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Abstract

This paper is concerned with the investigation of L2-structure issue of time-varying coefficients continuous-time
bilinear processes (COBL) driven by a Brownian motion (BM). Such processes are very useful for modeling ir-
regular spacing non linear and non Gaussian datasets and may be proposed to model for instance some financial
returns representing high amplitude oscillations and thus make it a serious candidate for describe processes with
time-varying degree of persistence and other complex systems. Our attention is focused however on the probabilis-
tic structure of COBL processes, so, we establish necessary and sufficient conditions for the existence of regular
solutions in term of their transfer function. Explicite formulas for the mean and covariance functions are given.
As a consequence, we observe that the second order structure is similar to a CARMA processes with some uncor-
related noise. Therefore, it is necessary to look into higher-order cumulant in order to distinguish between COBL
and CARMA processes.

Keywords: nonlinear SDE, continuous-time bilinear processes, CARMA, transfer function

1. Introduction

Discrete-time series such as the well-known ARMA models, provide an effective and tractable tool to describe many
datasets assumed to be equally spaced. However, in many practical situations, the data generating the process,
are often observed irregularly spaced. This phenomenon happens for instance in physics, engineering problems,
economy and so on. Therefore, the resort to continuous-time (which can be interpreted as a solution of some
stochastic differential equations (S DE)) models is unavoidable. These models are often assumed to be linear and
may be Gaussian which continue to gain a growing interest of researchers (see for instance Brockwell (2001) and
the references therein). However, recent studies have been shown that the linearity and/or Gaussianity assumptions
is very unrealistic. So, various nonlinear models have been widely proposed in economics, sociology and in
industrial panel data in order to describe these features. Indeed, a continuous-time GARCH (COGARCH) process,
was recently introduced and studied by Kluppelberg et al. (2004) and by Brockwell et al. (2006). A general class of
non-linear continuous-time Autoregressive and threshold (CT AR) and threshold ARMA processes are constructed
and briefly discussed by Brockwell (2001). A continuous-time bilinear models (COBL) was introduced firstly
by Mohler (1973) in control theory and has popularized in time series analysis by Lebreton and Musiela (1984),
Subba Rao and Terdik (2003) and by Iglói and Terdik (1999).

The main purpose of this paper is, on hand, to generalize the time-invariant COBL model proposed by Iglói and
Terdik (1999) to time-varying one and on other hand, to extend the results by Lebreton and Musiela (1984) in
time domain to frequency domain. So, in the next section, we present a powerful frame for studying the nonlinear
S DE in terms of their transfer function. This approach allows us to distinguish between linear and nonlinear and
between regular and singular solutions. Section 3, describes the COBL equation with respect to its evolutionary
(time-dependent) transfer function, so in Section 4 we use this representation to give sufficient and necessary
conditions ensuring the existence of second-order regular solutions. In section 5, an exact expression for the
covariance function and the spectral density are given and it is shown that the second-order structure is the same
as a CARMA process with time-varying coefficients. This result, we then conduct to investigate the third-order
cumulants and showing that the bispectrum is zero if the process is linear. In Section 6, we conclude and discuss
possible extensions.

2. Wiener’s Chaos Representation

Let (ϵ(t))t≥0 be a real Brownian motion defined on some filtered space (Ω,A, (At)t≥0 , P) with associated spectral
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representation ϵ(t) =
∫
R

eitλ − 1
iλ

dZ(λ), where dZ(λ) is an orthogonal complex-valued stochastic measure on R

with zero mean, E
{
|dZ(λ)|2

}
= dF(λ) =

dλ
2π

and uniquely determined by Z([a, b[) =
1

2π

∫
R

e−iλa − e−iλb

iλ
dϵ (λ),

for all −∞ < a < b < +∞. So the process (Z([0, t[))t>0 is also a Brownian motion. Consider the Hilbert space
H = L2(R,BR, F) of the complex squared integrable functions f satisfying f (λ) = f (−λ) for any λ ∈ R where f (λ)
denotes the complex conjugate of f (λ). For any n ≥ 1, we associated three real Hilbert spaces based onH . The first
is Hn = H⊗n the n-fold tensor product of H endowed by the inner product < f , f >=

∫
Rn f (λ(n)) f (λ(n))dF(λ(n))

where λ(n) = (λ1, λ2, ..., λn) ∈ Rn, with λ(0) = 0, dF(λ(n)) =
n∏

i=1
dF(λi) and f (λ(n)) = f (−λ(n)) such that ∥ f ∥2 =∫

Rn

∣∣∣ f (λ(n))
∣∣∣2 dF(λ(n)) < ∞. The second one is Ĥn = H⊕n ⊂ Hn the n−fold symmetrized tensor product of H

defined by f ∈ Ĥn if and only if f is invariant under permutation of their arguments i.e., f (λ(n)) = S ym{ f (λ(n))}
where S ym

{
f (λ(n))

}
= f̃ (λ(n)) = 1

n!
∑

p∈Pn

f (λ(p(n))), Pn denotes the group of all permutations of the set {1, 2, ..., n},

and we endowed Ĥn with the inner product < f , f >⊕= n! < f , f > for f , f ∈ Ĥn. The last space is called

Fock-space over H denoted by ℑ(H) defined by ℑ(H) =
∞⊕

r=0

1
r!Ĥr with Ĥ0 = H0 = R (

⊕
denotes the direct

orthogonal sum) whose elements f =
(
f (λ(r)), r ≥ 0

)
fulfilled the condition

∥∥∥f
∥∥∥2
=

∑
r≥0

1
r!

