composite Design comprises of experimental runs of the 2
k
 factorial design. 

For 𝑘 = 2, the experimental runs are 
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V =  (

1 1
−1 1
1 −1
−1 −1

) 

For 𝑘 = 3, the experimental runs are 

V =  

(

 
 
 
 
 

−1 −1 −1
−1 −1 +1
+1 −1 −1
−1 +1 −1
−1 +1 +1
+1 −1 +1
+1 +1 −1
+1 +1 +1)

 
 
 
 
 

 

The star portion of the Central Composite Design comprises of the experimental runs  

S =  

(

 
 
 
 

𝛼 0 0 ⋯ ⋯ ⋯ 0
−𝛼
0
0

0 0 ⋯
𝛼 0 ⋯
−𝛼 0 ⋯

⋯ ⋯ 0
⋯ ⋯ 0
⋯ ⋯ 0

⋮ ⋮ ⋮
  0     0      0
  0     0     0

⋮ ⋮ ⋮
0 ⋯ ⋯
0 ⋯ ⋯

⋮
𝛼
−𝛼)

 
 
 
 

 

For 𝑘 = 2, this becomes 

S =  (

𝛼 0
−𝛼 0
0 𝛼
0 −𝛼

) 

For 𝑘 = 3, 

S = 

(

  
 

𝛼 0    0
−𝛼 0    0
0 𝛼    0

0 −𝛼 0
0      0 𝛼
0      0 −𝛼)

  
 

 

The center portion of the Central Composite Design comprises of the experimental run 

C = (0 0 … 0). 

For 𝑘 = 2, this becomes 

C = (0 0) 

For 𝑘 = 3, it becomes 

C = (0 0 0). 

The information matrix of a CCD shall be expressed in terms of the number of cube points, star points and center 

point. Thus, the number of experimental runs is given by N = n12
k
 + (𝑟

𝑛  ) + n22𝑘 + (𝑟
𝑛  )+ n0 where n1 is the 

number of cube portions, n2 is the number of star portions, n0 is the number of center points,     refers to the 

number of cube points in the cube portion of the CCD and     refers to the number of star points in the star 

portion of the CCD. For the purpose of this work n1 and n2 are set at unity, V+(𝑟
𝑛  ) implies taking the cube 

portion and additional 𝑟 distinct cube points from the available     cube points, S+(𝑟
𝑛  ) implies taking the 

star portion and additional 𝑟 distinct star points from the available     star points and C+2 implies taking the 

center point and additional two center points.  

For k = 2, the various variations or experimental conditions to study in replicating the vertex points while the star 

points and center point are held fixed or not replicated are as tabulated in Table 1. 
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Table 1. Variations for replicating the vertex points (k = 2) 

Experimental Condition Design Size N 

Vertex Star Center  

V+
4
C4 S C 13 

V+
4
C3 S C 12 

V+
4
C2 S C 11 

V+
4
C1 S C 10 

In replicating the star points while the vertex points and center point are held fixed or not replicated, the various 

variations or experimental conditions to study are as tabulated in Table 2. 

 

Table 2. Variations for replicating the star points (k = 2) 

Experimental Condition Design Size N 

Vertex Star Center  

V S+
4
C4 C 13 

V S+
4
C3 C 12 

V S+
4
C2 C 11 

V S+
4
C1 C 10 

In replicating the center point while the vertex points and star points are held fixed or not replicated, the various 

variations or experimental conditions to study are as tabulated in Table 3 

 

Table 3. Variations for replicating the center point (k = 2) 

Experimental Condition Design Size N 

Vertex Star Center  

V S C+4 13 

V S C+3 12 

V S C+2 11 

V S C+1 10 

For k = 3, the various variations or experimental conditions to study in replicating the vertex points while the star 

points and center point are held fixed or not replicated are as tabulated in Table 4. 

