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Abstract

When measuring concentration of chemical compounds, we often have to deal with a situation when the resulting
values are found below the detection limit of the determination method. In order to statistically evaluate such
data, the newly developed method of maximum likelihood considering multiply left-censored samples is applied.
This paper is motivated by the need to have valid inference concerning the equality of the means of two log-
normal distributions that are frequently encountered in environmental and exposure data analysis. As a model
distribution of measured environmental and/or biomedical data, log-normal distribution is considered. Moreover,
using the asymptotic properties of maximum likelihood estimates, concentrations of chemicals can be compared.
A test procedure for comparing the means of two independent log-normal populations in the presence of multiply
censored data is also introduced and evaluated. Asymptotic chi-square test is used in the proposed test procedure.
Worked example is given illustrating the use of the methods provided utilizing a computer program written in the
R language. A simulation study was performed to examine the power and the size of the proposed test procedure
introduced in this article.

Keywords: multiple detection limits, normal and log-normal distributions, maximum likelihood estimators, like-
lihood ratio test

1. Introduction

Many environmental data sets are characterized by a small number of high concentrations and a large number of
low concentrations and are often right-skewed (Shumway et al., 1989). The log-normal distribution is positively
skewed and hence can incorporate the few unusually high measurements of such environmental data in its long
right-hand tail. For this reason the log-normal distribution is often applied to environmental data (Gilbert, 1987).
While analyzing environmental and exposure data, a very common phenomenon is the occurrence of non-detects,
i.e., observations below an analytical detection limit (DL), resulting in Type I singly left censored samples. De-
tection limit is the lowest concentration level that can be determined to be statistically different from a blank. The
presence of observations below the DL significantly complicates the data analysis. Faced with such data, several
strategies have been recommended for data analysis. One approach consists of replacing the below DL values
with a constant such as DL

2 , and using methods available for complete samples. It is easy to demonstrate that the
conclusions resulting from this routine practice can be seriously flawed; in fact, the conclusions may depend on the
substitution value used for replacing sample values below the DL. In general, censoring means that observations
at one or both tails are not available. Left-censored data commonly arise in environmental contexts. Left-censored
data (data reported as less than detection limit) can occur when the substance or attribute being measured is either
absent or exists at such low concentrations that the substance is not present above the DL level. Data sets con-
taining left-censored observations are referred to as left-censored data. A sample is multiply censored if there are
several detection limits. When more than two distinct detection limits DL1, DL2 , ..., DLk (k ≥ 3) are reported,
the data are said to be multiply-left-censored, (USPEA 1989b). It is common to have environmental data con-
tains detection limits. Multiple censoring commonly occurs with environmental data because detection limits can
change over time (e.g., because of analytical improvements), or detection limits can depend on the type of sample
or the background matrix. Left censoring frequently arises in environmental studies due to: (1) sometimes nonde-
tect is reported because the measurement lies below a threshold set by the client or laboratory, (2) sometimes the
instrumentation registers a low signal, but the chemist decides that unpollutant environmental samples could give
a similar signal and reports nondetect instead of the observed measurement, (3) sometimes the signal produced
by the pollutant is too small for the instrumentation to discriminate from background noise, or (4) sometimes a
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signal is registered, but certain criteria that identify the compound are not met. In many environmental applica-
tions the distribution of variables such as chemical concentration, inhalation, digestion, and consumption rates are
positive and skewed to the right. Hence, censored observations occur between zero and DL. In some instances a
log transformation can provide a more natural scale to analyze such measurements. Samples to be considered in
this paper are those that are Type I single-left-censored. Suppose that a sample of n data points is given of which m
data points are non-censored (fully measured), and the remaining mc = n − m observations are left-censored with
a single detection limit DL. In such Type I censored samples DL is fixed, whereas m and mc are random.

Nondetect values can cause an especially difficult problem when the goal is to compare two different populations.
There has been a great deal of literature on the subject of the statistical inference of the parameters of normal and
log-normal populations from both fully measured and censored data. Gupta and Li (2006) developed a score test
for testing the equality of the means of two independent log-normal populations from fully measured data. Zhou et
al (1997) considered two methods for comparing the means of two independent log-normal non-censored samples.
Harris (1991) considered two parametric and two non-parametric methods for testing the equality of medians of
two independent log-normal distributions when some data are left-censored. Paul and Gary (2007) compare the
performance of several methods for statistically analyzing censored data sets when estimating the 95th percentile
and the mean of right-skewed occupational exposure data. Krishnamoorthy et al (2014) proposed tests and confi-
dence intervals for the ratio of the two means of two log-normal distributions, based on pivotal quantities involving
the maximum likelihood estimators. Other suggested methods for comparing the means of two log-normal dis-
tributions are discussed in Krishnamoorthy et al (2014, 2011, 2007, 2006, 2003). Some of these methods are
based on the generalized p-value and generalized confidence intervals, and others are based on the generalized test
variable. Aboueissa (2015) introduced a test procedure for comparing the means of two independent log- normal
populations when data is singly censored. Abdollahnezhad et al (2012) introduced a new method of test for com-
paring the means of two log- normal populations through the generalized measure of evidence to have against the
null hypothesis. Prentice (1978) developed linear rank tests with right censored data. Millard and Deverel (1988)
adapted several existing right censored non-parametric procedure so that they can be used in environmental setting
with left-censored data. Methods for the estimation of the log-normal parameters for one-sample cases where there
may exist left-censored data are discussed by El-Shaarawi (1989). Stoline (1993) extended results first suggested
by Harris (1991) and proposed a procedure for comparing medians of two independent log-normal distributions
where some data may be left-censored. Stoline (1993)used the Expectation Maximization (EM) algorithm intro-
duced by Dempster et al. (1977) to calculate the maximum likelihood estimates of population parameters µ and
σ. Other suggested methods for estimating population parameters from censored samples are discussed in Marco
(2005), Jin et al (2011), Gibbons (1994), Gleit (1985), El-Shaarawi and Esterby (1992), Elshaarawi and Dolan
(1989), Gilbert (1987) and Schneider (1986).

The purpose of this paper is to develop a parametric procedure to test the hypothesis of equal means when data
are sampled from two independent log-normal distributions utilizing multiply left-censored data sets. The EM
algorithm will be used to obtain the maximum likelihood estimates of population parameters under different hy-
potheses. To facilitate the application of this procedure, a computer program is written in the R language which
calculates the maximum likelihood estimates, and asymptotic chi-square test statistics and their p-values. A numer-
ical example is given illustrating the use of this procedure utilizing a computer program written in the R language.
A simulation study was performed to inspect the size and the power of the proposed test procedure.

2. Assumptions and Notations

Assume that there exists two random samples of n1 and n2 data values: y11, y12, ..., y1m1 , y1m1+1, ..., y1n1 and
y21, y22, ..., y2m2 , y2m2+1, ..., y2n2 taken from two independent log-normal populations LN(µ1, σ1) and LN(µ2, σ2),
respectively. Where LN(µ, σ) denotes a log-normally distributed variable y with the probability density function

f (y; µ, σ) =
1

y σ
√

2π
e−

(log y−µ)2
2σ2 , for y > 0,

where −∞ < µ < ∞ and σ > 0. For convenience, for each sample i let us assume that the first mi observations
yi1, yi2, ..., yimi are non-censored (fully measured) and the remaining mci = ni − mi observations are left-censored
for i = 1, 2. For left censored observations, it is assumed that for each sample i it is only known that yi j < LDLi j

for j = mi + 1, ..., ni (or j = 1, 2, ...,mci ) and i = 1, 2. The parameters for the ith log-normal population can be
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expressed as functions of the parameters µ and σ as:

mean: µyi = eµi+
σ2

i
2

medain: Myi = eµi

variance: σ2
yi
= γi(γi − 1) e2µi

skewness: syi = (γi + 2)
√

(γi − 1)

where γi = eσ
2
i for i = 1, 2.

