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Abstract

In this paper, we propose and explore a semiparametric approach to analyzing longitudinal binary data often
observed in clinical studies. We applied second-order GEE approach to analyze longitudinal binary responses
based on a partially linear single-index model. We use a local polynomial smoothing technique to estimate the
single-index. We study the empirical properties of the proposed estimators using simulations. The empirical results
demonstrate that if the true underlying model is partially linear, then our proposed method generally provides
unbiased and efficient estimators. The proposed method is also applied to some real data sets obtained from
longitudinal studies.

Keywords: Generalized estimating equation, Single-index model, Local polynomial smoothing, Longitudinal
data, Marginal model, Single-index model.

1. Introduction

The commonly used linear regression paradigm models a dependent variable Y as a linear function of a vector-
valued independent variable x in the form E[Y|x] = X', for a vector of unknown parameters 8. Generalized linear
models (GLMs) provide a flexible extension of linear models by assuming that the dependent variable Y is of the
form E[Y[x] = ¢(x’B), for some known inverse link function or transfer function ¢, which includes the commonly
used logistic regression with ¢(z) = 1/(1 + e79).

The case when both ¢ and B are unknown is referred to as single-index models (SIM). These models involve
challenging problems of jointly estimating ¢ and 8, where ¢ may come from a large non-parametric family such
as the family of all monotonic functions.

In practice, the relationship between the response and covariates may be very complex and linear terms may not
be adequate to feature that relationship. Under these circumstances, it might be preferable to include a linear
term X’ and a nonlinear term ¢(u’€) in a semiparametric regression, where ¢ is a smooth but unknown function.
These models are a natural combination and generalization of simpler models already in the literature, namely
single-index models and partially linear models. Carroll et al. (1997) called it generalized partially linear single-
index models (GPLSIM). Li (1991) noted that if ¢ is monotone, then & takes on the same general meaning as
“effect” parameters as would occur in ordinary linear models. Furthermore, it is a widely applied method to
include a nonparametric function into the model for covariates u that have large dimension and are of little interest
(e.g., confounders). This allows us to make inference on the effects of x while making minimal assumptions
on u. Marginal semiparametric models and their various extensions have become increasingly popular (see, for
example, Carroll et al., 1997; Fan and Li, 2004; Wang et al., 2005; and Yi et al., 2009; among others). Carroll
et al. (1997) propose estimates of the unknown parameters (8, ¢) and unknown function ¢ using quasi-likelihood
and local polynomial regression and obtain their asymptotic distributions. However, they did not consider the joint
estimation of the marginal mean parameters and association parameters.

In many applications, simply working on the marginal mean responses could be very restrictive. Estimation of
the association parameters may be the central theme of the study. For example, in familial studies of inherited
traits and developmental toxicology studies of laboratory animals, subjects in a family or cluster share common
genetic traits or are subject to common environmental factors, and hence it is of prime scientific interest to study
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the association between responses.

In this paper, we propose a method based on Prentice’s (1988) second-order GEE approach to analyze longitudinal
binary responses under partially linear single-index models. The computing algorithm for solving usual estimating
equations based on the Newton-Raphson method cannot be directly employed due to the inclusion of a nonlinear
function whose form is unknown. To circumvent this problem, following Carroll et al. (1997), we use a local
polynomial smoothing technique to perform estimation of the single-index. We study the performance of the
proposed method using simulations.

The paper is organized as follows. Section 2 introduces partially linear single-index models for analyzing binary
longitudinal data. Section 3 describes the proposed second-order GEE approach for fitting single-index models.
Section 4 discusses asymptotic properties of the proposed semiparametric GEE estimators. Section 5 presents
results from a simulation study, which was carried out to investigate the empirical properties of the proposed esti-
mators. Section 6 presents applications of the proposed method using two real data sets obtained from longitudinal
studies. Section 7 gives the conclusions of the paper.question.

2. Single-Index Model for Binary Response

Suppose in a longitudinal study, there are N subjects and each subject is observed at a fixed set of T time-points.

Let Y;; denote a binary response variable from subject i observed at time 7 fori = 1,...,Nand ¢t = 1,...,T. For
subject i, we have a T x 1 response vector Y; = (Y;1,...,Yir). Lety; and y; denote the realizations of the responses
Y, and Y, respectively. Also, let X;; = (Xi11, ..., Xirp)” and Wy = (i1, . .., Uiry)’ denote p X 1 and g X 1 vectors of

covariates, respectively, from subject i at time ¢, which may be time-dependent or fixed across the observation

times. Define x; = (xl’.l, ..., X7) and u; = (ul’.l, ..., ;)" as the vectors of covariates for subject i.