 

Table 4. Variations for replicating the vertex points (k = 3) 

Experimental Condition Design Size N 

Vertex Star Center  

V+
8
C8 S C 23 

V+
8
C7 S C 22 

V+
8
C6 S C 21 

V+
8
C5 S C 20 

V+
8
C4 S C 19 

V+
8
C3 S C 18 

V+
8
C2 S C 17 

V+
8
C1 S C 16 

In replicating the star points while the vertex points and center point are held fixed or not replicated, the various 

variations or experimental conditions to study are as tabulated in Table 5 
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Table 5. Variations for replicating the star points (k = 3) 

 

In replicating the center point while the vertex points and star points are held fixed or not replicated, the various 

variations or experimental conditions to study are as tabulated in Table 6 

Table 6. Variations for replicating the star points (k = 3) 

 

 

 

 

 

 

 

 

 

For each experimental condition, an N-point design shall be chosen to maximize the determinant of information 

matrix. Onukogu and Iwundu (2007), Madukaife and Oladugba (2010) and Iwundu and Albert-Udochukwuka 

(2014) have provided helpful rules for selecting design points to maximize the determinant of information 

matrix. 

Let  

𝜉𝑁 = (

𝑥  𝑥  … 𝑥 𝑘
𝑥  𝑥  … 𝑥 𝑘
⋮ ⋮ ⋮ ⋮

𝑥𝑁 𝑥𝑁 … 𝑥𝑁𝑘

) 

be an N-point design measure depending on k-variable quadratic model, having p-parameters. The Nxp design 

matrix  

X = (

1 𝑥  𝑥  
1 𝑥  𝑥  
⋮ ⋮ ⋮

… 𝑥 𝑘
… 𝑥 𝑘
⋮ ⋮

1 𝑥𝑁 𝑥𝑁 … 𝑥𝑁𝑘

) 

gives the values of independent variables that are used in the statistical models and further contains the column 

of 1’s that represent the intercept term as well as the columns for the products and powers associated with other 

model terms. The pxp information matrix, M, associated with 𝜉𝑁 is obtained from XTX and normalized as 

 

𝑁
XTX , where the notation, (.)

T
 represents transpose. The criterion that allows maximization of determinant of 

information matix of a design is the D-optimality criterion.  

Let 𝜉𝑁
 , 𝜉𝑁

 , ... , 𝜉𝑁
𝑚 be m design measures defined on the design region of the Face-centered Central Composite 

Design and having non-singular information matrices M1, M2, ... , Mm,  respectively. The design measure 𝜉𝑁
  is 

preferred, in terms of D-optimality criterion, to the design measures𝜉𝑁
 , ..., 𝜉𝑁

𝑚 iff the determinant 

Det (M1) = max {Det (M1), Det (M2), ... , Det (Mm)}. 

Experimental Condition Design Size N 

Vertex Star Center  

V S+
8
C8 C 23 

V S+
8
C7 C 22 

V S+
8
C6 C 21 

V S+
8
C5 C 20 

V S+
8
C4 C 19 

V S+
8
C3 C 18 

V S+
8
C2 C 17 

V S+
8
C1 C 16 

Experimental Condition Design Size N 

Vertex Star Center  

V S C+8 23 

V S C+7 22 

V S C+6 21 

V S C+5 20 

V S C+4 19 

V S C+3 18 

V S C+2 17 

V S C+1 16 
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Also let 𝑥𝑖 = (1 𝑥𝑖 𝑥𝑖 … 𝑥𝑖𝑘) ; i = 1, 2, ... , N be the i
th

 row of the design matrix X, associated with the 

design point (𝑥𝑖 𝑥𝑖 … 𝑥𝑖𝑘) . The variance of prediction, V{y( 𝑥𝑖 )}, at the i
th

 design point 𝑥𝑖  = 

(1 𝑥𝑖 𝑥𝑖 … 𝑥𝑖𝑘) is  

V{y(𝑥𝑖)} = (1 𝑥𝑖 𝑥𝑖 … 𝑥𝑖𝑘) M
-1(1 𝑥𝑖 𝑥𝑖 … 𝑥𝑖𝑘)T 

The criterion that allows minimization of the maximum predictive variance is the G-optimality criterion. 

Suppose 

V
1
 = V{y(𝑥 )} is the maximum variance of prediction associated with the design measure 𝜉𝑁

 ,  

V
2
 = V{y(𝑥 )} is the maximum variance of prediction associated with the design measure 𝜉𝑁

 ,  

⋮ 

V
m
 = V{y(𝑥𝑚)} is the maximum variance of prediction associated with the design measure 𝜉𝑁

𝑚.  