∫
Rr

∣∣∣ f (λ(r))
∣∣∣2 dF(λ(r)) < ∞. (2.1)

Let ℑ = ℑ(ϵ) := σ(ϵ(t), t ≥ 0) (resp ℑ≤t(ϵ) := σ(ϵ(s), s ≤ t)) be the σ-algebra generated by (ϵ(t))t≥0 (resp.
generated by ϵ(s) up to time t) and let L2(ℑ) = L2(R,ℑ, P) be the real Hilbert space of nonlinear L2−functional of
(ϵ(t))t≥0. It is well known (see Major (1981) and Bibi (2006) ) that L2(ℑ) is isometrically isomorphic to Fock-space
ℑ(H), so, for any random process (X(t))t∈R (not necessary stationary) of L2(ℑ) admits the so-called Wiener-Itô
orthogonal representation

X(t) = ft(0) +
∑
r≥1

1
r!

∫
Rr

eitλ(r) ft(λ(r))dZ(λ(r)) (2.2)

where λ(r) =
r∑

i=1
λi and the integrals are the multiple Wiener-Itô stochastic integrals with respect to the stochastic

measure dZ (λ), ft(0) = E{X(t)}, dZ(λ(r)) =
r∏

i=1
dZ(λi) and f (λ(r)) ∈ Ĥr are referred as the r − th evolutionary

transfer function of (X(t))t∈R, uniquely determined and fulfill the condition
∑
r≥0

1
r!

∫
Rr

∣∣∣ ft(λ(r))
∣∣∣2 dF(λ(r)) < ∞. As a

property of the representation (2.2) is that for any ft ∈ Hn and fs ∈ Hm, we have

E
{∫

Rn
ft(λ(n))dZ(λ(n))

∫
Rm

fs(λ(m))dZ(λ(m))
}
= δm

n n!
∫
Rn

f̃t(λ(n)) f̃s(λ(n))dF(λ(n)) (2.3)

where δm
n is the delta function. This means that the spaces Ĥn are orthogonal. Two interesting properties related

to the multiple Wiener-Itô stochastic integrals which is important for future use are the diagram and Itô formulas
summarized in the following lemma due to Dobrushin (1979).

Lemma 2.1 Let (φi)1≤i≤k be an orthonormal system in H ,
(
n j

)
1≤ j≤k

is a sequence of positive integers such that

n = n1+ ...+nk and let h j be the j− th Hermite polynomial with highest coefficient 1, i.e., h j (x) = (−1) je
x2
2

d j

dx j e−
x2
2 .

Then,

1. The Itô’s formula states that

k∏
j=1

hn j

(∫
R
φ j(λ)dZ(λ)

)
=

∫
Rn

k∏
j=1

n j∏
i=1

φ j(λn( j−1)+i)dZ(λ(n)) =
∫
Rn

S ym


n∏

j=1

φ j(λ j)

 dZ(λ(n))
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2. The diagram formulas state that for any f∈H1 and g∈Hn we have∫
R

f (λ)dZ(λ)
∫
Rn

g
(
λ(n)

)
dZ(λ(n)) =

∫
Rn+1

g
(
λ(n)

)
f (λn+1) dZ(λ(n+1))

+

n∑
k=1

∫
Rn−1

∫
R

g
(
λ(n)

)
f (λk)dF (λk) dZ(λ(n\k))

where dZ(λ(n\k)) = dZ (λ1) ...dZ (λk−1) .dZ (λk+1) ...dZ (λn).

Remark 2.2 For any n ≥ 0, letKn be the closed vector subspace of L2(ℑ) spanned by {hn(X), X ∈ ℑ : Var (X) = 1}
with K0 =

{
Ct}. Then, it can be shown that the subspaces Kn are mutually orthogonal and L2(ℑ) =

∞⊕
n=0
Kn (see

Peccati and Taqqu (2011)). Noting that the condition Var (X) = 1 in the definition of the subspaces (Kn)n≥0 is
necessary. Indeed, h2(X) = X2 − 1 is orthogonal to h0(X) = Ct, if and only if E{X2 − 1} = 0.

Noting here that the representation (2.2) is referred as regular solution if ℑ≤t(X) ⊂ ℑ≤t(ϵ) i.e., the process X(t)
depends only on the past of the noise ϵ(t). So, a stochastic process (X(t))t∈R having a representation (2.2) has a
regular (or also causal) second-order solution if for all t ∈ R and every r ∈ N, the evolutionary transfer functions

ft(λ(r)) satisfies Szego’s condition, i.e., ∀t ∈ R:
∫
Rr

1

1 +
∥∥∥λ(r)

∥∥∥2 log
(∣∣∣ ft(λ(r))

∣∣∣) dF(λ(r)) > −∞. (see Ibragimov and

Rozanov (1978) for further discussions).