Assume that the marginal distribution of Y is Bernoulli:

Y, ~ Bernoulli(p;), i=1,...,N; t=1,...,T, (1

with the probability of success,
pir = EYilxi,05) = P(Yy = 1]x;,w;). 2
Denote p; = (pi1, ..., pir)’ . Assuming that the mean of response variable Y;; depends only on the covariate vector

for subject i at time ¢, i.e., p; = E(Yi|X;, w;) = E(Yy[Xir, u;r) (Pepe and Anderson, 1994), we consider modelling the
mean response by a partially linear single-index logistic regression model in the form

logit(p;,) = log (%) =x,B+o;§), with [|€ll=1, 3)
— Vit

where B and & are p X 1 and g X 1 unknown parameter vectors, respectively, and ¢ is an unknown smooth function.
The restriction ||€]| = 1 ensures identifiability of & (Carroll et al., 1997). Model (3) generalizes the usual logistic
regression in the sense that a nonlinear term, ¢(u;£), is included in the model. If ¢(.) is specified as the identity
function, then model (3) becomes an ordinary logistic regression model with a known link function.

The marginal variance of the response variable Y}, is specified as a function of the marginal mean as

vie = var(Yy[x;;) = pi(1 = pir). 4
We assume that Y}, and Y;, are uncorrelated when i # /. Let

corr(Yy, Yir) = ay &)

represent the correlation between the responses Y;; and Y; for the given vector of covariates x;. Denote @ =
(a12,..., 17, @23, ...,ar_17)" as the vector of correlation parameters.
3. Methods of Estimation
3.1 GEEs When ¢ is Identity

If one naively assumes that the single-index ¢ is identity, then the regression and association parameters may be
estimated by using the ordinary GEEs (Liang and Zeger, 1986). In this case, estimates of the regression parameters
(B, &) may be obtained by solving the estimating equations

N
Upe(B.6.0)= ) DIV (Yi—p) =0, ©)

i=1
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where D; = (0p;/0B,0p;/0&), V; = Bil/ ZR(a)Bil/ 2 is the marginal covariance matrix of Y; with B; = diag{p;;(1 —
pi), pio(1 — pi) ..., pir(1 = pi7)} and R(e) is a correlation matrix for Y; depending on the vector « of correlation
parameters. The above equations can be solved numerically for § and & using an iterative method.

Liang and Zeger (1986) considered estimating the association parameters by the method of moments, which uses
the Pearson residuals

. it = Pir)
= QP @
(1= pi)
The moment estimators of @, may be obtained as
N
G = ) Faufie /(N = (p + q), (8)

i=1
where p and g are the dimensions of 8 and &, respectively.

Prentice (1988) considered an extension of the GEE approach to allow joint estimation of the regression parameters
(B, &) and the association parameters «. Specifically, a GEE estimator of the correlation parameter @ may be
obtained from a second set of estimating equations by noting that the “sample correlation”

Yt = pi) Yiu = Din)

Ziu = ZiulP) =
e (PiquPiuqi)"?

9
has mean p;,,, and variance

Wine = 1+ (1 = 2pi)(1 = 2pi) (P Piudiv)”*Pitie = Prus (10)

fort<u<T,i=1,...,N,andt=1,...,T. LetZ; = (Zilz,u-,ZilT,ZiZS,--~,Zi,T—l,T)/ andpi = (pilz,...,pnr,
Pi23s s PiT-1T) -

Then following Prentice (1988), the second-order GEE (GEE2) estimators of (8, £, @) may be obtained by solving
the estimating equations

N
Ups(B.6.0)= ) DIV (Yi—p) =0, (11)
i=1
N
Uo(B.6.0) = ) GW;' (Zi - p) =0, (12)
i=1

where G,‘ = 6pi/6a/ and W,‘ = diag{wilz, e WIHT S WiR3, ey Wi,T—l,T}'
3.2 Semiparametric GEEs When ¢ is Unknown

An unknown smooth function ¢ leads to a partially linear single-index model, as defined in (3). For this, the esti-
mating functions Ug¢ and U, in (11) and (12) involve the unknown function ¢. We propose to use a nonparametric
approach to estimating ¢ locally prior to estimating the regression parameters (8, &) and association parameters .

Assuming that the function ¢(c) has a second derivative, we may approximate ¢(c) by a locally linear function
within the neighborhood of ¢, via the Taylor series expansion, ¢(c) = ¢(co) + ¢ (co)(c — cp), for a given point
co, where ¢V(cy) is the first-order differentiation of ¢(c) with respect to ¢ evaluated at cy. Denote 179(co) = ¢(co),
mi(co) = ¢V (co), and 9(co) = (170(co), M (co))'.