The design measure 𝜉𝑁
  is preferred in terms of G-optimality criterion to the design measures𝜉𝑁

 , ... , 𝜉𝑁
𝑚 iff  

V{y(𝑥 )}= min { V{y(𝑥 )}, V{y(𝑥 )}, ... , V{y(𝑥𝑚)}}. 

3. Results 

Using the second-order polynomial model in equation (1), the partial replications of the factorial points and the 

star points with respect to replicating the center point are investigated with the following results.  

3.1 Two-Factor Partially Replicated Central Composite Design  

In exploring the two-factor Face-centered Central Composite Design with partial replication of the cube or 

factorial points, it is observed that the two-variable second-order full polynomial model has six model 

parameters. For the Face-centered Central Composite Design in two variables, there are basically nine design 

points or experimental runs. The cube points otherwise called vertex or factorial points  

(

1 1
1 −1
−1 1
−1 −1

) 

are denoted V.   

The axial or star points  

(

1 0
−1 0
0 1
0 −1

) 

are denoted S.  

The center point, (0 0), is denoted C.  

Case I: Replicating the vertex points while the star points and center point are held fixed or not 

replicated. 

Using the experimental conditions in Table 1, partially replicated exact designs of size N = 13, 12, 11, 10 are 

constructed. 

The design measure for N = 13 is 

𝜉 3 = 

(

 
 
 
 
 
 
 
 
 

   

  1        1
−1     1
 1   −1
−1   −1
1    1

−1      1
1 −1

 
−1    −1
1 0

−1   0

    
0       1
0    −1

    0      0

     

)
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For the six parameter model, the design matrix is 

X = 

(

 
 
 
 
 
 
 
 
 
 

1 1 1
1 −1 1

1 1 1
−1 1 1

1 1 −1
1 −1 −1

−1 1 1
1 1 1

1 1 1
1 −1 1
1 1 −1

1 1 1
−1 1 1
−1 1 1

1 −1 −1
1 1 0
1 −1 0

1 1 1
0 1 0
0 1 0

1 0 1
1 0 −1
1 0 0

0 0 1
0 0 1
0 0 0 )

 
 
 
 
 
 
 
 
 
 

 

The corresponding information matrix is  

𝑀 =
1

𝑁
𝑋𝑇𝑋 =

(

  
 

1.0000 0.0000 0.0000
0.0000 0.7692 0.0000
0.0000 0.0000 0.7692

0.0000 0.7692 0.7692
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

0.0000 0.0000 0.0000
0.7692 0.0000 0.0000
0.7692 0.0000 0.0000

0.7692 0.0000 0.0000
0.0000 0.7692 0.7692
0.0000 0.7692 0.7692)

  
 

 

The determinant value of the information matrix is  

Det M = 0.01127 

The variance of prediction at each design point of 𝜉 3 is, respectively 

V1 = 5.7544 

V2= 5.7544 

V3= 5.7544 

V4= 5.7544 

V5= 5.7544 

V6= 5.7544 

V7= 5.7544 

V8= 5.7544 

V9= 8.1824 

V10= 6.2706 

V11= 6.2706 

V12= 6.2706 

V13= 6.8824 

The maximum predictive variance is 8.1824. 

The design measure for N = 12 is 

𝜉  =

(

 
 
 
 
 
 
 
 

1 1
−1 1
1 −1
−1 −1
−1 −1
−1 1
1 −1
1 0
−1 0
0 1
0 −1
0 0 )
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For the six parameter model, the design matrix is 

X =  

(

 
 
 
 
 
 
 
 
 

1 1 1
1 −1 1

1 1 1
−1 1 1

1 1 −1
1 −1 −1

−1 1 1
1 1 1

1 −1 −1
1 −1 1
1 1 −1

1 1 1
−1 1 1
−1 1 1

1 1 0
1 −1 0

0 1 0
0 1 0

1 0 1
1 0 −1
1 0 0

0 0 1
0 0 1
0 0 0 )

 
 
 
 
 
 
 
 
 

 

The associated information matrix is  

𝑀 =
1

𝑁
𝑋𝑇𝑋 =

(

  
 