In the following section, a class of non linear diffusion processes admitting the representation (2.2) will be inves-
tigated.

3. Evolutionary Transfer Functions of Time-varying COBL Processes

The representation (2.2) can be describe general nonlinear stochastic differential equation (S DE) with a great
accuracy and can be enlarged to include the processes (X(t))t∈R solving the following S DE

dX(t) = f
(
X(s)(t), ϵ(r)(t), 0 ≤ s ≤ p, 0 ≤ r ≤ q

)
dt + dϵ(t) (3.1)

in which the superscript (k) denotes the k−fold differentiation with respect to t and some measurable function f .
The derivative ϵ( j)(t), j > 0 do not exist in usual sense, hence it can be interpret in the Itô sense. The main objective
here is to derive the evolutionary transfer functions system associated with some subclass of (3.1) and we establish
necessary and sufficient conditions ensuring the existence of second−order regular solutions. More precisely, we
shall restrict ourself to the diffusion processes (X(t))t∈R generated by the following S DE,

dX(t) = (α(t)X(t) + µ(t)) dt + (γ(t)X(t) + β(t)) dϵ(t), t ≥ 0, X(0) = X0 (3.2)

in which α(t), µ(t), γ(t) and β(t) are measurable deterministic functions to the conditions ∀t ≥ 0, α(t) , 0,
γ(t)µ(t) , α(t)β(t) and the following conditions: ∀T > 0,

∫ T
0 |α(t)| dt < ∞ and

∫ T
0 |µ(t)| dt < ∞,

∫ T
0 |γ(t)|2 dt < ∞,∫ T

0 |β(t)|2 dt < ∞.The initial state X(0) is a random variable, defined on (Ω,A, P), independent of ϵ such that
E {X(0)} = m(0) and Var {X(0)} = K(0). Equation (3.2) is called continuous−time bilinear (COBL (1, 1)) (resp.
linear) S DE whenever γ(t) , 0 (resp. γ(t) = 0) for all t > 0, in other words, when the solution is not Gaussian or
it is.

S DE given by (3.2) encompasses many commonly used models in the literature. Some specific examples among
others are:

1. COGARCH(1, 1): This classes of processes is defined as a S DE by dX (t) = σ (t) dB1(t) with dσ2 (t) =
θ
(
γ − σ2 (t)

)
dt+ρσ2 (t) dB2 (t), t > 0 where B1 and B2 are independent Brownian motions. So, the stochastic

volatility equation may be regarded as particular case of (3.2) by assuming constant the functions α(t), µ(t),
γ(t) and β(t) with β(t) = 0 for all t ≥ 0. (see Kluppelberg et al. (2004) and the reference therein).

2. CAR(1): This classes of S DE may be obtained by assuming γ (t) = 0 for all t ≥ 0. (see Brockwell (2001)
and the reference therein)
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3. Gaussian Ornstein-Uhlenbeck (GOU) process: The GOU process is defined as dX(t) = γ (µ − X(t)) dt +
βdϵ(t), t ≥ 0. So it can be obtained from (3.2) by assuming constant the functions α(t), µ(t), γ(t) and β(t)
with γ(t) = 0 for all t ≥ 0. (see Brockwell (2001) and the reference therein).

The solution of equation (3.2) may be obtained according to :

3.1 The Time Domain Approach

The existence and uniqueness of the Itô solution process (X(t))t≥0 of equation (3.2) in time domain is ensured by
the general results on stochastic differential equations and under the above assumptions (see Lebreton and Musiela
(1984))

X(t) = φ(t)

X(0) +

t∫
0

φ−1(s) (µ(s) − γ (s) β (s)) ds +

t∫
0

φ−1(s)β (s) dϵ(s)


where φ(t) = exp

 t∫
0

(
α(s) − 1

2γ
2 (s)

)
ds +

t∫
0
γ (s) dϵ (s)

, t ≥ 0, which reduce to that given by Iglói and Terdik

(1999) in constant coefficients case and provide a solution for non-stationary Gaussian Ornstein-Uhlenbeck process
corresponding to the case when γ (s) = 0 for all s. In this case we obtain

X(t) = ψ (t)

X(0) +

t∫
0

φ−1(s)µ(s)ds +

t∫
0

φ−1(s)β (s) dϵ(s)

 (3.3)

where (ψ (t))t≥0 is the mean function of (φ(t))t≥0 i.e., ψ (t) = exp

 t∫
0
α(s)ds

, t ≥ 0 and the stochastic integral on

the right-hand side of (3.3) has an expected value zero and by (2.3) we obtain

E


t∫

0

f (s) dϵ(s)

t∫
0

g(s′)dϵ(s′)

 =


t∫
0

f (s) g(s)d(s)


for any squared integrable functions f and g with respect to Lebesgue measure on [0, t].