We also denote C;; = u}¢&, ¢,(c,§) = (1,C;; — ¢), @i(c) is a t X 2 matrix with the tth row ¢;(c,£), and A; =
diag{ pl(.[l),t =1,...,T}, where pf.tl) is the first-order derivative of the mean function p;, evaluated at X8 + ¢(u;,£).
Let K(c) be a kernel function (or a symmetric density function) with a compact support and %z be a bandwidth.
Denote Kj,(a) = K(a/h)/h and Ky;(¢) = diag{K,(C;; — ¢),t =1,...,T}.

We describe below an algorithm for simultaneous estimation of the unknown function ¢, mean parameters (8, &)
and correlation parameters @. We adopt Prentice’s (1988) second-order GEE approach to conduct simultaneous
estimation of (B, &) and «.

Step 0. (Initialization step). Fit a parametric logistic model assuming ¢ = 1 to obtain initial values

(Bo- €o- o) and set & = &,/II&,|l. B = By and & = a.
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Step 1. For a given point ¢ in a selected grid, find @(c, B.& &) = 1iy(c) and 77 (c) by solving the equations

N
> D AKnV; (Vi =) =0, (13)

i=1

with respect to 7(c), where @, i(c) and K,h(c) are @;(c) and Ky, (c), respectively, with & replaced by f P =
(p,l,;. ., pir) With p;; = x”ﬂ + ¢,(c, f)n(c) g(a) = exp(a)/{1 + exp(a)}, A; is A; with p;, replaced by py,
and V; is a “working independence” diagonal matrix with diagonal elements V,t = pu(1 = Pir).

Step 2. Given the estimate @(c, ,@, &, &) = fo(c) and 7 (c) for points ¢ in the selected grid, update (ﬁ, £,&) by
solving the following two sets of estimating equations for (8, £) and a:

N
UpeB.€. Z Y - piB. £, @)} =0, (14)

Ua(B.€,0,¢) = Z G/W;'(Z;, - p) =0, (15)
i=1
where the mean vector p,(ﬂ f a') = (p,l(ﬁ £ q),...,pir(B, & @) with its (i, ))th element p;(B,& @) =
(XH,B + o B, €, a/)) D,, V,, Z and W are the same as D;, V;, Z; and W; in (11) and (12) respectively
with p; replaced by p;(B, €, @). The vector p; is the same as in Eq.(12).

Step 3. Repeat Steps 1 and 2 until the convergence of (8, £, &). The estimates at convergence are referred to
as the semiparametric second-order GEE (SGEE2) estimates.

When implementing the aforementioned algorithm, it is often feasible to obtain a set of initial values by fitting a
model with the ordinary GEE approach assuming that the single-index ¢ is the identity function. Our computational
experience suggest that the algorithm is not severely but somewhat sensitive to the initial values, and the above
choice of initial values ensures a convergence in estimation in most cases.

We conclude this section with a discussion on the bandwidth selection. As the bandwidth 4 affects both the bias
and variance of an estimator, there is always a trade-off between these two inference criteria. Bias correction
requires the choice of a relatively small bandwidth, whereas a smaller variance estimate needs a larger value of
the bandwidth. In principle, the bandwidth selection is data driven, and traditional methods such as the cross-
validation approach may be applied to select a proper bandwidth 7 based on available data. Carroll et al. (1997)
noted that a sensible choice of the bandwidth % is generally difficult. Instead, they suggested an ad hoc bandwidth,
given by figy X N72/15 = O(N~'73) | which satisfies Nh* — 0 and Nh?/(log N)* — co.

3.3 Computational Details for Semiparametric GEEs

To estimate the regression parameters (8, £€) and association parameters «, in Step 1 of our algorithm, we estimate
the single-index parameter ¢ by solving the estimating equations (13). For this, we can write

D (AANK. v-l Kh(Ctl ) t Kh(C[T - C)
q)i(C)Alth(C)Vi [ (Cl _ C)Kh(C] _ C) . (C[T _ C)Kh(CiT _ C) (16)
and
T ~
(MK (AOV(Y: =) = =1 Kn(Cit = ie — Pir) ] {
1(C) i zh(C)Vl ( i Px) [ Z[T:l(cit _ C)Kh(cit _ C)(y” _ ijit) s ( 7)

where log{p;;/(1 — pi)} = X8 + no(c) + (Ciy — c)ni(c), and K(.) is a kernel density function (e.g., standard normal
density). We use a Newton-Raphson iterative algorithm for estimating ¢. For this, we find

6(yn Pn) ~
it 1- it)s 18
“omto) =Pi(1 = Pir) (13)
a(yn Pn) ~ ~
Ci - i(1 = Pir), 19
“om©) =( o)pi(1 = pir) (19)
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and

9 {@(O&f(ih(cﬁfl (Y; - 51‘)}

on(c)
T T
o(y; i 0(yi i
D KiC= TP Y (€= i€ - 0 P ) |
~ I?l TIO t;l 0
80 - B 80~ b
D KiCi= TP Y (€= K€ - 0 P
=1 =1