1.0000 −0.083 −0.083
−0.083 0.7500 −0.083
−0.083 −0.083 0.7500

−0.083 0.7500 0.7500
−0.083 −0.083 −0.083
−0.083 −0.083 −0.083

−0.083 −0.083 −0.083
0.7500 −0.083 −0.083
0.7500 −0.083 −0.083

0.5830 −0.083 −0.083
−0.083 0.7500 0.5830
−0.083 0.5830 0.7500)

  
 

 

The determinant value of the information matrix is  

Det M = 0.0102 

The variance of prediction at each design point is, respectively 

V1= 9.5303 

V2 = 5.3129 

V3= 5.3129 

V4= 5.3509 

V5= 5.3129 

V6= 5.3509 

V7= 5.3129 

V8= 5.1488 

V9= 5.8955 

V10= 5.1488 

V11= 5.8955 

V12= 6.4274 

The maximum predictive variance is 9.5303. 

The design measure for N = 11 is 

𝜉  =

(

 
 
 
 
 
 
 

1 1
−1 1
1 −1
−1 −1
−1 1
1 1
1 0
−1 0
0 1
0 −1
0 0 )

 
 
 
 
 
 
 

 

For the six parameter model, the design matrix is 
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X = 

(

 
 
 
 
 
 
 
 

1 1 1
1 −1 1

1 1 1
−1 1 1

1 1 −1
1 −1 −1

−1 1 1
1 1 1

1 −1 1
1 1 1

−1 1 1
1 1 1

1 1 0
1 −1 0

0 1 0
0 1 0

1 0 1
1 0 −1
1 0 0

0 0 1
0 0 1
0 0 0 )

 
 
 
 
 
 
 
 

 

The associated information matrix is 

M = 

(

  
 

1.0000 0.0000 0.1818
0.0000 0.7272 0.0000
0.1818 0.0000 0.7272

0.0000 0.7272 0.7272
0.1818 0.0000 0.0000
0.0000 0.1818 0.1818

0.0000 0.1818 0.0000
0.7272 0.0000 0.1818
0.7272 0.0000 0.1818

0.5454 0.0000 0.0000
0.0000 0.7272 0.5454
0.0000 0.5454 0.7272)

  
 

 

The determinant value of the information matrix is 

Det M = 0.00954. 

The variance of prediction at each design point is, respectively 

V1 = 4.9063 

V2 = 4.9063 

V3 = 8.7396 

V4 = 8.7396 

V5 = 4.9063 

V6 =4.9063 

V7 = 5.5000 

V8 = 5.9583 

V9 = 5.7396 

V10 =5.7396 

V11 = 5.9583 

The maximum predictive variance is 8.7396. 

For N = 10 

𝜉  = 

(

 
 
 
 
 
 

1 1
−1 1
1 −1
−1 −1
−1 1
1 0
−1 0
0 1
0 −1
0 0 )

 
 
 
 
 
 

 

For the six parameter model, the design matrix is 

X = 

(

 
 
 
 
 
 

1 1 1
1 −1 1

1 1 1
−1 1 1

1 1 −1
1 −1 −1

−1 1 1
1 1 1

1 −1 1 −1 1 1
1 1 0
1 −1 0

0 1    0
0 1     0

1 0 1
1 0 −1
1 0 0

0 0     1
0 0     1
0 0     0 )
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The associated information matrix is 

M = 

(

  
 

1.0000 −0.100 0.1000
−0.100 0.7000 −0.100
0.1000 0.1000 0.7000

−0.100 0.7000 0.7000
0.1000 −0.100 −0.100
−0.100 0.1000 0.1000

−0.100 0.1000 −0.100
0.7000 −0.100 0.1000
0.7000 −0.100 0.1000

0.5000 −0.1000 −0.1000
−0.100 0.7000 0.5000
−0.100 0.5000 0.7000 )

  
 

 

The determinant value of the information matrix is 

Det M = 0.00936 

The variance of prediction at each design point is, respectively 

V1 = 4.4615 

V2 = 8.0513 

V3 = 7.9487 

V4 = 8.0513 

V5 = 4.4615 

V6 = 5.2821 

V7 = 5.4872 

V8 = 5.4872 

V9 =5.2821 

V10 = 5.4872 

The maximum predictive variance is 8.0513. 