Let

xi j =

log(yi j) , for i = 1, 2 and j = 1, 2, ...,mi,

DLi j = log(LDLi j) , for i = 1, 2 and j = mi + 1,mi + 2, ..., ni.

where LDLi j are the detection limits in the ith log-normal sample and mi +mci = ni for i = 1, 2 and j = mi + 1,mi +

2, ..., ni.

To simplify the presentation in this paper, the analysis is described and illustrated by reference to the analysis
of normally distributed data, though this condition occurs infrequently in typical environmental data analysis.
However, it is frequently necessary to transform real environmental data before analysis; typically the logarithmic
transformation of xi j = log(yi j) is used, although other transformations are possible. When the logarithmic or other
transformation is used prior to censored data set analysis, it is necessary to transform the analysis results back to
the original scale of measurement following parameter estimation. For each sample i let

x̄mi =
1
mi

mi∑
j=1

xi j , and s2
mi
=

1
mi

mi∑
j=1

(xi j − x̄mi )
2

be the sample mean and sample variance of the mi non-censored observations xi1, xi2, ..., ximi , for i = 1, 2. Let the
functions ϕ(.) and Φ(.) be the pd f and cd f of the standard unit normal. Define

Φ(ξi j) =
∫ ξi j

−∞
ϕ(t)dt , where ξi j =

DLi j − µi

σi
,

for i = 1, 2 and j = mi + 1,mi + 2, ..., ni.

We also define

W(x) =
ϕ(x)
Φ(x)

and zi j =
xi j − µi

σi
for i = 1, 2 and j = 1, 2, ...,mi.

The likelihood function of the samples under consideration is given by:

L(µ1, µ2, σ1, σ2) =
2∏

i=1

 mi∏
j=1

1

σi
√

2π
e−

1
2 (

xi j−µi
σi

)2
ni∏

j=mi+1

P(xi j < DLi j)


=

2∏
i=1

 mi∏
j=1

1
σi

1
√

2π
e−

1
2 (

xi j−µi
σi

)2
ni∏

j=mi+1

P(
xi j − µi

σi
<

DLi j − µi

σi
)


=

2∏
i=1

 mi∏
j=1

1
σi

1
√

2π
e−

1
2 (

xi j−µi
σi

)2
ni∏

j=mi+1

P(Z <
DLi j − µi

σi
)


which can be written as

L(µ1, µ2, σ1, σ2) =
2∏

i=1

 mi∏
j=1

1
σi
ϕ

(
xi j − µi

σi

) ni∏
j=mi+1

Φ

(
DLi j − µi

σi

)
=

2∏
i=1

 mi∏
j=1

1
σi
ϕ
(
zi j

) ni∏
j=mi+1

Φ
(
ξi j

)
(2.1)
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where
zi j =

xi j − µi

σi
for i = 1, 2 and j = 1, ...,mi,

and

ξi j =
DLi j − µi

σi
for i = 1, 2 and j = mi + 1, ..., ni.

The two log-normal population means are confirmed equal whenever no evidence was available to reject the null
hypothesis H0LN : µy1 = µy2 in favor of the alternative hypothesis HALN : µy1 , µy2 . Equivalently the two log-
normal population means are confirmed equal whenever the null hypothesis

H0N : µ1 = µ2 = µ and σ1 = σ2 = σ (overall homogeneity).

is accepted in favor of one of the alternative hypotheses:

HA1N : µ1 , µ2 and σ1 , σ2 (overall heterogeneity),

HA2N : µ1 , µ2 and σ1 = σ2 = σ (mean heterogeneity, variance homogeneity),

or
HA3N : µ1 = µ2 = µ and σ1 , σ2 (mean homogeneity, variance heterogeneity).

3. Maximum Likelihood Estimates of Population Parameters

In this section the maximum likelihood estimates of population parameters µi and σi, for i = 1 and 2, are derived
under each of the hypotheses H0N , HA1N , HA2N and HA3N . The derivations of these estimates are now described.

3.1 Maximum Likelihood Estimates under H0N

Under the hypothesis H0N , xi j, for i = 1, 2 and j = 1, 2, ..., ni, are assumed to be normally distributed with mean µ
and standard deviation σ. That is, it is assumed that there exists a random sample of n = n1 + n2 data values taken
from a normal population with mean µ and standard deviation σ. For convenience, for each sample i let us assume
that the first mi observations xi1, xi2, ..., ximi are non-censored (fully measured) and the remaining mci = ni − mi

observations are left-censored for i = 1, 2. For left censored observations, it is assumed that for each sample i it is
only known that xi j < DLi j for j = mi + 1, ..., ni (or j = 1, 2, ...,mci ) and i = 1, 2.

The likelihood function LH0N (µ, σ) under H0N is given by:

LH0N (µ, σ) =
2∏

i=1

σ−mi (
1
√

2π
)mi e−

1
2
∑mi

j=1(
xi j−µ
σ )

ni∏
j=mi+1

Φ

(
DLi j − µ
σ

) (3.1)

Hence, the corresponding log-likelihood function ℓH0N (µ, σ) = log(LH0N (µ, σ)) of (3.1) is given by:

ℓH0N (µ, σ) =
2∑

i=1

−mi logσ + mi log(
1
√

2π
) − 1

2

mi∑
j=1

(
xi j − µ
σ

)


+

2∑
i=1

ni∑
j=mi+1

log
(
Φ

(
DLi j − µ
σ

)) (3.2)

For convenience, define h = mc
n , hi =

mci
n , and mci

m =
hi

1−h , for i = 1, 2. For the pooled sample let

x̄m =
1
m

2∑
i=1

m∑
j=1

xi j , and s2
m =

1
m

2∑
i=1

mi∑
j=1

(xi j − x̄m)2

be the sample mean and sample variance of the m non-censored observations x11, x12, ...,
x1m1 , x2(m1+1), ..., x2m, respectively.
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The maximum likelihood estimates µ̂ and σ̂ of µ and σ are the solutions to equations (3.3) and (3.4), the partial
derivatives for the log-likelihood equation with respect to µ and σ:

∂ℓH0N
(µ, σ)

∂µ
=

2∑
i=1

mi∑
j=1

(
xi j − µ
σ

) −
2∑

i=1

ni∑
j=mi+1

W(ξi j) = 0 (3.3)

∂ℓH0N
(µ, σ)

∂σ
= −m +

2∑
i=1

mi∑
j=1

(
xi j − µ
σ

)2 −
2∑

i=1

ni∑
j=mi+1

W(ξi j) ξi j = 0 (3.4)

where m =
∑2

i=1 mi , W(ξi j) =
ϕ(ξi j)
Φ(ξi j)

and ξi j =
DLi j−µ
σ

.

The expectation maximization (EM) algorithm will be used iteratively to obtain the solutions µ̂ and σ̂ to the
maximum likelihood equations (3.3) and (3.4). The EM algorithm was proposed by Dempster et. al. (1977)
for calculating the maximum likelihood estimated from censored samples. The procedure consists of alternately
estimating the censored observations from the current parameter estimates and estimating the parameters from the
actual and estimated observations. The EM algorithm can be used to calculate the maximum likelihood estimates
for the mean µ and standard deviation σ of a normal distribution from both singly- and multiply-censored samples.
A brief description for the EM algorithm is given here.