3.2 The Frequency Domain Approach

In frequency domain, we have

Theorem 3.1

Assume that the process (X(t))t≥0 generated by the S DE (3.2) has a regular second-order solution. Then the
evolutionary symmetrized transfer functions ft(λ(r)), (t, r) ∈ R × N of this solution are given by symmetrization of
the following differential equations of order 1,

f (1)
t (λ(r)) =

{
α(t) ft(0) + µ(t), if r = 0(
α(t) − iλ(r)

)
ft(λ(r)) + r

(
γ(t) ft(λ(r−1)) + δ{r=1}β(t)

)
, if r ≥ 1 (3.4)

Proof. Suppose that the system (3.2) has a regular second-order solution of the form (2.2) with evolutionary sym-
metrized transfer functions ft(λ(r)), (t, r) ∈ R×N, then by putting the solution (2.2) into (3.2) and using the diagram
formula we obtain
X(t)dϵ(t)

=

 ft(0) +
∞∑

r=1

1
r!

∫
Rr

ft(λ(r))eitλ(r) dZ(λ(r))


∫
R

eitλdZ(λ)

=

∫
R

ft(0)eitλdZ(λ)

+

∞∑
r=1

1
r!

{∫
Rr+1

ft(λ(r))eitλ(r+1) dZ(λ(r+1)) + r
∫
Rr−1

eitλ(r−1)

(∫
R

ft(λ(r))dF(λr)
)

dZ(λ(r−1))
}
,
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since a regular solution does not depends on ϵ(s), s > t, and depends on ϵ(t) linearly, then the last term in above
expression is equal to 0, and hence, the recursion (3.4) follows by identifying the r − th order evolutionary transfer
functions.�
Remark 3.2 The existence and uniqueness of the evolutionary symmetrized transfer functions ft(λ(r)), (t, r) ∈ R×N
of this solution is ensured by general results on linear ordinary differential equations (see, Kelly (2010), ch. 1) so,

ft(λ(r)) =


φt (0)

 f0(0) +
t∫

0
φ−1

s (0) µ(s)ds
 if r = 0

φt

(
λ(r)

)  f0(λ(r)) + r
t∫

0
φ−1

s

(
λ(r)

) (
γ(s) fs(λ(r−1)) + δ{r=1}β(s)

)
ds

 if r ≥ 1
(3.5)

where φt

(
λ(r)

)
= exp

 t∫
0

(
α(s) − iλ(r)

)
ds

 .
Remark 3.3 When α(t), µ(t), γ(t) and β(t) are constant, then the recursion (3.4) reduces to

f (0) = −µ
α
, and f (λ(r)) = r

(
iλ(r) − α

)−1 (
γ f (λ(r−1)) + δ{r=1}β

)
if r ≥ 1

or equivalently f (λ(r)) = r!γr−1
(
β − µ

α
γ
) r∏

j=1

(
iλ( j) − α

)−1
and the symmetrized version can be rewritten as S ym

{
f (λ(r))

}
= (µγ − αβ) γr−1

+∞∫
0

exp {αλ}
r∏

j=1

1 − exp
{
−iλλ j

}
iλ j

dλ.

Remark 3.4 Under the coditions specified in Remark 3.3 and when γ = 0, it is not difficult to see that (X(t))t≥0 has
a unique strictly stationary solution given by X(t) = f (0) +

∫
R

g(t − u)dϵ(u) where
∫
R

g(u)e−iλudu = β
iλ−α , λ ∈ R.

4. Condition for the Existence of Regular Solutions

In Theorem 3.1 a first-order ordinary differential equation is derived for evolutionary transfer function of S DE
(3.2). In order that these transfer function define a second-order regular solutions, we need to check that its belong
to ℑ(H) and satisfies the condition (2.1). For this purpose, let L∞ (resp. L∞ ⊗ L∞) be the Banach space of
infinite dimensional vectors of essentially bounded complex functions on C (resp. on C2) and denote by f(λ(r)) =(
ft(λ(r)), t ∈ R

) ∈ L∞ for any λ(r) ∈ Rr. Define the following bounded operators α = diag {α(t)}, γ = diag {γ(t)},
µ = diag {µ(t)} and β = diag {β(t)} where ”diag” denotes the diagonal operator induced by a function in L∞, i.e.,
(αv)t = α(t)v(t) for all v = (v(t), t ∈ R) ∈ L∞. Moreover, let D (resp. I) be the differentiation (with respect to
t) (resp. identity) operator on L∞, i.e., (Dv)t = v(1)(t),t ∈ R (resp (Iv)t = v(t)) for all v ∈ L∞ with derivable
components and set P (z) = Iz − Φ with Φ = α − D (see Dunford and Schwartz, 1963 for further details). With
this notation, the functions (3.4) may be rewritten as f(1) (0) = αf (0) + µ1, f(1) (λ(r)

)
=

(
α − iλ(r)I

)
f
(
λ(r)

)
+

r
(
γf

(
λ(r−1)

)
+ δ{r=1}β1

)
, or equivalently

f (0) = P−1 (0) µ1, f (λ) = P−1 (iλ)
(
γf (0) + β1

)
, f

(
λ(r)

)
= rP−1

(
iλ(r)

)
γf

(
λ(r−1)

)
, r ≥ 2. (4.1)

However, it is easily follows from (2.2) that the necessary and sufficient condition for the existence of second-

order regular solution of SDE (3.2) is that the components of
∑
r≥0

1
r!

