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Abstract

Maximum likelihood ratio test statistics may not exist in general in nonparametric function estimation setting. In
this paper a new class of generalized likelihood ratio (GLR) tests is proposed for nonparametric goodness-of-fit
testing via the asymptotic variant of the minimax approach. The proposed nonparametric tests are developed to
be asymptotically distribution-free based on latent variable representations. The nonparametric tests are amelio-
rated to be appropriately complex so that they are analytically tractable and numerically feasible. They are well
applicable for the “adaptive” study of hypothesis testing problems of growing dimensions. To assess the pro-
posed GLR tests, the asymptotic properties are derived. The procedure can be viewed as a novel nonparametric
extension of the classical parametric likelihood ratio test as a guard against possible gross misspecification of the
data-generating mechanism. Simulations of the proposed minimax-type GLR tests are investigated for the small
sample size performance and show that the GLR tests have appealing small sample size properties.

Keywords: kernel, latent variable representations, generalized likelihood ratio, minimax approach

1. Introduction

Parametric models have the advantage of easy interpretation and efficient computation over nonparametric models.
However, the parametric models are often suspected of being at the risk of misspecification in specific real appli-
cations. A lot of statistical problems may not be parametric in practice. For example, the objects of estimation
or testing are speech, images, and so on. They can be treated as unknown infinite-dimensional parameters that
belong to some specific functional set. As a guard against possible misspecification of the data-generating mech-
anism, nonparametric alternatives appear to avoid the misspecification problem by making statistical models rich
enough to include essentially all relevant sampling distributions emerging in real world applications. Nonparamet-
ric goodness-of-fit tests deal with testing the adequacy of model complexity to data by adopting the nonparametric
alternatives.

Nonparametric goodness-of-fit tests have a long history in statistics (D’Agostino and Stephens, 1986) and are in-
creasingly commonly used in data mining, pattern recognition, machine learning and statistical analysis. There are
many connections between nonparametric hypothesis testing and nonparametric estimation. However, the nonpara-
metric hypothesis testing theory is essentially different from the estimation theory due to curse of dimensionality.
There are a lot of new effects in nonparametric hypothesis testing theory compared with parametric hypothesis
testing as well as nonparametric estimation (Ingster, 2002). In nonparametric goodness-of-fit tests, there are many
discrepancy based approaches designed to solve the problems of testing against nonparametric alternatives. The
classical approaches based on L2 and L∞ are popular in nonparametric goodness-of-fit tests. They measure the
difference between the estimators under null and alternative models and are the generalization of the Kolmogorov-
Smirnov (KS) and Cramér-von Mises (CV) types of statistics. However, the approaches suffer some drawbacks.
First of all, the null distribution of the test statistic is unknown and depends critically on nuisance parameters.
Second, the choices of measures and weights can be arbitrary, which limits the applicability of the discrepancy
based methods (Fan et al., 2001). Useful counterpart approaches are the maximum likelihood ratio approaches
that are generally well applicable to most parametric hypothesis testing problems. The most fundamental property
that significantly contributes to the success of the maximum likelihood ratio approaches is that their asymptotic
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distributions under null hypotheses are independent of nuisance parameters. The property can determine the null
distribution of the likelihood ratio statistic via using either the asymptotic distribution or the Monte Carlo simula-
tion by setting nuisance parameters at some estimated values. In addition, likelihood-based approaches generally
lead to more efficient estimation of unknown model parameters and allow for the proper assessment of the uncer-
tainty, which has a practical impact. The traditional maximum likelihood ratio tests are not naturally applicable
to the problems with nonparametric models as alternatives in general. First of all, the nonparametric maximum
likelihood estimate may usually not exist in a density function space that specifies the nonparametric density alter-
natives and thus the nonparametric maximum likelihood ratio tests are not applicable in general (Bahadur, 1958,
Le Cam, 1990). Even if the nonparametric maximum likelihood estimate exists for the alternatives, it is awkward
to select the same optimal smoothing parameter for both steps in the nonparametric estimation for the nonpara-
metric alternatives and the testing against the nonparametric alternatives. Some likelihood ratio test procedures
that are distribution-free under parametric alternatives may become dependent on nuisance parameters under non-
parametric alternatives since infinite dimensional neighborhood is around a null hypothesis. To attenuate these
difficulties arising from the nonparametric alternatives problems due to the curse of dimensionality, an approach
based on the asymptotic variant of the minimax approach is proposed along the line of parametric likelihood ratio
tests that possesses distribution-free property. It is a method that tests the adequacy of the model complexity to
avoid overfitting in nonparametric setting. To aim at a unified principle for nonparametric alternatives problems
from uncertainty perspective, the proposed approach replaces the maximum likelihood estimate under the nonpara-
metric density alternatives by tractable least favorable nonparametric estimates allowing the flexibility of choosing
the same optimal tuning parameters.