At step 0 of the EM algorithm all non-censored observations are used to calculate the initial estimates of µ and σ
as follows:

µ̂0 = x̄m =
1
m

2∑
i=1

m∑
j=1

xi j , and σ̂2
0 = s2

m =
1
m

2∑
i=1

mi∑
j=1

(xi j − x̄m)2

Let µ̂s and σ̂s be the maximum likelihood estimates of µ and σ at step s of this procedure. At step s + 1, each
censored observation xi j (where i = 1, 2; j = mi + 1, 2, ..., ni) is replaced by an estimate of µ̂s − σ̂sW( DLi j−µ̂s

σ̂s
).

Let the values ui j be calculated at step s + 1 as follows:

ui j =


xi j , for i = 1, 2 and j = 1, ...,mi

µ̂s − σ̂sW( DLi j−µ̂s

σ̂s
) for i = 1, 2 and j = mi + 1, ..., ni

So the updated estimates µ̂s+1 and σ̂s+1 of µ and σ are given by

µ̂s+1 =

∑2
i=1

∑mi
j=1 ui j +

∑2
i=1

∑ni
j=mi+1 ui j

n

and

σ̂2
s+1 =

∑2
i=1

∑mi
j=1(ui j − µ̂s+1)2 +

∑2
i=1

∑ni
j=mi+1(ui j − µ̂s+1)2∑2

i=1 mi +
∑2

i=1
∑ni

j=mi+1 γ(
ui j−µ̂s

σ̂s
)

where the function γ(t) is defined as:

γ(t) = W(t)(W(t) + t) and W(t) =
ϕ(t)
Φ(t)

More details about the EM algorithm procedure can be found in Wolynetz (1979). Convergence is achieved if both
|µ̂s − µ̂s+1| < 0.00001 and |σ̂s − σ̂s+1| < 0.00001 occur. When these convergence criteria are met, the maximum
likelihood estimates for µ and σ are then given by µ̂ = µ̂s and σ̂ = σ̂s, respectively.
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3.2 Maximum Likelihood Estimates under HA1N

Under the hypothesis HA1N xi j are assumed to be normally distributed with mean µi and standard deviation σi, for
i = 1, 2 and j = 1, 2, ..., ni. Thus the likelihood function under HA1N is given by:

LHA1N (µ1, µ2, σ1, σ2) =
2∏

i=1

( 1
√

2π
)mi (σi)−mi e−

1
2
∑mi

j=1(
xi j−µi
σi

)2
ni∏

j=mi+1

Φ

(
DLi j − µi

σi

) (3.5)

Hence, the corresponding log-likelihood function ℓHA1N (µ1, µ2, σ1, σ2) of (3.5) which is defined as log(LHA1N (µ1, µ2, σ1, σ2))
is given by:

ℓHA1N
(µ1, µ2, σ1, σ2) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi logσi

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µi

σi

)2

+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µi

σi

) (3.6)

The maximum likelihood estimates µ̂i and σ̂i of µi and σi are the solutions to equations (3.7) and (3.8) for i = 1, 2.

∂ℓHA1N
(µi, σi)

∂µi
=

mi∑
j=1

(
xi j − µi

σi

)
−

ni∑
j=mi+1

W(ξi j) = 0 (3.7)

∂ℓHA1N
(µi, σi)

∂σi
=

mi∑
j=1

(
xi j − µi

σi

)2

− mi −
ni∑

j=mi+1

W(ξi j) ξi j = 0 (3.8)

where W(ξi j) =
ϕ(DLi j)
Φ(DLii j)

and ξi j =
DLi j−µi

σi
for i = 1, 2.

The single sample EM algorithm estimation method can be used to obtain the maximum likelihood estimates µ̂i

and σ̂i of µi and σi for i = 1, 2 as follows. At step 0 of the EM algorithm all non-censored observations are used to
calculate the initial estimates of µi and σi for i = 1, 2 as follows:

µ̂i0 = x̄mi =
1
mi

mi∑
j=1

xi j , and σ̂2
i0 = s2

mi
=

1
mi

mi∑
j=1

(xi j − x̄mi )
2

For i = 1, 2 let µ̂is and σ̂is be the maximum likelihood estimates of µi and σi at step s of this procedure. At
step s + 1, each censored observation xi j (where i = 1, 2; and j = mi + 1, ..., ni) is replaced by an estimate of
µ̂is − σ̂isW( DLi j−µ̂is

σ̂is
).

Let the values vi j be calculated at step s + 1 as follows:

vi j =


xi j , for i = 1, 2 and j = 1, ...,mi

µ̂is − σ̂isW( DLi j−µ̂is

σ̂is
) for i = 1, 2 and j = mi + 1, ..., ni

So for i = 1, 2 the updated estimates µ̂is+1 and σ̂is+1 of µi and σi are given by

µ̂is+1 =

∑mi
j=1 vi j +

∑ni
j=mi+1 vi j

ni

and

σ̂2
is+1 =

∑mi
j=1(vi j − µ̂is+1)2 +

∑ni
j=mi+1(vi j − µ̂is+1)2

mi +
∑ni

j=mi+1 γ(
vi j−µ̂is

σ̂is
)

where the function γ(t) is defined as:

γ(t) = W(t)(W(t) + t) and W(t) =
ϕ(t)
Φ(t)
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Convergence is achieved if |µ̂1s − µ̂1s+1| < 0.00001, |µ̂2s − µ̂2s+1| < 0.00001, |σ̂1s − σ̂1s+1| < 0.00001 and
|σ̂2s − σ̂2s+1| < 0.00001 occur. When these convergence criteria are met, the maximum likelihood estimates
for µ1, µ2, σ1 and σ2 are then given by µ̂1 = µ̂1s, µ̂2 = µ̂2s, σ̂1 = σ̂1s and σ̂2 = σ̂2s, respectively.

3.3 Maximum Likelihood Estimates under HA2N

Under the hypothesis HA2N xi j are assumed to be normally distributed with mean µi and standard deviation σ, for
i = 1, 2 and j = 1, 2, ..., ni. Thus the likelihood function under HA2N is given by:

LHA2N (µ1, µ2, σ) =
2∏

i=1

( 1
√

2π
)mi (σ)−mi e−

1
2
∑mi

j=1(
xi j−µi
σ )2

ni∏
j=mi+1

Φ

(
DLi j − µi

σ

) (3.9)

Hence, the corresponding log-likelihood function ℓHA2N (µ1, µ2, σ) of (3.9) which is defined as log(LHA2N (µ1, µ2, σ))
is given by:

ℓHA2N
(µ1, µ2, σ) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi logσ

− 1
2

2∑
i=1

mi∑
j=1

( xi j − µi

σ

)2
+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µi

σ

) (3.10)

The maximum likelihood estimates µ̂1, µ̂2 and σ̂ of µ1, µ2 and σ are the solutions to equations (3.11)-(3.13).

∂ℓHA2N
(µ1, µ2, σ)

∂µ1
=

m1∑
j=1

( x1 j − µ1

σ

)
−

n1∑
j=m1+1

W(ξ1 j) = 0 (3.11)

∂ℓHA2N
(µ1, µ2, σ)

∂µ2
=

m2∑
j=1

( x2 j − µ2

σ

)
−

n2∑
j=m2+1

W(ξ2 j) = 0 (3.12)

∂ℓHA2N
(µ1, µ2, σ)

∂σ
=

2∑
1=1

mi∑
j=1

( xi j − µi

σ

)2
− m −

2∑
1=1

ni∑
j=mi+1

W(ξi j) ξi j = 0 (3.13)

where m = m1 + m2, W(ξi j) =
ϕ(DLi j)
Φ(DLi j)

and ξi j =
DLi j−µi

σ
for i = 1, 2 and j = mi + 1, 2, ..., ni.