Case II: Replicating the star points while the vertex points and center point are held fixed or not 

replicated. 

Using the experimental conditions in Table 2, partially replicated exact designs of size N = 13, 12, 11, 10 are 

constructed. 

The design measures for the respective N-point exact designs are; 

𝜉 3 = 

(

 
 
 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0

−1 0
0 1
0 −1
1 0
−1 0
0 0 )

 
 
 
 
 
 
 
 
 

 

 

𝜉  =

(

 
 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 1
0 −1
1 0
0 0 )
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𝜉  =

(

 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 1
1 0
0 0 )

 
 
 
 
 
 
 

 

and 

𝜉  = 

(

 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 1
0 0 )

 
 
 
 
 
 

 

For case II, the associated maximum determinant values and maximum variances of prediction are as tabulated 

in Table 7. 

Table 7. Maximum determinant value and maximum predictive variances for Case II, k = 2 

Design Size 

N 

Maximum determinant value of 

information matrix 

Maximum variance of 

prediction 

13 0.005940 9.2857 

12 0.006344 9.0405 

11 0.00705 8.67307 

10 0.00806 7.9762 

Case III: Replicating the center point while the vertex points and star points are held fixed or not 

replicated. 

Using the experimental conditions in Table 3, partially replicated exact designs of size N = 13, 12, 11, 10 are 

constructed. 

The design measures for the respective N-point exact designs are; 

𝜉 3 = 

(

 
 
 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1   0
−1  0
0 0
0 0
0   0
0  0
0   0 )

 
 
 
 
 
 
 
 
 

 

𝜉  =

(

 
 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 0
0 0
0 0
0 0 )
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𝜉  =

(

 
 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 0
0 0
0 0 )

 
 
 
 
 
 
 

 

and 

𝜉  = 

(

 
 
 
 
 
 

−1 1
1 1
1 −1
−1 −1
0 1
0 −1
1 0
−1 0
0 0
0 0 )

 
 
 
 
 
 

 

For Case III, the associated maximum determinant values and maximum variances of prediction are as tabulated 

in Table 8. 

Table 8. Maximum determinant value and maximum predictive variances for Case III, k = 2 

Design Size 

N 

Maximum determinant value of 

information matrix 

Maximum variance of 

prediction 

13 0.00346 10.2730 

12 0.00634 9.5000 

11 0.00618 8.7325 

10 0.00806 7.9762 

3.2 Three-Factor Partially Replicated Central Composite Design  

In exploring the three-factor partially replicated Central Composite Design, it is observed that the three-variable 

second-order full polynomial model has ten model parameters. For the Face-centered Central Composite Design 

in three variables, the eight factorial points  

(

 
 
 
 
 

1 1 1
1 1 −1
1 −1 1
−1 1 1
−1 −1 1
−1 1 −1
1 −1 −1
−1 −1 −1)

 
 
 
 
 

 are denoted V.   

The six axial or star points  

(

  
 

1 0 0
−1 0 0
0 1 0

0 −1 0
0 0 1
0 0 −1)

  
 

 are denoted S.  

The center point (0 0 0) is denoted C.  

Case I: Replicating the vertex points while the star points and center points are held fixed or not 

replicated. 



 

 

www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 4; 2015 

14 

Using the experimental conditions in Table 4, we construct partially-replicated exact designs of size N = 23, 

22, … , 16. 

The design measure for N = 23 is 

𝜉 3= 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
−1 −1 1
−1 1 −1
1 −1 −1
1 1 −1
1 −1 1
−1 1 1
1 1 1
−1 −1 −1
−1 −1 1
−1 1 −1
1 −1 −1
1 1 −1
1 −1 1
−1 1 1
1 1 1
−1 0 0
1 0 0

0 −1 0
0 1 0
0 0 1
0 0 −1
0   0    0 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For the ten parameter model, the design matrix is 

 

 

 

 

X = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

1 −1 −1 −1 1 1 1 1 1 1 
1 −1 −1 1 1 −1 −1 1 1 1 
1 −1 1 −1 −1 1 −1 1 1 1 
1 1 −1 −1 −1 −1 1 1 1 1 
1 1 1 −1 1 −1 −1 1 1 1 
1 1 −1 1 −1 1 −1 1 1 1 
1 −1 1 1 −1 −1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 −1 −1 −1 1 1 1 1 1 1 
1 −1 −1 1 1 −1 −1 1 1 1 
1 −1 1 −1 −1 1 −1 1 1 1 
1 1 −1 −1 −1 −1 1 1 1 1 
1 1 1 −1 1 −1 −1 1 1 1 
1 1 −1 1 −1 1 −1 1 1 1 
1 −1 1 1 −1 −1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 
1 −1 0 0 0 0 0 1 0 0 
1 1 0 0 0 0 0 1 0 0 
1 0 −1 0 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 1 0 
1 0 0 −1 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 0 
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The associated information matrix is 

 

The determinant of information matrix is 

Det M = 0.0004106 

The variance of prediction at each design point is, respectively 

V1 = 9.5672 

V2 =9.5672 

V3 = 9.5672 

V4 = 9.5672 

V5 = 9.5672 

V6 = 9.5672 

V7 = 9.5672 

V8 = 9.5672 

V9 = 9.5672 

V10 = 9.5672 

V11 = 9.5672 

V12 = 9.5672 

V13= 9.5672 

V14 = 9.5672 

V15= 9.5672 

V16 = 9.5672 

V17= 11.7441 

V18 = 11.7441 

V19= 11.7441 

V20 = 11.7441 

V21= 11.7441 

V22 = 11.7441 

V23= 6.4607 

The maximum variance of prediction is 11.7441 

The results for N = 22, 21, ... , 16 are as tabulated in Table 9. 

Table 9. Maximum determinant values and maximum predictive variances for Case I, k = 3 

Design Size N Maximum determinant value 

of information matrix 

Maximum variance of 

prediction 

23 0.00041 11.7441 

22 0.00037 15.6689 

21 0.00034 15.2767 

20 0.00032 14.8206 

19 0.00031 14.2856 

18 0.00029 14.0184 

17 0.00029 13.3526 

16 0.00031 12.6714 

 

 1 0 0 0 0 0 0 0.7826 0.7826 0.7826 

 0 0.7826 0 0 0 0 0 0 0 0 

 0 0 0.7826 0 0 0 0 0 0 0 

 0 0 0 0.7826 0 0 0 0 0 0 

M = 0 0 0 0 0.6956 0 0 0 0 0 

 0 0 0 0 0 0.6956 0 0 0 0 

 0 0 0 0 0 0 0.6956 0 0 0 

 0.7826 0 0 0 0 0 0 0.7826 0.6956 0.6956 

 0.7826 0 0 0 0 0 0 0.6956 0.7826 0.6956 

 0.7826 0 0 0 0 0 0 0.6956 0.6956 0.7826 
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Case II: Replicating the star points while the vertex points and center point are held fixed or not 

replicated. 

Using the experimental conditions in Table 5, partially replicated exact designs of size N = 21, 20, ... , 16 are 

constructed. As with Case I, the best N-point exact design is obtained and the process continues. The required 

computations yield the results for N = 21, 20, ... , 16 as tabulated in Table 10. 

 

Table 10. Maximum determinant values and maximum predictive variances for Case II, k = 3 

Design Size N Maximum determinant value 

of information matrix 

Maximum variance of 

prediction 

21 0.0001187 15.9089 

20 0.0001465 15.1729 

19 0.0001662 14.6312 

18 0.0001938 14.0591 

17 0.0002211 13.2672 

16 0.0002608 12.6742 

 

Case III: Replicating the center point while the vertex points and star points are held fixed or not 

replicated. 

Using the experimental conditions in Table 6, partially replicated exact designs of size N = 23, 22, ... , 16 are 

constructed. As with Cases I and II, the best N-point exact design is obtained and the process continues. The 

required computations yield the results for N = 23, 22, ... , 16 as tabulated in Table 11. 

 

Table 11. Maximum determinant values and maximum predictive variances for Case III, k = 3 

Design Size N Maximum determinant value 

of information matrix 

Maximum variance of 

prediction 

23 0.0000147 18.2263 

22 0.0000209 17.4382 

21 0.0000302 16.6506 

20 0.0000440 15.8636 

19 0.0000648 15.0776 

18 0.0000964 14.2929 

17 0.0000144 13.5102 

16 0.0000216 12.7310 

In assessing the goodness of the constructed optimal exact designs we compute the D-efficiency and 

G-efficiency values as tabulated in Tables 12 and 13 for k = 2 and k = 3, respectively. 