, . _
D KiCii = il = pi) Y (Cia = OKNCis = pi(1 = i)

— t=1 t=1

D Ki(Ciu = )pi1 = i) ) (Cir = P Kn(Cis = )il = i)

L =1 =1

~T

__ Ky(Cir —©) Ki(Cir —©) y
| (Cia —OKu(Cit —¢) --- (Cir — O)Ky(Cir = ©)
le(l pi)  (Ca—o)pu(l = pi)
ﬁiT(l —pir) (Cir —o)pir(1 = pir)
= —0/(0)AKy(c)V; 'H, (20)

where the matrix H is defined by H = dp;/dn(c).

Given a set of current estimates i](s) = {fjoes)(€), sy (€)} of § = (1o, 11)’, we can obtain updated estimates f)(s ) =
{flocs+1)(©), Tis+1)(c)) from the iterative equations

-1 N

Agorny = Tl + Z O}()AK;()V;'H Z O}(AK(©V; (Yi =P, 1)

i=1 =1

fors =0,1,2,..., where the second term on the right side is evaluated at the current estimates 7}, = {fjo(5)(¢), ).

For a given estimate ¢(c; B, é, &) = fp(c) and 71 (c), the success probability p;; may be estimated from

logit(pi) = x.,B + flo(c), (22)
and also we can find
0pi
BZJZ Uij 771(C)Pzz(1 - Pzz) (23)

The iterative procedure for estimating (B8, £, @) begins with some initial values (ﬁzo),é‘zo),&go)) in Step O of our

algorithm, and produces updated values (Bgv 1) SE? +1)» &(y) from the iterative equations

N N
(BEHI)’S:ESH))/ = (st)’g:zx))l + (Z ﬁ;V;lﬁi) Z DVIHY: - piB. & )}, (24)

and
N Iy
Asen) = Q) + [Z G;W;lci] > GW ! (Zi-p). (25)
i=1 i=1
for s =0, 1,2,..., where the second terms on the right side are evaluated at the current estimates (ﬁ(s), é(x), Q)
4. Asymptotic Properties
4.1 Asymptotics for

The asymptotic distribution of the single-index estimator ¢(c) may be established under the following assumptions
(see Carroll et al., 1997, for details):
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i) The density function of u;, has a continuous second derivative on its support.

ii) The density function of u£ is positive and uniformly continuous for £ in a neighborhood of its true value.
iii) The second-order derivative ¢'»(c) is continuous on its support.
iv) The random vector X;; is assumed to have a bounded support with E(X; x;;) > 0.

v) K(.) is a symmetric probability density function with bounded support.

From Eq. (13) we can write,
N o~ o~ —_—
D VAKu @V (Yi=Pi) =0

N
UVAK# OV (Y =p) - Y VAKu(©V;! @i —p) =0
i=1

t[:vl
"2
N T N T
=2 D KiCir= )= pi) = ) Y KiCiu = (i = i) (26)

I
—_

t=1 i=1 t=1

Denote the right side of (26) by Zf\i 1 @i (fo(c)), where
T
O} (lo(c)) = ) Kn(Ciy = )(pis = pi)-
=1

Then by a Taylor series expansion, we get

Z@w@

N

0@ + Z

=1 flo(c)=no(c)

{fjo(c) = mo(c)}

M= HMz

1]
—_

T
Z Ki(Cit = o)pi(1 = pir) {flo(c) — no(c)} . 27

i t=1

Thus from (26) and (27), we get
@(c) = @(c) = fo(c) — no(c)
va1 Z;T 1 Kiy(Ciyy — )yir — pir)
Y ST Ko — Opa(1 = pi)

(28)

Let the marginal density of u’€ be denoted by f(.). Applying the asymptotic properties of the kernel estimators and
the Taylor series expansion, following Carroll et al. (1997) and Yi et al. (2009), we find the asymptotic expansion

R f a*K(a)da 1 NI
P(c) — p(c) = #(p(z)(c)h2 + NF© ; ; Ky(Ciy — 0)y

+oplh* + (Nh)™'/2), (29)

where Q; is the first element of the vector (¥; — pi)Q ' (¢)(1, x;,) and

sz(c>=E[pi,<1 p,,)( Xit, )

Xi Xix, Cy= c} . (30)

As a consequence, the asymptotic distribution of the single-index estimator ¢(c) is obtained as

2K(a)d
(NI {@(c)—go(c)—wsﬂ(c)hz} N(o J% K2<a)da), 31)
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where d(c) is the first diagonal element of the matrix ! (c).