The expectation maximization (EM) algorithm will be used iteratively to obtain the solutions µ̂1, µ̂2 and σ̂ to the
maximum likelihood equations (3.11) and (3.13). At step 0 of the EM algorithm all non-censored observations are
used to calculate the initial estimates of µ1, µ2 and σ as follows:

µ̂10 = x̄m1 =
1

m1

m1∑
j=1

x1 j , µ̂20 = x̄m2 =
1

m2

m2∑
j=1

x2 j ,

and

σ̂2
0 = s2

m =
1
m

2∑
i=1

mi∑
j=1

(xi j − µ̂0)2

where
µ̂0 =

m1µ̂10 + m2µ̂20

m1 + m2

Let µ̂1s, µ̂2s and σ̂s be the maximum likelihood estimates of µ1, µ2 and σ at step s of this procedure. At step s + 1,
each censored observation xi j (where i = 1, 2; j = mi + 1, 2, ..., ni) is replaced by an estimate of µ̂is − σ̂sW( DLi j−µ̂is

σ̂s
).

Let the values ti j be calculated at step s + 1 as follows:

ti j =


xi j , for i = 1, 2 and j = 1, ...,mi

µ̂is − σ̂sW( DLi j−µ̂is

σ̂s
) for i = 1, 2 and j = mi + 1, ..., ni
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So the updated estimates µ̂1s+1, µ̂2s+1 and σ̂s+1 of µ1, µ2 and σ are given by

µ̂1s+1 =

∑m1
j=1 t1 j

m1
, µ̂2s+1 =

∑m2
j=1 t2 j

m2

and

σ̂2
s+1 =

∑2
i=1

∑mi
j=1(ti j − µ̂is+1)2∑2

i=1 mi +
∑2

i=1
∑ni

j=mi+1 γ(
ti j−µ̂is

σ̂s
)

where the function γ(t) is defined as:

γ(t) = W(t)(W(t) + t) and W(t) =
ϕ(t)
Φ(t)

Convergence is achieved if |µ̂1s − µ̂1s+1| < 0.00001, |µ̂2s − µ̂2s+1| < 0.00001 and |σ̂s − σ̂s+1| < 0.00001 occur. When
these convergence criteria are met, the maximum likelihood estimates for µ1, µ2 and σ are then given by µ̂1 = µ̂1s,
µ̂2 = µ̂2s and σ̂ = σ̂s, respectively.

3.4 Maximum Likelihood Estimates under HA3N

The maximum likelihood estimators under the hypothesis HA3N are more complicated to derive than those obtained
under H0N , HA1N and HA2N . In this section only an outline for obtaining estimates of µ, σ1 andσ2 for the hypothesis
under consideration will be given. Under the hypothesis HA3N xi j are assumed to be normally distributed with mean
µ and standard deviation σi, for i = 1, 2 and j = 1, 2, ..., ni. Thus the likelihood function under HA3N is given by:

LHA3N (µ, σ1, σ2) =
2∏

i=1

( 1
√

2π
)mi (σi)−mi e−

1
2
∑mi

j=1(
xi j−µ
σi

)2
ni∏

j=mi+1

Φ

(
DLi j − µ
σi

) (3.14)

Hence, the corresponding log-likelihood function ℓHA3N (µ, σ1, σ2) of (3.14) which is defined as log(LHA3N (µ, σ1, σ2))
is given by:

ℓHA3N
(µ, σ1, σ2) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi logσi

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ
σi

)2

+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µ
σi

) (3.15)

The maximum likelihood estimates µ̂, σ̂1 and σ̂2 of µ, σ1 and σ2 are the solutions to equations (3.16)-(3.18).

∂ℓHA3N
(µ, σ1, σ2)

∂µ
=

2∑
i=1

1
σi

mi∑
j=1

(
xi j − µ
σi

)
−

2∑
i=1

1
σi

ni∑
j=mi+1

W(ξi j) = 0 (3.16)

∂ℓHA3N
(µ, σ1, σ2)

∂σ1
=

m1∑
j=1

(
x1 j − µ
σ1

)2

− m1 −
n1∑

j=m1+1

W(ξ1 j) ξ1 j = 0 (3.17)

∂ℓHA3N
(µ, σ1, σ2)

∂σ2
=

m2∑
j=1

(
x2 j − µ
σ2

)2

− m2 −
n2∑

j=m2+1

W(ξ2 j) ξ2 j = 0 (3.18)

where W(ξi j) =
ϕ(DLi j)
Φ(DLi j)

and ξi j =
DLi j−µ
σi

for i = 1, 2 and j = mi + 1, 2, ..., ni.

The expectation maximization (EM) algorithm will be used iteratively to obtain the solutions µ̂, σ̂1 and σ̂2 to the
maximum likelihood equations (3.16)-(3.18). At step 0 of the EM algorithm all non-censored observations are
used to calculate the initial estimates of µ, σ1 and σ2 as follows:

µ̂0 = x̄m =

∑m1
j=1 x1 j +

∑m2
j=1 x2 j

m1 + m2
,
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and

σ̂2
10 = s2

m1
=

∑m1
j=1(x1 j − µ̂0)2

m1
and σ̂2

20 = s2
m2
=

∑m2
j=1(x2 j − µ̂0)2

m2
.

Let µ̂s, σ̂1s and σ̂2s be the maximum likelihood estimates of µ, σ1 and σ2 at step s of this procedure. At step s+ 1,
each censored observation xi j (where i = 1, 2; j = mi + 1, 2, ..., ni) is replaced by an estimate of µ̂s − σ̂isW( DLi j−µ̂s

σ̂is
).

Let the values ti j be calculated at step s + 1 as follows:

ti j =


xi j , for i = 1, 2 and j = 1, ...,mi

µ̂s − σ̂isW( DLi j−µ̂s

σ̂is
) for i = 1, 2 and j = mi + 1, ..., ni

The solution of equations (3.16)-(3.18) for µ, σ1, and σ2 is more complicated in this case than the cases H0N , HA1N

and HA2N since it involves solution of a cubic equation for µ. Thus at this point a procedure similar to the one used
in cases H0N , HA1N and HA2N is not valid. Let

B1 =

n1∑
j=m1+1

W
(

DL1 j − µ̂s

σ̂1s

) [
W

(
DL1 j − µ̂s

σ̂1s

)
+

DL1 j − µ̂s

σ̂1s

]

=

n1∑
j=m1+1

γ

(
DL1 j − µ̂s

σ̂1s

)
=

n1∑
j=m1+1

γ
(
ξ1 j

)

B2 =

n2∑
j=m2+1

W
(

DL2 j − µ̂s

σ̂2s

) [
W

(
DL2 j − µ̂s

σ̂2s

)
+

DL2 j − µ̂s

σ̂2s

]

=

n2∑
j=m2+1

γ

(
DL2 j − µ̂s

σ̂2s

)
=

n2∑
j=m2+1

γ
(
ξ2 j

)

(3.19)

where W(t), γ(t), ξ1 j and ξ2 j were previously defined.

Also define

t̄1 =

∑n1
j=1 t1 j

n1
and t̄2 =

∑n2
j=1 t2 j

n2
,

be the sample mean of the updated values in the ith sample for i = 1, 2.