∫
Rr f̃

(
λ(r)

) ⊗ f̃
(
λ(r)

)
dF

(
λ(r)

)
be finite where

f̃
(
λ(r)

)
= S ym

{
f
(
λ(r)

)}
. Thus we have

Proposition 4.1 The S DE (3.2) has a regular solution if and only if the following two conditions hold true.

C1. The spectrum of the operator Φ lie in C = {z ∈ C : Re(z) < 0}.

C2. The spectrum of the operator
(
I ⊗ Φ + Φ ⊗ I + γ⊗2

)−1 (
γ⊗2 − Φ ⊗ I − I ⊗ Φ

)
lie in C.

Moreover, the solution process is unique, bounded up to the second order moments and its infinite dimensional
evolutionary transfer functions f

(
λ(r)

)
satisfy the recursion (4.1) is such that

{
r!ft

(
λ(r)

)
, r ∈ N

}
∈ ℑ(H).
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To show the Proposition 4.1, we need the following lemmas

Lemma 4.2 Under the condition C1 of Proposition 4.1 the functions ft(λ(r)) and f̃t(λ(r)) are well defined.

Proof. First we define the tensor product of two bounded linear operators A and B on L∞ by ((A ⊗ B) (u ⊗ v))t,s =

(Au)t . (Av)s for all u, v ∈ L∞ and note that under C1, the operator P(z) has an analytic inverse. For any r ∈ N,
let

∥∥∥f (r)
∥∥∥ be the norm of the vector f

(
λ(r)

)
, then

∥∥∥f (0)
∥∥∥ ≤ ∥∥∥P−1

∥∥∥ ∥∥∥∥µ∥∥∥∥ , ∥∥∥f (1)
∥∥∥ ≤ ∥∥∥P−1

∥∥∥ ∥∥∥f
∥∥∥ where f = γf (0) +

β1 and
∥∥∥f (r)

∥∥∥ ≤ r!
∥∥∥∥P−1γ

∥∥∥∥r−1 ∥∥∥f
∥∥∥ for r ≥ 2. This mean that

(
f
(
λ(r)

)
, r ≥ 0

)
is well defined and f

(
λ(r)

) ∈ L∞
for all r ∈ N. Since

∥∥∥S ymf (r)
∥∥∥ ≤ ∥∥∥f (r)

∥∥∥, then
(̃
f
(
λ(r)

)
, r ≥ 0

)
is also well defined. Now we prove that the

coordinates ft
(
λ(r)

)
of the vector f

(
λ(r)

)
belong to ℑ(H) for all (t, n) ∈ R × N or more generally, the integral

υt,s (r) = 1
r!

∫
Rr

f̃t
(
λ(r)

)
f̃s

(
λ(r)

)
dF(λ(r)) (which is the r − th term of Cov(Xt, Xs)) exist and finite. Indeed, υt,s (r) ≤

1
r!

∫
Rr

∣∣∣∣ f̃t (λ(r)
)∣∣∣∣ ∣∣∣∣∣ f̃s

(
λ(r)

)∣∣∣∣∣ dF(λ(r)) ≤
 sup
λ(r)∈Rr

∥∥∥f
(
λ(r)

)∥∥∥2

. Since υt,t (r) = 1
r!

∥∥∥∥̃f
(
λ(r)

)∥∥∥∥2
, then the functions ft

(
λ(r)

) ∈ ℑ(H)

for all (t, r) ∈ R × N.�
In the following lemma an explicit formula for the quantities υt,s (r) is given.

Lemma 4.3 Let V(r) = (vt,s(r), t, s ∈ R) = 1
r!

∫
Rr

f̃(λ(r)) ⊗ f̃(λ(r))dF(λ(r), then under the condition C1 of Proposition

4.1 we have V(r) = 1
r!

∫
Rr

f̃(λ(r)) ⊗ f̃(λ(r))dF(λ(r) = Gr−1V(1), where G = − (Φ ⊗ I + I ⊗ Φ)−1 γ⊗2 and V(1) =

− (Φ ⊗ I + I ⊗ Φ)−1 f⊗2.

Proof. First we note that V(r) ∈ L∞ ⊗ L∞ for all r ≥ 0. On the other hand from (4.1) we obtain for r = 1,

V(1) =
∫
R

f(λ) ⊗ f(λ)
dλ
2π
=

∫
R

P−1(iλ) ⊗ P−1(−iλ)
dλ
2π

f⊗2,

so by the residue theorem V(1) reduces to − (Φ ⊗ I + I ⊗ Φ)−1 f⊗2. For r = 2, we obtain

V(2) =
1
2!

∫
R2

f̃(λ(2)) ⊗ f̃(λ(2))
dλ1dλ2

(2π)2

=
1
2!