In the next section, the tests are introduced and formulated. Section 3 presents the main results on asymptotic rate
of convergence. Simulation results on the small sample size performance of the GLR tests are contained in Section
4. All mathematical proofs of main results are collected in an appendix.

2. The Test Statistics

Assume X = (X1, X2, · · · , Xn) is an independent identically distributed (i.i.d) random sample from the probability
density function (pdf) f (x) with cumulative distribution function (CDF) F. X(i), i = 1, 2, · · · , n are the order statistics
of X. Let X(i) = X(1) if i ≤ 0 and X(i) = X(n) if i ≥ n+1 thereafter for notational simplicity. The sample directly tells
us much about the F via the empirical cumulative distribution function (ECDF) Fn(x) = 1

n
∑n

i=1 I(Xi ≤ x), where
I(·) is an indicator function. The quantile function (qf) Q ≡ F−1 of the F defined as

Q(u) := inf{x : F(x) ≥ u}, 0 < u < 1,

is sometimes the object of more direct interest than the F itself. The data X relate directly to Q simply by taking
the left-continuous inverse of Fn, namely the usual empirical quantile function (eqf)

Qn(u) =
n∑

i=1

X(i)I( i−1
n ,

i
n ](u), 0 < u < 1. (1)

Let F0 = { f0(x, θ), θ ∈ Θ0} be a family of probability density functions with CDF F0(x, θ) that are measurable
and absolutely continuous in x for every θ and continuous in θ for every x, where Θ0 is an open subset of a d-
dimensional space Rd. The problem of interest is to test the null hypothesis that the unknown density f is in F0,
i.e.

H0 : f = f0(x, θ), for some θ ∈ Θ0, (2)

versus the alternative hypothesis

Ha : f , f0(x, θ), for all θ ∈ Θ0. (3)

Our generalized likelihood ratio tests are proposed for the hypothesis via λn = ℓn( f ) − ℓn( f0), where ℓn(·) is a
log-likelihood functional of a density function dependent on sample size n. A large value of λn is an evidence
against the null hypothesis H0 since the alternative family of nonparametric models is far more likely to generate
the observed data.

2.1 Nonparametric Likelihood Estimate under Nonparametric Density Alternatives

On one hand, due to a lack of clear knowledge about the data-generating mechanism, we can only make very
general assumptions and leave a large portion of the mechanism unspecified so that the distribution f of the data is
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not specified by a finite number of parameters. Such nonparametric models are quite popular guard against possible
gross misspecification of the data-generating mechanism especially when data can be collected adequately. Further,
latent variables can be introduced to allow relatively more complex log-likelihood of f , i.e., ℓn( f ) over observed
data under the nonparametric alternatives, to be expressed in terms of more tractable nonparametric estimates of
the ℓn( f ) over the expanded space of observed and latent variables. The introduction of latent variables thus allows
least favorable log-likelihood ℓn( f ) to be constructed from simpler nonparametric estimates with the flexibility of
choosing the same optimal tuning parameters. The latent variable representations for the log-likelihood by the
introduction of the order statistics U(1), · · · , U(n) are as follows:

ℓn( f ) =
n∑

i=1

log f (X(i))

= −
n∑

i=1

log
1

f (Q(U(i)))

= −
n∑

i=1

log q
(
U(i)