The maximum likelihood equations (3.16)-(3.18) can be written as

σ̂2
1(s+1)

σ̂2
2(s+1)

= −n1(t̄1 − µ̂s+1)
n2(t̄2 − µ̂s+1)

, (3.20)

∑n1
j=1(t1 j − µ̂s+1)2

σ̂1(s+1)
= m1 + B1 , (3.21)

∑n2
j=1(t2 j − µ̂s+1)2

σ̂2(s+1)
= m2 + B2 , (3.22)

Aside: For the derivation of equation (3.20). At step s + 1 of the EM algorithm we have

ti j = µ̂s+1 − σ̂i(s+1)W(
DLi j − µ̂s+1

σ̂i(s+1)
) for i = 1, 2 and j = mi + 1, ..., ni

which leads to

−
ti j − µ̂s+1

σ̂i(s+1)
= W(

DLi j − µ̂s+1

σ̂i(s+1)
) for i = 1, 2 and j = mi + 1, ..., ni
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Thus at step s + 1 equation (3.16) can be written as:
2∑

i=1

1
σ̂i(s+1)

mi∑
j=1

(
ti j − µ̂s+1

σ̂i(s+1)

)
+

2∑
i=1

1
σ̂i(s+1)

ni∑
j=mi+1

(
ti j − µ̂s+1

σ̂i(s+1)

)
= 0

2∑
i=1

1
σ̂i(s+1)

ni∑
j=1

(
ti j − µ̂s+1

σ̂i(s+1)

)
= 0

1
σ̂1(s+1)

n1∑
j=1

(
t1 j − µ̂s+1

σ̂1(s+1)

)
+

1
σ̂2(s+1)

n2∑
j=1

(
t2 j − µ̂s+1

σ̂2(s+1)

)
= 0

n1(t̄1 − µ̂s+1)
σ̂2

1(s+1)

+
n2(t̄2 − µ̂s+1)
σ̂2

2(s+1)

= 0

σ̂2
1(s+1)

σ̂2
2(s+1)

= −n1(t̄1 − µ̂s+1)
n2(t̄2 − µ̂s+1)

which is equation (3.20).

By eliminating the expression
σ̂2

1(s+1)

σ̂2
2(s+1)

from equations (3.20)-(3.22) yields a cubic equation in µ̂s+1 which can be

solved to obtain the estimate µ̂s+1 of µ. Estimates σ̂2
1(s+1) and σ̂2

2(s+1) of σ1 and σ2 can then be obtained from
(3.21) and (3.22), respectively. For the sake of simplicity, the specific method(s) used in the solution of of the
cubic equation is not presented here, but can it can be derived and programmed. Convergence is achieved if
|µ̂s − µ̂s+1| < 0.00001, |σ̂1s − σ̂1(s+1)| < 0.00001 and |σ̂2s − σ̂2(s+1)| < 0.00001 occur. When these convergence
criteria are met, the maximum likelihood estimates for µ, σ1 and σ2 are then given by µ̂ = µ̂s, σ̂1 = σ̂1s and
σ̂2 = σ̂2s, respectively.

4. Asymptotic Chi-Square Test

The estimated log-likelihood functions ℓ̂H0N
, ℓ̂HA1N

, ℓ̂HA2N
and ℓ̂HA3N

under the hypotheses H0N (overall homogeneity),
HA1N (overall heterogeneity), HA2N (mean heterogeneity, variance homogeneity) and HA3N (mean homogeneity,
variance heterogeneity), respectively; are obtained by replacing population parameters by their maximum likeli-
hood estimates. Therefore from (3.2), (3.6), (3.10) and (3.15) we get:

ℓ̂H0N (µ̂, σ̂) =
2∑

i=1

−mi log σ̂ + mi log(
1
√

2π
) − 1

2

mi∑
j=1

(
xi j − µ̂
σ̂

)


+

2∑
i=1

ni∑
j=mi+1

log
(
Φ

(
DLi j − µ̂
σ̂

))
,

(4.1)

ℓ̂HA1N
(µ̂1, µ̂2, σ̂1, σ̂2) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi log σ̂i

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ̂i

σ̂i

)2

+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µ̂i

σ̂i

)
,

(4.2)

ℓ̂HA2N
(µ̂1, µ̂2, σ̂) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi log σ̂

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ̂i

σ̂

)2

+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µ̂i

σ̂

)
,

(4.3)

and

ℓ̂HA3N
(µ̂, σ̂1, σ̂2) =

2∑
i=1

−mi

2
log(2π) +

2∑
i=1

−mi log σ̂i

− 1
2

2∑
i=1

mi∑
j=1

(
xi j − µ̂
σ̂i

)2

+

2∑
i=1

ni∑
j=mi+1

logΦ
(

DLi j − µ̂
σ̂i

)
.

(4.4)
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In general, the asymptotic α−level chi-square test used to test the null hypothesis H0 : θ = 0 versus the alternative
hypothesis Ha : θ , 0 is defined by

χ2
0 = −2(ℓ̂H0

(θ̂0) − ℓ̂HA1N
(θ̂a)) > χ2

(α,d f ) ,

where χ2
0 has a chi-square distribution with degrees of freedom d f , which is defined by the number of free param-

eters under the alternative hypothesis Ha minus the number of free parameters under the null hypothesis H0, and
χ2

(α,d f ) is the upper α-point value obtained from the chi-square table with degrees of freedom d f .

The asymptotic α−level chi-square test used to test the equality of the means of two independent log-normal
populations is now described.

Test 1: Overall Homogeneity versus Overall Heterogeneity

H0N : µ1 = µ2 = µ and σ1 = σ2 = σ versus

HA1N : µ1 , µ2 and σ1 , σ2

The asymptotic α−level chi-square test to test the null hypothesis H0N versus the alternative hypotheses HA1N is
defined by:

χ2
0A1 = −2(ℓ̂H0N

− ℓ̂HA1N
) > χ2

(α,2) (4.5)

where χ2
(α,2) is the upper α−point for a chi-square random variable with 2 degrees of freedom. The p-value of this

test statistic is defined by:
p − value = P(χ2

(2) > χ
2
0A1). (4.6)

Thus in this case the null hypothesis that the means of two independent log-normal populations are equal will be
rejected if χ2

0A1 > χ
2
(α,2) or equivalently if p − value < α.

Test 2: Overall Homogeneity versus Mean Heterogeneity and Variance Homogeneity

H0N : µ1 = µ2 = µ and σ1 = σ2 = σ versus

HA2N : µ1 , µ2 and σ1 = σ2 = σ

The asymptotic α−level chi-square test to test the null hypothesis H0N versus the alternative hypotheses HA12N is
defined by:

χ2
0A2 = −2(ℓ̂H0N

− ℓ̂HA2N
) > χ2

(α,1) (4.7)

where χ2
(α,1) is the upper α−point for a chi-square random variable with 1 degrees of freedom. The p-value of this

test statistic is defined by:
p − value = P(χ2

(1) > χ
2
0A2). (4.8)

Thus in this case the null hypothesis that the means of two independent log-normal populations are equal will be
rejected if χ2

0A2 > χ
2
(α,1) or equivalently if p − value < α.

Test 3: Overall Homogeneity versus Mean Homogeneity and Variance Heterogeneity

H0N : µ1 = µ2 = µ and σ1 = σ2 = σ

versus

HA3N : µ1 = µ2 = µ and σ1 , σ2

The asymptotic α−level chi-square test to test the null hypothesis H0N versus the alternative hypotheses HA3N is
defined by:

χ2
0A3 = −2(ℓ̂H0N

− ℓ̂HA3N
) > χ2

(α,1) (4.9)

where χ2
(α,1) is the upper α−point for a chi-square random variable with 1 degrees of freedom. The p-value of this

test statistic is defined by:
p − value = P(χ2

(1) > χ
2
0A3). (4.10)

Thus in this case the null hypothesis that the means of two independent log-normal populations are equal will be
rejected if χ2

0A3 > χ
2
(α,1) or equivalently if p − value < α.