∫
R2

P−1(iλ(2))γ ⊗ P−1(−iλ(2))γ{P
−1(iλ1) ⊗ P−1(−iλ1) + P−1(iλ1) ⊗ P−1(−iλ2)

+ P−1(iλ2) ⊗ P−1(−iλ1) + P−1(iλ2) ⊗ P−1(−iλ2)}dλ1dλ2

(2π)2 f⊗2

=
1
2!

∫
R2

P−1(iλ(2))γ ⊗ P−1(−iλ(2))γ
{
P−1(iλ1) ⊗ P−1(−iλ1) + P−1(iλ2) ⊗ P−1(−iλ2)

} dλ1dλ2

(2π)2 f⊗2

= GV(1).

Now, assume that the Lemma 4.3 is valid up to r − 1. Then using the identity f̃(λ(r−1)) = 1
r
∑r

k=1̃f(λ(r\k)), we obtain
after some tedious computations
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1
r!

∫
Rr

f̃(λ(r)) ⊗ f̃(λ(r))
dλ(r)

(2π)r

=
1
r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γr̃f(λ(r−1)) ⊗ r̃f(λ(r−1))
dλ(r)

(2π)r

=
1
r!

r∑
k,l=1

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ̃f(λ(r\l)) ⊗ f̃(λ(r\k))
dλ(r)

(2π)r

=
1
r!

r∑
k=1

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ̃f(λ(r\k)) ⊗ f̃(λ(r\k))
dλ(r)

(2π)r

+
1
r!

r∑
k,l

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ̃f(λ(r\k)) ⊗ f̃(λ(r\l))
dλ(r)

(2π)r

=
r
r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ̃f(λ(r−1)) ⊗ f̃(λ(r−1))
dλ(r)

(2π)r

+
r(r − 1)

r!

∫
Rr

P−1(iλ(r))γ ⊗ P−1(−iλ(r))γ̃f(λ(r−1)) ⊗ f̃(λ(r\r−1))
dλ(r)

(2π)r .

Now, since the last term is zero (See Terdik (1990)), the Lemma 4.3 follows.�
Proof. of Proposition 4.1. The proof follows essentially from the fact that if the spectrum of any operator A lies in
C = {z ∈ C : Re(z) < 0}, then the spectrum of (I − A)−1 (I + A) lies in {|z| ∈ C : z < 1}. Hence, for any r ≥ 1,V(r)
converges to zero at an exponential rate as r → ∞, so

(
r!ft

(
λ(r)

)
, r ≥ 0

)
∈ ℑ(H) for all t ∈ R and their components

constitute however a regular second-order solution for S DE (3.2).�
Remark 4.4 The assumption C1 ensure also that the CAR part has a regular solution, however, C2 is the infinite
dimensional generalization of the condition that we found in literature of differential equations systems ( see Kelly
(2010) chap. 6).

Remark 4.5 It is worth noting that the condition C2 in Proposition 4.1, may be replaced by

C0. The spectrum of the operator

Ψ =

∫
R

(P(iλ) ⊗ P(−iλ))−1 γ⊗2dF(λ)

lies in C = {z ∈ C : Re(z) < 0}.

Though the conditions C1 and C2 (or equivalently C0) of Proposition 4.1 could be used as a sufficient condition
for the existence of regular solution of S DE (3.2), they are of little use in practice because they are based on the
properties of infinite dimentional operators. Hence, some simple sufficient conditions can be given. Indeed, define
Pt (z) = z − α (t) and Rt (z) = γ(t)z, it can be seen that P (z) 1 = (Pt (z))t∈R and R (z) 1 = (Rt (z))t∈R. So,

Proposition 4.6 A sufficient condition for the S DE (3.2) to have a second-order regular solution is that the follow-
ing two conditions hold true

C′1. Pt(z) , 0 for all t ∈ R and z ∈ C.

C′2. Υ =
∫
R

sup
t
|Rt (1) /Pt(iλ)|2 dλ < 1

Proof. The condition C′1 implie the analycity of P−1 (z), so for all u, v ∈ L∞, the equation P∗ (z) u = v has
a solution. On the other hand, the condition C′2 ensure the convergence of the series V∞ =

∑
r≥1

Gr−1 (in the
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operator norm) or equivalently by remark 4.5, Ψ (1 ⊗ 1) ≤ Υ. Indeed, for any υ ∈ ℓ1 and V ∈ ℓ∞ ⊗ ℓ∞ let
⟨υ ⊗ υ,V⟩ =

∫
R

∫
RυsυtVs,tdtds, G(z) = P−1(z)R(z) and set k(z) = sup

t
|Rt (1) /Pt(z)|2. Then we have

⟨υ ⊗ υ, (G(z) ⊗G(z)) (1 ⊗ 1)⟩ = |⟨υ,G(z)1⟩|2 =
∣∣∣∣⟨P∗(z)u, P−1(z)R(1)1

⟩∣∣∣∣2 = |⟨u,R(1)1⟩|2

=

∣∣∣∣∣∫
R

utRt(1)dt
∣∣∣∣∣2 ≤ ∣∣∣∣∣∫

R
utPt(z)dt

∣∣∣∣∣2 k(z) = ⟨u, P(z)1⟩2 k(z)

= ⟨υ, 1⟩2 k(z) = ⟨υ ⊗ υ, 1 ⊗ 1⟩ k(z).