)
, (4)

where q(·) = ( f ◦ Q(·))−1 that Turkey (1965) called the sparsity function and Parzen (1979) called the quantile
density function (qdf). The quantile density function is of much practical relevance mainly because it appears as
part of the asymptotic variance of empirical quantiles. Histogram-type estimators of the quantile density function
have been suggested by Siddiqui (1960) and studied by Bloch and Gastwirth (1968), Bofinger (1975), Reiss (1978),
Sheather and Maritz (1983), and Falk (1986). Falk (1984) showed that the kernel type estimate of q-quantile beats
the sample q-quantile under suitable conditions. The kernel estimate of the quantile function Q(·) is

Q̂n,hn (t,Qn) :=
∫ 1

0
Qn(u)Khn (t − u)du, 0 < t < 1, (5)

where Khn (·) = 1
hn

K( ·hn
) with bandwith hn. Then

q̂n,hn (t,Qn) :=
d
dt

Q̂n,hn (t,Qn) =
d
dt

∫ 1

0
Qn(u)Khn (t − u) du, 0 < t < 1.

can be a kernel estimator of q(·). To make the estimator well defined, the kernels Khn must satisfy certain differen-
tiability conditions. The conditions detailed in the next section result in

q̂n,hn (t,Qn) =
∫ 1

0
Qn(u)khn (t − u)du, 0 < t < 1, (6)

where the kernel k(·) = K′(·) is the derivative of K with khn (·) = 1
h2

n
k( ·hn

).

The q(U(i)) in (4) can be estimated by q̂n,hn (U(i),Qn). Thus ℓn( f ) in (4) can be estimated by

−
n∑

i=1

log q̂n,hn (U(i),Qn). (7)

On the other hand, both the nonparametric estimates of the quantile density function q̂n,hn (·,Qn) and the log like-
lihood function − log q(U(i)) are evaluated at the same training data set. To be a predictive quantity without mod-
eling noise components of training data, the log-likelihood in (7) is evaluated at the grids of the means EU(i),
Gn={ i

n+1 , i = 1, · · · , n}, in the interval [0, 1] given the sample size n. The grid Gn then characterizes the U(i)’s.
The total number of points in the grid Gn grows linearly with the sample size n. The statistic (7) thus can be
ameliorated by setting U(i) as i

n+1 to be numerically efficient. With enough data, this comes arbitrarily close to the
true log-likelihood function.

Let an =
n

n+1 , ⌈x⌉ = min{k, k ≥ x, k ∈ Z}, the ceiling of a real number x is the smallest integer ≥ x. Calculations
using integration by parts show that q̂n,hn at t = i

n+1 is a sum of local weighted order statistics:

q̂n,hn ( i
n+1 ,Qn) =

∑
j∈Ji

whni jX( j),
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where

whni j = Khn ( i
n+1 −

j−1
n ) − Khn ( i

n+1 −
j
n )

and j ∈ Ji = [mi,mi] with mi = ⌈ani − nhn + 1⌉ and mi = ⌈ani + nhn⌉ for each i. Note that whni j is a i
n+1 -centered

local difference kernel for j. In particular, if Qn(·) = Un(·), the uniform empirical quantile function of U(i), then
q̂n,hn ( i

n+1 ;Un) =
∑

j∈Ji
whni jU( j). It is well known from Wald’s Statistical Decision Theory that minimax problems

correspond to the Bayesian problems for the least favorable priors. The proposed generalized log-likelihood ℓ̂n( f )
under nonparametric alternatives can thus be estimated nonparametrically with numerically efficiency in the sense
of the least favorable priors,

ℓ̂n( f ) = −
n∑

i=1

log q̂n,hn

(
i

n+1 ;Qn

)
= −

n∑
i=1

log

∑
j∈Ji

whni jX( j)

 (8)

2.2 Parametric Likelihood Estimate under Parametric Null

Under the null hypothesis f = f0(x, θ) ∈ F0. θ can be estimated by maximum likelihood estimator θ̂n =

argmax
θ∈Θ0

Ln(X, θ), where Ln(X, θ) = 1
n
∑n

i=1 log f0(Xi, θ), we denote

ℓ̂n( f0) :=
n∑

i=1

log f0(X(i), θ̂n) (9)

2.3 Generalized Likelihood Ratio Test

The proposed minimax-type generalized likelihood ratio (GLR) test statistic Tn,hn = 2λ̂n with

λ̂n =ℓ̂n( f ) − ℓ̂n( f0)