Computer Programs: To facilitate the application of the test procedure and parameter estimation method de-
scribed in this article, a computer program called ”Abou.Two.Lognormal.Estimation.MultipleDL” is written in
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the R language to automate parameters estimation from multiply left-censored data sets that are normally or log-
normally distributed and to obtain the estimated values of the log-likelihood functions under the null and the
alternative hypotheses . In addition, this computer program will be used to obtain the asymptotic α−level chi-
square test statistic and its p-value. A Copy of the source code is given in the Appendix section and is available
upon request.

For the sake of simplicity, in the remaining part of this article Test 1 (H0N versus HA1N) will be considered. Test 2
and Test 3 can be easily programmed and computed.

5. Example: Copper and Zinc Data

Millard and Deverel (1988) compared the median copper and zinc trace element concentrations in groundwater
sampled from two geological areas in the San Joaquin Valley, the Basin-Trough Zone and the Alluvial Fan Zone in
California. Data from both sites are given in Table 1. These data sets contains seven distinct detection limits (LDL :

Table 1. Millard and Deverel copper and zinc data: Groundwater concentrations of copper and zinc at two geolog-
ical zones in the San Joaquin valley, California

< 1 < 1 3 3 5 1 4 4 2 2 1 2 < 5 11
Alluvial Fan < 1 2 2 2 2 < 20 2 2 3 3 < 20 < 10

Zone 7 5 2 2 < 10 7 12 < 1 20 16 < 5 1
n = 65 2 < 5 3 2 8 7 5 < 5 2 < 10 < 5 < 5

copper 2 10 2 4 < 5 2 3 9 < 5 2 2 2 2 1 1
Basin-Trough 2 2 12 2 1 < 10 < 10 4 < 10 < 1 1 < 2

Zone < 2 1 2 < 10 3 < 1 1 1 3 < 5 17 23 9
n = 49 9 3 3 < 15 < 5 4 < 5 < 5 < 5 4 8 1 15

3 3 1 6 3 6 3 4 5 14 4
< 10 9 5 18 < 10 12 10 11 11 19 8

Alluvial Fan < 3 < 10 < 10 10 10 10 10 < 10 10 < 10
Zone 10 < 10 10 < 10 10 10 20 20 < 10 20 20

n = 67 20 < 10 10 20 620 40 50 33 10 20 10 10
zinc 10 30 20 10 20 20 20 < 10 20 23 17 10

< 10 10 20 29 20 < 10 10 < 10 10 7 < 10
Basin-Trough 20 10 60 20 12 8 < 10 14 < 10 17 < 3

Zone 11 5 12 4 3 6 3 15 13 4 20 20 70 60
n = 50 40 30 40 17 10 20 20 5 10 50 30 25 10

< 10 40 20 10 20 20 30 20 30 50 90 20

1 , 2 , 3 , 5 , 10 , 15 , 20) with censoring level (percentage of non-detected observations) of 22%. Millard and
Deverel (1988) give three possible causes for multiple left-censoring when measuring the concentration of copper
and/or zinc in shallow groundwater. First cause may be decreasing detection limits over time as measurement
devices improve. Second, there may be more than one method available, and each method may be optimal in
different ranges of zinc and/or copper concentration. A third cause involves the amount of dilution that a lab
technician may use. Table 2 contains estimates of the normal and log-normal population parameters. It is noted
that the highest reported concentration of zinc (620) in the Alluvial Fan Zone seems to be unusual data value since
the second highest observed zinc concentration is (50) in this zone. Two different estimates of the normal and
log-normal population parameters for the zinc data sets are reported. The first estimate includes all data and the
second includes all data with the zinc data value 620 removed (ZincW620R). The corresponding estimates of the

zinc means µyi = eµi+
σ2

i
2 and medians myi = eµi are also included in Table 2. The influence of the single large

zinc data value 620 can be most clearly seen by comparing the estimates for σ1 under the hypothesis HA1N . The
estimate is σ̂1 = 0.8035 with the 620 value included and σ̂1 = 0.5799 with the 620 value removed. The estimates
for µ1 with the 620 value included and with the 620 value removed do not differ appreciably. These estimates
for µ1 are µ̂1 = 2.4854 and µ̂1 = 2.4665 for these two cases, respectively. The corresponding estimates of the
log-normal median zinc concentration in the Alluvial Fan Zone are M̂y1 = 12.006 with the 620 value included and
M̂y1 = 11.781 with the 620 value removed. The comparable estimates of the log-normal mean zinc concentration
are µ̂y1 = 16.580 with the 620 value included and µ̂y1 = 13.922 with the 620 value removed. In addition, the
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estimates of the log-normal standard deviation for zinc concentration in the Alluvial Fan Zone are σ̂y1 = 15.792
with the 620 value included and σ̂y1 = 8.767 with the 620 value removed. The estimates of the log-normal median
are similar, but the estimates of the log-normal mean and standard deviation are appreciably different, owing to
the influence of the single large zinc data value 620. Table 2 contains the p-value results associated with the
application of the recommended asymptotic chi-square test to the the Millard and Deverel (1988) copper and zinc
data presented in Table 1. The Millard and Deverel (1988) p-value results using the normal scores permutation
variance (NS 2P) procedure are also presented in Table 2.

Table 2. Estimates of normal and log-normal parameter values from the copper and zinc data given in Table 1

Copper Zinc ZincW620R
Hypothesis Alluvial Fan Zone Basin-Trough Zone Alluvial Fan Zone Basin-Trough Zone Alluvial Fan Zone Basin-Trough Zone

Estimations of Normal Parameters
H0N µ̂0 = 0.9825 σ̂0 = 0.8627 µ̂0 = 2.5699 σ̂0 = 0.8641 µ̂0 = 2.5478 σ̂0 = 0.7721

HA1N µ̂1 = 0.9442
σ̂1 = 0.8005

µ̂2 = 1.0331
σ̂2 = 0.9355

µ̂1 = 2.4854
σ̂1 = 0.8035

µ̂2 = 2.6893
σ̂2 = 0.9174

µ̂1 = 2.4665
σ̂1 = 0.5799

µ̂2 = 2.6893
σ̂2 = 0.9174

Estimations of Log-normal Parameters
H0LN µ̂0y = 3.875 M̂0y = 2.671 σ̂0y = 4.073 µ̂0y = 18.977 M̂0y = 13.065 σ̂0y = 19.993 µ̂0y = 17.217 M̂0y = 12.779 σ̂0y = 15.544

HALN µ̂y1
= 3.542

M̂y1
= 2.571

σ̂y1
= 3.356

µ̂y2
= 4.352

M̂y2
= 2.810

σ̂y2
= 5.148

µ̂y1
= 16.580

M̂y1
= 12.006

σ̂y1
= 15.792

µ̂y2
= 22.424

M̂y2
= 14.721

σ̂y2
= 25.764

µ̂y1
= 13.922

M̂y1
= 11.781

σ̂y1
= 8.767

µ̂y2
= 22.424

M̂y2
= 14.721

σ̂y2
= 25.764

Test The Asymptotic Chi-square Test: χ2
0 (P-value)

H0N vs. HA1N 1.4504 (0.2285) 2.5845 (0.1079) 12.7312 (0.0004)

Test The P-value of the Median equality test, Millard and Deverel (1988)
my1 = my2 0.320 0.020 − − − − −

ZincW620R: Alluvial Fan Zone zinc data set with the data value 620 removed.

Copper Case: The p-value of the asymptotic chi-square test statistic of testing the null hypothesis H0N versus
HA1N or equivalently H0LN versus HALN is 0.2285. Therefore the hypothesis of equal means is accepted for copper
at significance level of α = 0.05. The reported p-value for equality of medians of Millard and Deverel NS 2P is
0.320.