The result follows by integrating this inequality along R for z = iλ.�
Example 4.1 Consider the simplest COBL(1, 1) defined by

dX(t) = α(t)X(t)dt + γ(t)X(t)dϵ(t), t ≥ 0, X(0) = X0 (4.2)

Let a = sup
t∈R
|α(t)| and γ = sup

t∈R
|Rt(1)|2. Then by the residue theorem we have

∫
R

sup
t

|Rt(1)|2

|iλ − α(t)|2
dF(λ) ≤ γ

2π

∫
R

1
λ2 − a2 dλ =

γ

2a
.

So the sufficient condition for (4.2) to has a regular solution is that γ < 2a.

5. Applications

In this section, the general results of previous sections are particularized for the computation of the first and second-
order moments totally describes the statistical properties of a Gaussian processes.

5.1 Second order structure of COBL (1, 1) processes

Proposition 5.1 Under the conditions of Proposition 4.6 we have

E {X(t)} = φt (0)

 f0(0) +

t∫
0

φ−1
s (0) µ(s)ds

 and Cov(X(t), X(s)) = φt (0)φ−1
s (0) K(s), t ≥ s ≥ 0

where K(t) = ψt

K(0) +
t∫

0
ψ−1

s (γ(s) fs(0) + β(s))2 ds
 with ψt = exp

 t∫
0

(
2α(s) + γ2(s)

)
ds


Proof. From the representation (2.2) we have E {X(t)} = ft(0), so the expression of E {X(t)} follows from the first
equation of the recursion (3.5). On the other hand, for any t ≥ 0, let X(t) − ft(0) = φt (0) Y(t) where

Y(t) =
∑
r≥1

∫
Rr

 f0(λ(r)) + r

t∫
0

φ−1
s

(
λ(r)

) (
γ(s) fs(λ(r−1)) + δ{r=1}β(s)

)
ds

 dZ(λ(r)),

since K(t) = Cov(X(t), X(t)) = φ2
t (0) Cov(Y(t),Y(t)), then we have

dK(t) = 2α(t)φ2
t (0) Cov(Y(t),Y(t))dt + φ2

t (0) dCov(Y(t),Y(t))

where
dCov(Y(t),Y(t)) = φ−2

t (γ(t) ft(0) + β(t))2 dt + φ−2
t γ2(t)dt

which implies the differential equation dK(t) =
(
2α(t) + γ2(t)

)
K(t)dt + (γ(t) ft(0) + β(t))2 dt and its solution given

by K(t) = ψt

K(0) +
t∫

0
ψ−1

s (γ(s) fs(0) + β(s))2 ds
 with ψt = exp

 t∫
0

(
2α(s) + γ2(s)

)
ds

 .�
Remark 5.2 In stationary case, i.e., when the functions α(.), µ(.), γ(.) and β(.) are constants, we have

E {X(t)} = −µ
α
,K(0) = Var {X(t)} = (αβ − µγ)2

α2
∣∣∣2α + γ2

∣∣∣ and Cov(X(t), X(t + h)) = K(0)eα|h|, h ∈ R.
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The result of the Proposition 5.1 shows that the covariance function of COBL (1, 1) processes defined by (3.2) has
the same form as that of a CAR (1). So we have the following result due to Lebreton and Musiela (1984).

Proposition 5.3 There exists a wide-sense Wiener process (ϵ∗(t), t ≥ 0) uncorrelated with X(0) such that (X(t), t ≥ 0)
admits the CAR (1) representation , i.e.,

dX(t) = (α(t)X(t) + µ(t)) dt +
{
γ2(t)K(t) + (γ(t)m(t) + β(t))2

}1/2
dϵ∗(t), t ≥ 0, X(0) = X0.

Remark 5.4 To draw the conclusion that the second-order properties of COBL (1, 1) cannot be distinguished from
an CAR (1) process. This makes it necessary for us to look into third-order cumulant in order to distinguish the
nonlinear random processes.

5.2 Third-order structure of COBL (1, 1) processes

For the sake of convenience and simplicity, we shall assume constant the coefficients α(t), µ(t), γ(t), β(t) and µ(t) =
0 in Equation (3.2). Moreover, we assume the process solution is given by the Wiener-Itô representation in the form

X(t) =
+∞∑
r=1

∫
Rr g

(
λ(r)

)
eitλ(r) dZ

(
λ(r)

)
. Using the above representation, we can obtain the following approximation

X(t) =
∫
R

g (λ1) eitλ1 dZ (λ1) +
∫
R2

g
(
λ(2)

)
eitλ(2) dZ

(
λ(2)

)
+ ξ(t) = X(1)(t) + X(2)(t) + ξ(t),

where ξ(t) is a second-order stationary process which it is orthogonal to the first two terms. The transfer functions
g(λ1), g

(
λ(2)

)
are given by g(λ1) = (iλ1 − α)−1β, g(λ1, λ2) = γ (i(λ1 + λ2) − α)−1 (iλ1 − α)−1 β. It can be shown that

CX(s, u) = E {X(t)X(t + s)X(t + u)}
=

[
E

{
X(1)(t)X(1)(t + s)X(2)(t + u)

}
+ E

{
X(1)(t)X(2)(t + s)X(1)(t + u)

}]
+

[
E

{
X(2)(t)X(1)(t + s)X(1)(t + u)

}]
+ O (1) .