4.2 Asymptotics for (B, £,@)

Applying the first-order Taylor series approximation, from Eqgs.(14)—(15) the vector of estimators
N'/2 [(B -B), (3 -&),(a- a')’] may be approximated by

il . . -1
-N! Uﬁaf((pffg)' 2 - Zechied N"PUpe(B.6.0.9) | _ fop 32)
-N- lﬁUtggg;m _N- 1aU.z<ﬁ§a¢> N120,(B. €, @, d)
From this, we have
Var (J7'L) = J ' Var(L)(J ™'Y, (33)
with
B Var(Ugg)  Cov(Ugg, U,)
Var) =N Cov(Tpe.Ug)  Var(U,)
_y-t|  ZE DV Var(Y) VD N DIVIICov(Y;, Z)W; ! G;
“7 | =X, G/W;ICov(Y,, Z) VD, ¥ GIW;Var(Z)W; G,
o A Ar
=N , 34
| A2 Ax )
where the variance and covariance terms may be approximated by
Var(Y;) ~ (Yi = pi) (Yi — p)’
Cov(Y:. Z)) ~ (Y; - p) (Zi - p;)
Var(Z)) ~ (Zi - p;) (Zi - p1) - (35)

Moreover, if ¢ is consistent, then the linear functions L generally have an asymptotic multivariate normal distribu-
tion with mean vector zero and covariance matrix

. 1 A A
¥, = lim N7! ) 36
L Nl—rgo ( A21 A22 ) ( )

A A ’
Thus the joint asymptotic distribution of N'/2 [(ﬂ -B),(E-&),(a- a)’] is multivariate normal with mean vector
zero and covariance matrix

T -1 . -1\
Y= 1\111_{20‘] ELAIII_IEO(J ). 37
Alsoas N — oo,
_,00g£(B. €, @, d) u LOYi-P) EhAY *‘ .
_N! Bs - _ i =P
a(B. €Y Z A Z oB.gy YR
N
=N"1 Y DVD; + 0,(1), (38)

since 8 (Y, — p)/0(B,€) = (=1)D; and 9DV /3(B, &)’ are fixed matrices that do not involve Y,. Similarly, as
8\7;1/60", aE;W;l /0’ and 6E;W;1/6(ﬂ, &) are all free of Y;, we can write as N — oo,

L 00pB g, ) o 0V
1 B& ZD

o me (V=D = 0,(1), (39)

i=1
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IUa(B.£..0) ) ) L aGW

13— - N~ ZGW Nlizlv(li—pi)

=N"" Z G)W;'G; +0,(1), (40)
i=1
and
00, (B, €. @,®) L0(Zi-p)) 0G;W; 1

N 2 N Y GIW! - —

9B, €y Z a(ﬂ £y Z aB, «f)’ -p)
=—N- ZG’Wl 6(,8 g), +0,(1). (41)

We can show that

0Zin 0pi . OPi R 1 N .
o P Y = i)+ Y = i) + 5 Y = pid(Yiu = i
6,8j {aﬁj( Diw) aﬁj( + — Dit) 2( + — Dir)( Diw)
6p Opiu
X 1_2A1 p ! 1 + 1_2/\1” p 1! itYitViuYiu /2 42
(' =2pi)biy Gy S~ %, (A =2pidPi Giu 77~ 8, (PiGitPiuGin)” (42)

To find the derivative 8Z;, /0&;1in (42), we can replace 0p;,/0B; and 0p;,/0B; by 8pi;/0&j and 8p;, /O j, respectively.

Hence as N — oo, we can write

7o SN DD, 0 )
- - Zi 1 G,Wl_l a(%zg) Zt]'il G;W:_lG
and
-1 _ ( Zl ﬁgvi_lﬁi)il 0
J=N TR B (44)
B (2, GIW;'G))
where

-1

- i“G;W;l(;J [ZG’WI a(ﬁg)')(iﬁv f)] . (45)

5. Simulation Study

To study the relative performance of the proposed SGEE2 method as compared to the ordinary GEE2 method, we
ran two sets of simulations. In the first set, the estimators were studied for the case when the true model is a linear
single-index model. In the second set, we considered the true model as a partially linear single-index model.

5.1 Response Model
We generated the data by considering a two-group design configuration with a binary response measured on four

occasions. The marginal mean response E(Y;|X;, u;, 5, €, @) was defined by

logit {E(Yi X, wir, 8, &, )} = Bx; + p(Erure + Eautoip + E3uzir), t=1,...,4, (46)

where x; is a dichotomous covariate indicating the group membership for the ith individual (i = 1, ..., N) observed
over a fixed set of T = 4 time-points. We considered P(X; = 1) = 0.5 throughout the simulations.