Zinc Case: The p-value of the asymptotic chi-square test statistic of testing the null hypothesis H0N versus HA1N

or equivalently H0LN versus HALN is 0.1079 with the 620 value included. Therefore with the 620 value included
the hypothesis of equal means is accepted for zinc at significance level of α = 0.05. The p-vale of testing the null
hypothesis H0N versus HA1N or equivalently H0LN versus HALN is 0.0004 with the 620 value removed. Therefore
with the 620 value removed the hypothesis of equal means is rejected for zinc at significance level of α = 0.05.
The reported p-value for equality of medians of Millard and Deverel NS 2P is 0.020.

6. Simulation Study

In this simulation study, type I error rates and power of the test procedure introduced in this article are investigated.
A computer program was written in the R language for this purpose. For each combination of the population
parameters µ1 , µ2, σ1 and σ2 described below, two sample size cases were considered: in case one, n1 = n1 = 25
and in the second case, n1 = n2 = 75. The first case will be referred to as the small sample size case and the
second as the large sample size case.Censoring at two different detection limits was used in each simulated sample.
The simulation study was performed with 10,000 repetitions (N = 10, 000) of sample normal distributions for
each combinations of n, µ1, µ2, σ1, σ2, and censoring levels. Censoring levels were set at the 15th, 30th, and
50th percentiles of the parent distribution(s)as shown in Tables 3 and 4. In order to check the Type I error, the
population parameters were specified as µ1 = µ2 = 0, and σ1 = σ2 = 1 as shown in Table 3. In order to check
the power, the population parameters were specified as µ1 = 0, µ2 = 0.1(0.1)1.0, σ1 = 1 , and σ2 = 1.0(0.1)2.0 as
shown in Table 4.
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Table 3. The Estimated Simulated Type I Error Rates: µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 1

Sample Size Censoring Level Estimated α
Small (n = 25) 15% , 30% 0.0692
Small (n = 25) 30% , 30% 0.0657
Large (n = 75) 15% , 30% 0.0586
Large (n = 75) 30% , 50% 0.0507

The following observations and conclusions are made from an examination of the simulation results reported in
Tables 3 and 4.

From Table 3, one can see that the estimated simulated Type I error rates are slightly higher than 0.06 (0.0692, 0.0657)
for the small sample size case, and slightly higher than 0.05 (0.0586, 0.0507) for the large sample size case. The
censoring levels do not seem to affect the value of Type I error rate, α.

Table 4. The Estimated Simulated Power Rates

Small Sample Size (n = 25) Large Sample Size (n = 75)

(µ1, µ2, σ1, σ2) Censoring Levels

(15% , 30%)

Censoring Levels

(30% , 50%)

Censoring Levels

(15% , 30%)

Censoring Levels

(30% , 50%)

(0, 0.1, 1, 1.1) 0.1027 0.0747 0.1827 0.1138

(0, 0.2, 1, 1.2) 0.2165 0.1538 0.4379 0.3556

(0, 0.3, 1, 1.3) 0.3318 0.2684 0.7434 0.6559

(0, 0.4, 1, 1.4) 0.4708 0.4279 0.9236 0.8783

(0, 0.5, 1, 1.5) 0.6393 0.5763 0.9817 0.9598

(0, 0.6, 1, 1.6) 0.7673 0.7024 0.9973 0.9872

(0, 0.7, 1, 1.7) 0.8505 0.8239 0.9996 0.9994

(0, 0.8, 1, 1.8) 0.9147 0.8680 1.0000 1.0000

(0, 0.9, 1, 1.9) 0.9435 0.9168 1.0000 1.0000

(0, 1.0, 1, 2.0) 0.9703 0.9425 1.0000 1.0000

From Table 4, one can see that the estimated simulated power is higher for large sample size case than the small
sample size case, and slightly higher for the lower level of censoring. Specifically, in the small sample size case
with h1 = 15%andh2 = 30% (h1 = 30%andh2 = 50%) censoring level we reach a power of 0.9703 (0.9425) when
the difference between µ1 and µ2 is 1.0, and the difference between σ1 and σ2 is 1.0. Alternatively, in the large
sample size case with h1 = 15%andh2 = 30% (h1 = 30%andh2 = 50%) censoring we reach a power above 0.99
when the difference between µ1 and µ2 is 0.6, and the difference between σ1 and σ2 is 0.7; and a power of 1.0
when the difference between µ′s and σ′s is 0.8.

In summary, the test procedure introduced in this article maintains its stated significance level and has much power
with larger sample size and a bit less power with greater censoring levels. In addition, the power decreases when
the censoring levels moves from 0.15and0.30 to 0.30and0.50. Also, the power increases greatly when the sample
size moves from the order of 25 to the order of 75.

7. Conclusions and Remarks

It is well known that the log-normal distribution is widely used in modelling environmental and biomedical cen-
sored data. This article has dealt with the problem of comparing means of two independent log-normal populations
in the presence of multiply left-censored data. The EM Algorithm is employed to obtain the maximum likelihood
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estimates of population parameters under different hypotheses. A parametric test procedure for testing the equality
of means of two independent log-normal in the presence of censored data with multiple detection limit is presented.
The performance of the test procedure presented in this article is evaluated by means of simulation studies. A de-
tailed case study example of the method is provided using copper and zinc data presented in Millard and Deverel
(1998). It is seen in the analysis of the Millard and Deverel (1998) data as shown in the study case example that
large (unusual) data values do influence the estimate of the mean, but do not influence the estimate of the median
in log-normal parametric model analysis. The nonparametric median comparison methods are not as sensitive to
these unusual data values. I hope that my paper would be useful to the researchers who are considering log-normal
distribution in their analysis of the multiply left censored data.
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Appendix
Computer Programs

The following computer program, ”Abou.Two.Lognormal.Estimation.MultipleDL”, is written in the R language
to automate parameters estimation from multiple left-censored data sets that are normally or log-normally dis-
tributed and to obtain the estimated values of the log-likelihood functions under the hypotheses H0N and HA1N .
In addition, this computer program will be used to obtain the asymptotic α−level chi-square test statistic and its
p-value.

Abou.Two.Lognormal.Estimation.MultipleDL<-function(data1, data2, NumI, LogN1, LogN2) { ### \\
#
# data1 and data2 are matrices containing of two columns each
# the first column is the data set and the second column
# is indicator 0 for uncensored and 1 for censored observations.
# NumI is the number of iterations suggested by users.
# LogN1 = T if the data1 are log-normally distributed.
# LogN2 = T if the data2 are log-normally distributed.

n1<-length(data1[,1])
n2<-length(data2[,1])
table1 <- table(data1[data1[, 2]==1, 1])
DLV1<-as.numeric(dimnames(table1)[[1]])
mcV1<-as.vector(table1)
table2 <- table(data2[data2[, 2]==1, 1])
DLV2<-as.numeric(dimnames(table2)[[1]])
mcV2<-as.vector(table2)
if(LogN1==T) data1[,1]<-log(data1[,1]) else data1[,1]<-data1[,1]
if(LogN2==T) data2[,1]<-log(data2[,1]) else data2[,1]<-data2[,1]
datacomb<-rbind(data1,data2)
n<-length(datacomb[,1])
table <- table(datacomb[datacomb[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])
mcV<-as.vector(table)
k<-length(mcV)