Table 12. Optimal values and D- and G-efficiency values (k = 2) 

Experimental Condition Design 

Size N 

Determinant of 

Information 

matrix  

Maximum 

variance 

of prediction 

D-efficiency G-efficiency 

 

Vertex 

point 

 

Star 

point 

 

Center 

point 

V+
4
C4 S C 13 0.0113 6.8824 1.0000 

0.9831 

0.9715 

0.9698 

0.8974 

0.9072 

0.9255 

0.9460 

0.8226 

0.8609 

0.9048 

0.9460 

1.0000 

0.7222 

0.7875 

0.8548 

0.7412 

0.6637 

0.7935 

0.8629 

0.6700 

0.7245 

0.7881 

0.8629 

V+
4
C3 S C 12 0.0102 9.5303 

V+
4
C2 S C 11 0.0095 8.7396 

V+
4
C1 S C 10 0.0094 8.0513 

V S+
4
C4 C 13 0.0059 9.2857 

V S+
4
C3 C 12 0.0063 9.0405 

V S+
4
C2 C 11 0.0071 8.6731 

V S+
4
C1 C 10 0.0081 7.9762 

V S C+4 13 0.0035 10.2730 

V S C+3 12 0.0046 9.5000 

V S C+2 11 0.0062 8.7325 

V S C+1 10 0.0081 7.9762 
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Table 13. Optimal values and D- and G-efficiency values (k = 3) 

Experimental Condition Design 

Size N 

Determinant of 

Information 

matrix  

Maximum 

variance of 

prediction 

D-efficiency G- 

efficiency  

Vertex 

point 

 

Star 

point 

 

Center 

point 

V+
8
C8 S C 23 0.0004106 11.7441 1.0000 

0.9907 

0.9827 

0.9761 

0.9715 

0.9681 

0.9673 

0.9695 

0.8833 

0.9021 

0.9135 

0.9277 

0.9400 

0.9556 

0.7168 

0.7425 

0.7703 

0.7998 

0.8314 

0.8651 

0.9005 

0.9378 

1.0000 

0.7495 

0.7688 

0.7924 

0.8221 

0.8378 

0.8795 

0.9268 

0.7382 

0.7740 

0.8027 

0.8353 

0.8805 

0.9266 

0.6443 

0.6735 

0.7053 

0.7403 

0.7789 

0.8217 

0.8693 

0.9225 

V+
8
C7 S C 22 0.0003740 15.6689 

V+
8
C6 S C 21 0.0003447 15.2767 

V+
8
C5 S C 20 0.0003225 14.8206 

V+
8
C4 S C 19 0.0003075 14.2856 

V+
8
C3 S C 18 0.0002968 14.0184 

V+
8
C2 S C 17 0.0002945 13.3526 

V+
8
C1 S C 16 0.0003013 12.6714 

V S+
6
C6 C 21 0.0001187 15.9089 

V S+
6
C5 C 20 0.0001465 15.1729 

V 

V 

    V 

V 

V 

V 

V 

V 

V 

V 

V 

V 

S+
6
C4 C 19 0.0001662 14.6312 

S+
6
C3 

S+
6
C2 

S+
6
C1 

S 

S 

S 

S 

S 

S 

S 

S 

C 

C 

C 

C+8 

C+7 

C+6 

C+5 

C+4 

C+3 

C+2 

C+1 

18 

17 

16 

23 

22 

21 

20 

19 

18 

  17 

16 

0.0001938 

0.0002211 

0.0002608 

0.0000147 

0.0000209 

0.0000302 

0.0000440 

0.0000648 

0.0000964 

0.0000144 

0.0000216 

14.0591 

13.3375 

12.6742 

18.2263 

17.4382 

16.6506 

15.8636 

15.0776 

14.2929 

13.5102 

12.7310 

 

4. Discussion 

In addressing the problem of partially replicated cube, star and center runs for estimation of error degrees of 

freedom in Response Surface Methodology, emphasis should not be on the replication of only center point as the 

replication of non-center points performs credibly well. Design optimality plays a major role in the choice of 

experimental designs. As observed in the study on the effects of partially replicating the factorial points and the 

star points of the Face-centered Central Composite Designs with respect to replicating the center points, 

replicating the cube points offered better designs as measured by the D- and G-efficiency values than replicating 

the center point. This signifies the preference of replicating non-center points, particularly the cube points.  