= −
n∑

i=1

log q̂n,hn ( i
n+1 ;Qn) −

n∑
i=1

log f0(X(i), θ̂n)

= −
n∑

i=1

log q̂n,hn ( i
n+1 ;Un) −

n∑
i=1

log
f (X(i) )̂qn,hn ( i

n+1 ;Qn)

q̂n,hn ( i
n+1 ;Un)

+

n∑
i=1

log
f (X(i))

f0(X(i), θ̂n)

=Un,h + Vn,h +Wn(θ̂n)

where

Un,hn := −
n∑

i=1

log q̂n,hn ( i
n+1 ;Un)

Vn,hn := −
n∑

i=1

log
f (X(i))̂qn,hn ( i

n+1 ;Qn)

q̂n,hn ( i
n+1 ;Un)

,

Wn(θ̂n) :=
n∑

i=1

log
f (X(i))

f0(X(i), θ̂n)
.

Our asymptotic analysis shows that the first term Un,hn under the certain conditions detailed in the next section
dominates the asymptotic null distribution of Tn,hn while the other two terms can be asymptotically negligible.
Since Un,hn is a function of uniform random variables that do not depend on the underlying pdf f , the asymptotic
null distribution is therefore distribution-free.

3. Asymptotic Results

3.1 Asymptotic Null Distribution

Let xF := sup{x : F(x) = 0} and xF := inf{x : F(x) = 1}, −∞ ≤ xF < xF ≤ ∞. We need regularity conditions on
the kernel functions, smoothing parameters and density functions for our results. We assume that
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(K.1) The K(·) is a pdf, symmetric about 0;

(K.2) ∥K∥∞ < ∞;

(K.3) K(·) is at least three times continuously differentiable on the compact support (−1, 1).

(H.1) hn ↓ 0 and nhn ↑ ∞ as n→ ∞;

(H.2) nhn/ log n→ ∞ as n→ ∞;

(H.3) nh
1+ 1

2+δ
n → ∞ for some δ > 0 as n→ ∞ and nh

3
2
n log2 n→ 0 as n→ ∞.

(F.1) pdf f with CDF F(x) is strictly positive and continuously differentiable on (xF , xF);

(F.2) A = lim
x↓xF

f (x) < ∞ and B = lim
x↑xF

f (x) < ∞; Either A=0 (B=0) or f is nondecreasing (nonincreasing) on an

interval to the right of xF (to the left of xF).

(F.3) There exists a constant γ > 0 such that

sup
xF<x<xF

F(x)(1 − F(x))
| ḟ (x) |
f 2(x)

≤ γ,

where ḟ0(x) denotes the first derivative with respect to x.

It is noteworthy that the inequality in (F.3) is equivalent to

(F.3′) sup
0<u<1
|J(u)|u(1 − u) ≤ γ, where J(u) := d log q(u)/du is the score function.

Note that the term Wn(θ̂n) doesn’t depend on the smoothing parameter hn. Under the null hypothesis H0 it is simply
the log-likelihood ratio statistic. Therefore, its order of magnitude would be OP(1) under the null hypothesis H0.
So we have

Lemma 1. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter hn satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Under the null hypothesis H0, we have√

hnWn(θ̂n) = oP(1).

Lemma 2. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter hn satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Under the null hypothesis H0, we have√

hnVn,hn = oP(1).

Theorem 1. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter hn satisfies condi-
tions (H.1-2-3); and f (x) satisfies condition (F.1-2-3). Under the null hypothesis H0, we have√

hn(Tn,hn − µn,hn (K))
L−→ N(0, σ2(K)), as n→ ∞,

where

µn,hn (K) =
1
hn
∥K∥22 + o

(
1

n2h3
n

)
, σ2(K) =

∫ 2

0
dz(2

∫ 1

−1+z
K(x)K(x − z)dx)2.

Remark 1. The above result shows that the mean of Tn,hn (K) and the variance of Tn,hn (K) have the same rate of
h−1

n . The test statistic is considered as a χ2 type-test statistic in the sense.