The data were generated from two different models. In the first model, covariates u;;’s were generated from the
uniform distribution U(0, 1), and parameters were fixed at 8 = 1 and £ = (£1,&2,&3) = (1/ V3, -1/ V3, 1/ \/3)’. In
the second model, covariates u;’s were chosen as the indicators of time-points, with uj; = 1ift = j(j = 1,2,3)
and u j; = 0 otherwise. The parameters were fixed at 8 = 1 and € = (£1,&,,&3)" = (1/ V3,1/v3,1/V3).
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Table 1. Comparison of Prentice’s (1988) ordinary second-order GEE (GEE2) with the proposed semiparametric
approach (SGEE2) when u;’s are continuous. [True parameter values: 5; = 1, § = (1/ V3, -1/ V3, 1/ \/§)’ and
a=03]

Fitted Model
GEE2 SGEE2
True Model Parameters Bias MSE Bias MSE

Linear B -0.0056 0.0731 0.0063 0.0843

& 0.0125 0.1081 0.0147 0.1231

& -0.0017 0.0921 -0.0846 0.0942

& 0.0058 0.0924 0.0734  0.0860

a -0.0020 0.0027 -0.0037 0.0028

Partially linear -0.0273  0.0592 0.0384 0.0934
& -0.2678 0.1591 -0.0030 0.0254

& 0.0820 0.1147 -0.0679 0.0207

& -0.2590 0.1639 -0.0032 0.0252

a -0.0056  0.0029 0.0034 0.0022

To assess the performance of our proposed semiparametric (SGEE2) approach, we compare it with the ordinary
second-order GEE (GEE2) approach of Prentice (1988) under two situations of data structures. First, we consider
a scenario where a standard GEE model well fits the data with a linear single-index model. As a linear function is a
special case of a nonlinear function, we expect that the proposed estimators would still be consistent, but there may
be a possible efficiency loss incurred. In order to generate the data, ¢ is specified as the identity function. Second,
we consider a scenario when our proposed method (SGEE2) well fits the data with a partially linear single-index
model where we chose ¢(a) = sin(z(1 — a)).

Throughout the simulations, data were generated under exchangeable correlation structures among the responses
and we chose corr(Yy;, Yir) = @ = 03 forall (r # ¢ = 1,...,T). Each simulation run was based on 1000 replications
of data sets, with each data set containing N = 100 subjects and T = 4 observations per subject.

5.2 Diagnostic Methods

The two methods were compared based on empirical biases and mean squared errors (MSEs) of the estimates. The
bias of an estimator 6 of 6 is estimated by

S A~
bias(d) ~ Z (935_ 28 47
s=1

where 6, is the eAstimate of 6 obtained from the sth simulated data set and S is the simulation size.The mean squared

error (MSE) of 6 is estimated by

@ -6’
5

S
MSE(0) ~ Z (48)
s=1

5.2 Results

Table 1 presents the empirical biases and mean squared errors (MSEs) of the estimators of the regression param-
eters (8, &1, &2, &3) and the correlation parameter @ for continuous covariates u;’s under both methods (GEE2 and
SGEE2). Table 2 repeats these results for discrete covariates u;’s.

Both Table 1 and 2 show very similar results from the two methods when the true model is single-index linear.
Although the finite sample biases from GEE2 tend to be smaller than those obtained from SGEE2, the biases from
SGEE?2 are still reasonably small. Also we notice that SGEE2 tends to produce larger MSE as compared to GEE2,
but the differences do not seem considerable. In summary, if a nonparametric function is included to the mean
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Table 2. Comparison of Prentice’s (1988) ordinary second-order GEE (GEE2) with the proposed semiparametric
approach (SGEE2) when u;’s are discrete. [True parameter values: 8; = 1, € = (1/ V3, 1/ V3, 1/ \/§)’ and o = 0.3.]

Fitted Model
GEE2 SGEE2
True Model Parameters Bias MSE Bias MSE

Linear Bi -0.0525 0.0360 -0.0543 0.0432

& 0.0219 0.0396  0.0436 0.0504

& 0.0119 0.0534 -0.0382 0.0340

& 0.0044 0.0438 -0.0326 0.0285

a -0.0027 0.0027 -0.0033 0.0026

Partially linear (3, -0.0321 0.0816  0.0107 0.0898
& 0.0076  0.0535 -0.0020 0.0499

& -0.0175 0.0578 -0.0415 0.0389

& -0.0435 0.0622 -0.0708 0.0432

1% -0.0099 0.0034 -0.0026 0.0033

response, where the true model is actually characterized by an ordinary single-index linear model, the proposed
method would still provide consistent estimates, though some efficiency loss may incur.