Specifically, for two-variable quadratic model, the D-optimal exact design was observed under the experimental 

condition (V+
4
C4)+S+C, which implies the replication of cube points. This design also had the minimum 

maximum variance of prediction over all designs considered. In comparison with designs under the varying 

experimental conditions, the design comprising of two cube portions, one star portion and one center point was 

more efficient in terms of D- and G-efficiencies. The implication is that replicating cube points allows more 

precise estimate of model parameters as the variances of the model parameters are minimized and the 

covariances between the model parameters are minimized. Furthermore, replicating cube points allows 

minimization of the maximum variance of prediction over the design space. 

For three-variable quadratic model, the design comprising of two cube portions, one star portion and a center 

point performed better than other combinations in terms of D-optimality criterion as well as G-optimality 

criterion. The D- and G-optimal exact designs were observed using the design comprising of two cube portions, 

one star portion and a center point. This again implies the preference of replicating the cube points. The design 

comprising of two cube portions, one star portion and a center point had the maximum determinant value of 

information matrix as well as the minimum maximum variance of prediction over all designs considered. Again, 

replicating cube points allowed a more precise estimate of model parameters as the variances of the model 

parameters are minimized and the covariances between the model parameters are minimized. As with the 

two-variable model, replicating cube points allowed minimization of the maximum variance of prediction over 

the design space. 
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For cases under study, the best D-efficiency value was associated with replicating the cube points and the best 

D-efficiency value was associated with replicating the cube points. In fact, the lowest D-efficiency value 

associated with replicating the cube points was still better than the highest D-efficiency value associated with 

replicating the center point. This was generally true for G-efficiency. For each quadratic model considered, the 

efficiencies of the designs were computed relative to the best design within a class of designs. Specifically, the 

best D-optimal design for two-variable quadratic model was obtained and the D-efficiencies of other designs 

were computed relative to this best D-optimal design. Similarly, the best G-optimal design for two-variable 

quadratic model was obtained and the G-efficiencies of other designs were computed relative to this best 

G-optimal design. As with the two-variable quadratic model, the efficiencies of the designs for the three-variable 

quadratic model were computed relative to the best design within a class of designs. Hence, the best D-optimal 

design for three-variable quadratic model was obtained and the D-efficiencies of the other designs were 

computed relative to this best D-optimal design. Similarly, the best G-optimal design for three-variable quadratic 

model was obtained and the G-efficiencies of the design were computed relative to this best G-optimal design.  

Although there was no consideration on A-efficiency criterion, designs that were D- and G-efficient also 

maximized the trace of the information matrix thereby minimizing the trace of the variance-covariance matrix. 

This shows that by replicating the cube points, the average variance of parameter estimates are minimized. For 

two- and three-variable quadratic models considered, the design comprising of two cube portions, one star 

portion and a center point, that maximized the determinant of information matrix as well as minimizing the 

maximum variance of prediction also maximized the trace of the information matrix with trace value of 4.6922 

for the two-variable model and trace value of 7.7824 for the three-variable model. In partial replication of design 

points, complete replication of cube portion offered better designs as measured by the efficiency values than 

replicating some design points of the cube portion.  

5. Conclusion 

The effects of partially replicating the non-center points, with respect to replicating the center point of the 

Face-centered Central Composite Designs were considered using two- and three-variable quadratic models. As a 

measure of goodness of the designs, D- and G-efficiency single-value criteria were utilized. In all cases 

considered, the experimental designs associated with replicating only the center point were not as efficient as 

replicating the cube points in terms of D- and G-efficiency. We recommend that emphasis should shift away 

from replication of only center points when using response surface designs in optimizing response variables, as 

non-center points perform credibly well. However, the concepts of rotatability and orthogonality of the designs 

should be imposed. 
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