We calculate E
{
X(1)(t)X(1)(t + s)X(2)(t + u)

}
, and the other terms can be obtained by symmetry. First we observe

that

E
{
X(1)(t)X(1)(t + s)X(2)(t + u)

}
= E

[∫
R2

g(λ1)g(λ2)eitλ1+i(t+s)λ2 dZ(λ(2)) ×
∫
R2

g(λ3, λ4)ei(t+u)(λ3+λ4)dZ(λ3, λ4)
]

= 2!
∫
R2

S ym
{
g(λ1)g(λ2)eitλ1+i(t+s)λ2

}
S ym

{
g(λ1, λ2)ei(t+u)(λ1+λ2)}dF

(
λ(2)

)
= 2

∫
R2
γg(λ1)g(λ2)g(−λ1 − λ2)

1
β

S ym {g(−λ1)} S ym
{
eisλ1

}
e−iu(λ1+λ2) dλ1λ2

(2π)2 .

We calculate E
{
X(1)(t)X(2)(t + s)X(1)(t + u)

}
,we get

E
{
X(1)(t)X(2)(t + s)X(1)(t + u)

}
= 2

∫
R2
γg(λ1)g(λ2)g(−λ1 − λ2)

1
β

S ym {g(−λ1)} S ym
{
eiuλ1

}
e−s(λ1+λ2) dλ1λ2

(2π)2 .

It remains to compute E
{
X(2)(t)X(1)(t + s)X(1)(t + u)

}
, we have
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E
{
X(2)(t)X(1)(t + s)X(1)(t + u)

}
= E

[∫
R2

g(λ1, λ2)eit(λ1+λ2)Z(dλ(2)) ×
∫
R2

g(λ3)g(λ4)ei(t+s)λ3+i(t+u)λ4 dZ(λ3, dλ4)
]

= 2!
∫
R2

S ym
{
g(λ1, λ2)eit(λ1+λ2)

}
S ym

{
g(λ1)g(λ2)ei(t+s)λ1+i(t+u)λ2

}
dF

(
λ(2)

)
= 2

∫
R2
γg(λ1 + λ2)

1
β

S ym {g(λ1)} g(−λ1)g(−λ2)S ym
{
e−isλ1−iuλ2

} dλ1λ2

(2π)2 .

Hence

CX(s, u) = E {X(t)X(t + s)X(t + u)} = 2
γ

β

∫
R2

g(λ1)g(λ2)g(−λ1 − λ2)S ym {g(−λ1)}

×S ym
[
ei(s−u)λ1−uλ2 + eei(u−s)λ1−sλ2

+ ei(sλ1+uλ2)
] dλ1λ2

(2π)2 .

By taking Fourier transforms (omitting the terms of O(1)), the bispectral density function f (λ1, λ2) can be shown
to be

f (λ1, λ2) = 2
γ

β

1
(2π)2 {S (λ1λ2) + S (λ2,−λ1 − λ2) + S (λ1,−λ1 − λ2)}

where S (λ1, λ2) = g(λ1)g(λ2)g(−λ1 − λ2)S ym {g(−λ1)}. It is clear that the bispectrum is zero for all frequencies λ1
and λ1 if and only if the process is linear(γ = 0) (and Gaussian).

6. Conclusion

In this paper, we have extended some results of Terdik (1990) on time-invariant bilinear S DE to time-varying
one. So, we have analyzed the probabilistic structure of general nonlinear continuous-time processes via Wiener’s
chaos. In particular, necessary and sufficient conditions for the existence of regular second-order solutions are
given for a COBL(1, 1) driven by a standard Brownian motion with explicit expression in terms of higher-order
evolutionary transfer functions. The main advantage of the frequency approach is that beside its adaptation with
nonlinear effects, it preserves the mathematically tractable CARMA structure. In particular, it was seen in Section
4, that the spectrum (second-order properties) does not generally provide sufficient information about the structure
of the process. Hence, it is necessary to look at third-order cummulant in order to discriminate the COBL(1, 1) from
a CAR(1) process which seem to be too difficult and tedious. However, specific tools, for instance wavelet methods
as an alternative to Fourier methods should be adapted to analysis the general bilinear S DE with time-varying
coefficients. We leave this important issue for future researches.
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Stationarity and second order behaviour. J. Appl. Probab. 41, 601-622.
http://dx.doi.org/10.1239/jap/1091543413

Lebreton, A., Musiela. M. (1984). A study of one-dimensional bilinear differential model for stochastic processes.
probaability and mathemtical statistics. Vol.4, Fase.1, 91-107.
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