On the other hand, if the true underlying model is partially linear but we adopt a standard second-order GEE (in this
case, Prentice’s (1988) approach) model, then the resulting estimators could be biased. The biases for £ estimates
are apparent in Table 1 when covariates u;;’s are generated from a continuous distribution. We also observe that
SGEE2 provides lower MSE for the estimators of the linear coefficient 8, but the difference is not profound.
However, lower MSE from SGEE2 is more apparent for the estimators of £ and @, which is not surprising.

In Table 2, the two methods appear to provide similar results when the true underlying model is partially linear.
This is perhaps due to the fact that the non-linear covariates are all discrete binary variables. As a consequence, the
estimated single-index @(u’€) is not a smooth function. Hence our proposed method works simply as an ordinary
GEE method for this type of data set.

6. Applications
6.1 Analysis of ICHS Data

Alfred Sommer and colleagues conducted a study (which we will refer to as the Indonesian Children’s Health Study
or ICHS) in the Aceh province of Indonesia to determine the causes and effects of vitamin A deficiency in pre-
school children (Sommer, 1982). We present an analysis of infectious disease data on 250 Indonesian children, a
subset of the cohort studied by Somer, Katz, and Tarwotjo (1983). The preschool children were examined up to six
consecutive quarters for the presence of respiratory infection. There were 1,200 observations in total. We consider
complete data for the first four visits from 548 pre-school children with or without the respiratory infection.

We focus on the question of whether vitamin A deficient children are at increased risk of respiratory infection,
which is one of the leading causes of morbidity and mortality in children from the developing world. Such a
relationship is plausible because vitamin A is required for the integrity of epithelial cells, the first line of de-
fence against infection in the respiratory tract. Here the goal is to draw inferences on the change in respiratory
infection status in the presence of intraperson correlation based on our proposed method. The model parameters
were estimated and compared using the second order GEE (GEE2) approach of Prentice (1988) and our proposed
semiparametric approach (SGEE2).

We set the binary response variable Y;, = 1 if the ith child suffers from reparatory infection at the rth visit, and
0 otherwise, for i = 1,...,137 and t = 1,...,4. The covariates of interest include “Xerop”, which represents
presence/absence (1 or 0) of xerophthalmia, an ocular manifestation of chronic vitamin A deficiency; “Time”
represents time #; “Age” represents the baseline age in months (centered at 36); height for age is represented by
“Height”, as a percent of the National Center for Health Statistics (NCHS) standard (centered at 90%), which
indicates long-term nutritional status.
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The marginal mean response p;; = E(Y},) is defined as a function of the covariates in the form

logit(pi;) = Bo + B1(Xerop); + (& Time;; + §Age; + £3Height;) (49)

where ¢ is an unknown function. Exchangeable association structure is considered here. We take the standard
normal density as the kernel. The data-driven bandwidth 7 is used as discussed in Section 3.2.
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Figure 1. Estimated nonlinear curves for ICHS study.

Table 3. Estimates and Standard Errors (SEs) of Regression and Association Parameters for the ICHS Study.

Covariates GEE2 SGEE2

Estimate SE z-value Estimate SE z-value
Intercept -0.734 0.761 -0.96 -0.249 0.762 -0.33
Xerophthalmia 1.448 0.634 2.29 1.451 0.628 2.31
Time -1.452 0.641 -2.27 -0.525 0.264 -1.99
Age -2.114 0.722 -2.93 -0.735 0.289 -2.54
Height for age -1.133  0.788 -1.44 -0.429 0.308 -1.39
a 0.049 0.034 1.43 0.048 0.037 1.30

Figure 1 displays the estimates of the single index ¢(u’§) against u’é. Here the estimated curve $ hardly shows any
evidence of a nonlinear trend. This suggests that the data might be well fitted by an usual GEE model. Our finding
agrees with that of Zeger and Karim (1991). In their study, the authors noted that there is no evidence that the
height-for-age relationship deviates from the logistic-linear model for the most undernourished children. However,
the inclusion of a nonlinear function ¢ allows model (49) to be more flexible to capture curvature, although the
interpretation of the nonparametric covariate effects differs from that in an ordinary GEE model. In principle, a
nonzero component of & suggests a significant predictor of the response, as commented in Carroll et al. (1997) .

Table 3 reports the estimates of the model parameters, their standard errors and corresponding z-values. We observe
that the estimates of the linear covariate effects from the two methods are generally close to each other. The
xerophthalmia coefficient is 1.448, indicating that the odds of suffering from respiratory infections is exp(1.448) =
4.25 times higher in vitamin A deficient children. The odds of suffering from respiratory infections appear to
decrease with increased time, age and height for age. The presence of intraperson correlation appears to be very
small and insignificant under both methods.
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6.2 Analysis of Smoking Data

We also present an analysis of data on cigarette smoking trends from the Coronary Artery Development in Young
Adults (CARDIA) study, an epidemiological study that recorded cardiovascular risk factors on five occasions over
a 10-year period in black and white males and females (Hughes et al., 1987). This study was conducted in four
urban centres (Birmingham, AL; Chicago, IL, Minneapolis, MN; and Oakland, CA) across the United States in
which a total of 5,115 young adults aged 18-30 years were followed prospectively and examined up to five times
from 1986 to 1996. Recruitment, restricted to blacks and whites, was carried out to achieve approximate balance in
sample size with respect to age, race, gender, and education. Study participants were scheduled for visits at years
0,2,5,7,and 10. We consider complete data for the first four visits from 3693 young adults with self reported
smoking status (yes/no).