################### EM Algorithm ###################

AbouEMmultvect<-function(data, NumI) {
#
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# N is the number of iterations suggested by users.
# data is a matrix containing of two columns
# the first column is the data set and the second column
# is indicator 0 for uncensored and 1 for censored obs.
#
n<-length(data[,1])
table <- table(data[data[, 2]==1, 1])
DLV<-as.numeric(dimnames(table)[[1]])
mcV<-as.vector(table)
Xmbar<-tapply(data[,1],list(data[,2]),mean)["0"]
Smsquare<-tapply(data[,1],list(data[,2]),var)["0"]
g<-Smsquare/(Xmbar-(sum(DLV)/2))ˆ2
n<-length(data[,1])
m<-sum(data[,2]==0)
k<-length(DLV)
mc<-numeric(k)

mc<-numeric(k)
u<-numeric(n)

for(r in 1:k) {
for(i in 1:n) {
if(data[i,1]==DLV[r] && data[i,2]==1)
u[i]<-1
else
u[i]<-0
}
mc[r]<-sum(u)
}
mu0.hat<-Xmbar
sig0.hat<-Smsquare
muhat<-numeric(NumI)
sighat<-numeric(NumI)

w<-matrix(0,n,2)
ww<-matrix(0,n,2)
w[,2]<-data[,2]
ww[,2]<-data[,2]

for(i in 1:n) {
if(data[i,2]==1) {
z0<-(data[i,1]-mu0.hat)/sqrt(sig0.hat)
d0<-dnorm(z0)
p0<-pnorm(z0)
wdp0<-d0/p0
w[i,1]<-mu0.hat-(sqrt((sig0.hat))*wdp0)
ww[i,1]<-(wdp0)*(wdp0+z0)

}
else {

w[i,1]<-data[i,1]
ww[i,1]<-data[i,1]
}
muhat[1]<-mean(w[,1])
num0<-sum((w[,1]-muhat[1])ˆ2)
dnum1<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnum0<-m+dnum1
sighat[1]<-num0/dnum0
}
for(j in 2:NumI) {
for(i in 1:n) {
if(data[i,2]==1) {
ze<-(data[i,1]-muhat[j-1])/sqrt(sighat[j-1])
de<-dnorm(ze)
pe<-pnorm(ze)
wdpe<-de/pe
w[i,1]<-muhat[j-1]-(sqrt((sighat[j-1]))*wdpe)
ww[i,1]<-(wdpe)*(wdpe+ze)

}
else {
w[i,1]<-data[i,1]
ww[i,1]<-data[i,1]

}
muhat[j]<-mean(w[,1])
nume<-sum((w[,1]-muhat[j])ˆ2)
dnum2<-tapply(ww[,1],list(ww[,2]),sum)["1"]
dnume<-m+dnum2
sighat[j]<-nume/dnume

}

if(abs(muhat[j]-muhat[(j-1)])<1e-007 && abs(sighat[j]-sighat[(j-1)])<1e-007) break
muhatf<-muhat[j]

sigsqhatf<-sighat[j]
sighatf<-sqrt(sighat[j])

}
musighat<-c(muhatf,sighatf)
musighat
}

EM.EstimatesPooled<-AbouEMmultvect(datacomb,20)
EM.Estimates1<-AbouEMmultvect(data1,20)
EM.Estimates2<-AbouEMmultvect(data2,20)
EM.Estimates<-rbind(EM.EstimatesPooled,EM.Estimates1,EM.Estimates2)
datacombest<-numeric(n)

for(i in 1:n){
if(datacomb[i,2]==1) datacombest[i]<-log(pnorm((datacomb[i,1]-EM.EstimatesPooled[1])/EM.EstimatesPooled[2]))

else datacombest[i]<-log((1/EM.EstimatesPooled[2])*dnorm((datacomb[i,1]-EM.EstimatesPooled[1])/EM.EstimatesPooled[2]))
}
Loglikelihood.H0<-sum(datacombest)

data1est1<-numeric(n1)
for(i in 1:n1){
if(data1[i,2]==1) data1est1[i]<-log(pnorm((data1[i,1]-EM.Estimates1[1])/EM.Estimates1[2]))

else data1est1[i]<-log((1/EM.Estimates1[2])*dnorm((data1[i,1]-EM.Estimates1[1])/EM.Estimates1[2]))
}
Loglikelihood.HAdata1<-sum(data1est1)

data1est2<-numeric(n2)
for(i in 1:n2){
if(data2[i,2]==1) data1est2[i]<-log(pnorm((data2[i,1]-EM.Estimates2[1])/EM.Estimates2[2]))

else data1est2[i]<-log((1/EM.Estimates2[2])*dnorm((data2[i,1]-EM.Estimates2[1])/EM.Estimates2[2]))
}
Loglikelihood.HAdata2<-sum(data1est2)
Loglikelihood.HA<-Loglikelihood.HAdata1+Loglikelihood.HAdata2
chisquare0<- -2*(Loglikelihood.H0 - Loglikelihood.HA)
p.value<- 1 - pchisq(chisquare0 , 1)
Test.Result <- c(chisquare0,p.value)
Test.Output<- rbind(EM.EstimatesPooled,EM.Estimates1,EM.Estimates2,Test.Result)
Test.Output

As<-matrix(0,4,6)
As[1,1]<-"------"
As[1,2]<-"----------"
As[1,3]<-"----------------"
As[1,4]<-"----------------"
As[1,5]<-"----------"
As[1,6]<-"-------"
As[2,1]<-round(EM.EstimatesPooled[1], 4)
As[2,2]<-round(EM.EstimatesPooled[2], 4)
As[2,3]<-round(Loglikelihood.H0, 4)
As[2,4]<-round(Loglikelihood.HA ,4)
As[2,5]<-round(chisquare0, 4)
As[2,6]<-round(p.value, 4)
As[3,1]<-round(EM.Estimates1[1], 4)
As[3,2]<-round(EM.Estimates1[2], 4)
As[3,3]<-" "
As[3,4]<-" "
As[3,5]<-" "
As[3,6]<-" "
As[4,1]<-round(EM.Estimates2[1], 4)
As[4,2]<-round(EM.Estimates2[2], 4)
As[4,3]<-" "
As[4,4]<-" "
As[4,5]<-" "
As[4,6]<-" "
dimnames(As)<-list(c( " ", " Poold.Data: ", " Data 1: ", " Data 2: "),
c("mu.hat","sigma.hate","loglikelihood.H0","loglikelihood.HA", "Chisquare0", "P Value"))
print(As,quote=F)
invisible()

}

copperAll<-matrix(c(1,1,3,3,5,1,4,4,2,2,1,2,5,11,1,2,2,2,2,20,2,2,3,3,20,10,7,5,2,2,10,7,
12,1,20,16,5,1,2,5,3,2,8,7,5,5,2,10,5,5,2,10,2,4,5,2,3,9,5,2,2,2,2,1,1,
1,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0,1,
0,0,1,0,0,1,0,0,0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0),65,2)
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copperBas<-matrix(c(2,2,12,2,1,10,10,4,10,1,1,2,2,1,2,10,3,1,1,1,3,5,17,23,9,9,3,3,15,5,
4,5,5,5,4,8,1,15,3,3,1,6,3,6,3,4,5,14,4,
0,0,0,0,0,1,1,0,1,1,0,1,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0),49,2)

> Abou.Two.Lognormal.Estimation.MultipleDL(copperAll, copperBas, NumI, T, T)
mu.hat sigma.hate loglikelihood.H0 loglikelihood.HA Chisquare0 P Value
------ ---------- ---------------- ---------------- ---------- -------

Poold.Data: 0.9825 0.8627 -120.6048 -119.8795 1.4504 0.2285
Data 1: 0.9442 0.8005
Data 2: 1.0331 0.9355
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