Here the goal is to draw inferences on the change in smoking prevalence of young adults in the presence of
intraperson correlation based on our proposed method. The model parameters were estimated and compared using
the second order GEE (GEE2) approach of Prentice (1988) and the proposed semiparametric approach (SGEE2).

Let the binary response variable Y;; = 1 if the ith individual is a smoker at the tth visit, and O if he/she is a
nonsmoker. The marginal mean response p;; = E(Y;) is defined as a function of the covariates in the form

logit(pir) = Bo + B1(Age/10); + B Time, + f3Eduh; + B4Educ;
+@(£1Racebf; + &,Racewm; + £3Racewf)), (50)

fori =1,...,3693 and t = 1,...,4, where Age; = age of individual i in years at baseline time; Time, = year
since the baseline measurement = 0,2,5,7; the binary indicators Eduh; = 1 if ith individual’s education level is high
school or less, and 0 otherwise; Educ; = 1 if education level is up to some college, and O otherwise; Racebf; = 1
if the person is a black female, and 0 otherwise; Racewm; = 1 if the person is a white male, and O otherwise; and
Racewf; = 1 if the person is a white female, and 0 otherwise. Exchangeable association structure is modeled here.
We take the standard normal density as the kernel. The data-driven bandwidth 4 is used as discussed in Section
3.2.
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Figure 2. Estimated nonlinear curves for the smoking data from the CARDIA Study

Figure 2 displays the estimates of the single index ¢(u’§) against u’é. Here the estimated curve @(u’€) does not
show much evidence of a nonlinear trend, though a small curvature is visible. This suggests that the data might be
well fitted by an ordinary GEE model.

Table 4 reports the estimates of the model parameters, their standard errors, and corresponding z-values. We
observe that the estimates for all the covariates from both methods are generally close to each other. The primary
reason for similar parameter estimates for the covariates is that the non-linear covariates that are included in this
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Table 4. Estimates and Standard Errors (SEs) of Regression and Association Parameters for the CARDIA Study.

Covariates GEE2 SGEE2

Estimate SE z-value Estimate SE z-value
Intercept -2937 0.716 -4.10 -3.732  0.718 -5.20
Age/10 0.499 0.279 1.79 0.498 0.280 1.78
Time -0.011 0.012 -0.92 -0.011 0.012 -0.92
Education (High School or less) 1.346 0.285 4.73 1.347 0.285 4.73
Education (Some college) 1.055 0.240 4.39 1.056 0.241 4.39
Race (Black Female) -0.766  0.277 =2.77 -0.890 0.168 -5.30
Race (White Male) 0.046 0.281 0.16 -0.068 0.309 -0.22
Race (White Female) -0.332  0.308 -1.08 -0.452 0.245 -1.84
a 0.741 0.030 24.95 0.730 0.058 12.63

model are all binary variables. As a result, our estimated single-index @(u’€) is a step function as we can see from
Figure 2. Hence our proposed method performed as an ordinary GEE method for this data set.

The results from Table 4 suggest that the level of education has strong influence on the smoking status of the
subjects. For example, the young adults are estimated to have exp(1.346) = 3.85 times higher odds to be a smoker
if their level of education is up to high school or less than those who have a college degree or more. The presence
of intraperson correlation appears to be high and significant under both methods.

7. Conclusions

The purpose of this research was to propose and explore a semiparametric approach to analyzing longitudinal
binary data. Here the interest lies in the simultaneous estimation of the marginal mean parameters and association
parameters. In some previous studies (e.g., Grace et al., 2009), an independent working correlation structure is
considered when conducting estimation of the mean parameters. In our proposed method, we incorporate the true
correlation structure into the estimating equations for the regression parameters.

The simulation results demonstrate that if the true underlying model is partially linear, then our proposed method
generally provides unbiased and efficient estimators of the model parameters. Even if we consider a misspecified
nonparametric function in the marginal mean response, which is actually characterized by an ordinary single-index
linear model, the proposed method still leads to consistent estimates, although some efficiency loss may incur.
Therefore, the proposed method has applications in a wide variety of settings. It can also be generalized for
accommodating data with somewhat complex association structures.
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