Remark 2. The mean of the GLR statistic, whose leading term is 1
hn
∥K(x)∥22, is the counterpart of the degrees of

freedom in χ2. It is equivalent to the difference of the effective number of parameters used under the null and
alternative hypotheses. This can be explained as follows. Suppose that we partition the support of Q(u) into equi-
spaced intervals, each with length hn. This results in roughly 1

hn
∥K(x)∥22 intervals. Since the local smoother uses

overlapping intervals, the independence in χ2 is not satisfied and therefore the covariances result in the convolution
factor making the effective number of parameters being slightly different from 1

hn
∥K(x)∥22.
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Remark 3. µn,hn (K) and σ2(K) are independent of nuisance parameters. One does not have to theoretically derive
the constant µn,h(K) and σ2(K) in order to use the GLR tests in applications, since as long as there is such a
distribution-free property for the test statistic, one can simply simulate the null distributions by setting nuisance
parameters under the null hypothesis at reasonable values or estimates.

4. Simulation Study on Bandwidth Selection and Powers

Nonparametric methods are typically indexed by smoothing parameter (i.e. bandwidth) which controls the degree
of complexity. The choice of bandwidth is therefore critical to implementation. In order to compute our test
statistic for a given data set, one needs to specify the order of smoothing parameter h. Our asymptotic study
suggests that h should be chosen adaptively according to the sample size, for example, ranging from the order of
n−1 log n to the order of n−

2
3 log−

4
3 n by conditions (H.2) and (H.3), and would ensure the distribution-free property

and consistency of our test as far as the order of h is concerned. In addition, the knowledge of distributional
assumption in null hypothesis can be utilized to estimate the optimal bandwidth hopt

n in terms of power. Specifically,
to test H0 : f0(x, θ) ∈ F0, we choose ĥopt

n as the estimate of hopt
n for the given sample size that minimizes the

ℓ̂n( f )− ℓ̂n( f0) with respect to h under the null hypothesis. This is equivalent to minimize ℓ̂n( f ) because the observed
log-likelihood ℓ̂n( f0) does not depend on the bandwidth h. But this doesn’t mean that the observed log-likelihood
ℓ̂n( f0) does not play any role in selecting h, i.e., the optimization is subject to ℓ̂n( f ) ≥ ℓ̂n( f0). This motivates the
following data-driven method of choosing smoothing parameter hopt

n in terms of log-likelihood:

ĥopt
n := arg min

O( log n
n )<h<o(n−

2
3 log−

4
3 n)

{
ℓ̂n( f ) : ℓ̂n( f ) ≥ ℓ̂n( f0)

}
.

In practice a general guide for the choice of h for a fixed and finite n would be valuable since the distribution of
our test statistic is dependent on the choice of h. In the simulation, we used the triweight kernel to consider the
problem of testing the composite hypothesis of normality when both the mean and the variance were unspecified
for sample size n = 20, 30, 40, 50, 60, 80 and 100 at the level α = 0.05. There is no close-form solution for the
bandwidth. The choice of the bandwidth needs to be done by numerical optimization. The summary statistics of
the bandwidth estimates ĥopt

n by numerical optimization are presented in order of increasing sample size n = 20,
30, 40, 50, 60, 80, 100 with 5000 replicates of null N(0, 1) in Table 1. The mean and the median of the estimates
of h decrease from roughly 0.3 to 0.2 as sample size increases from 20 to 100. We can see the means of the
bandwidth estimates tend to be larger than the medians of the bandwidth estimates. This observation suggests that
the bandwidth estimates at given sample size tend to be right skewed.

Table 1. Summary of ĥopt
n

sample size Min. 1st Qu. Median Mean 3rd Qu. Max.
n = 20 0.0976 0.2476 0.2976 0.2928 0.3476 0.6477
n = 30 0.0651 0.1984 0.2318 0.2478 0.2651 0.6572
n = 40 0.0988 0.1988 0.2238 0.2380 0.2489 0.6488
n = 50 0.0403 0.1408 0.1977 0.2183 0.2597 0.6357
n = 80 0.0376 0.1376 0.1874 0.2122 0.2624 0.6122
n = 100 0.0301 0.1401 0.1899 0.2173 0.2700 0.6382

To investigate the finite sample behavior of the proposed test statistic based on sample size and the associated
estimated bandwidth, we generated 5000 replicate samples in order of increasing size n = 20, 50 and 100 from
the standard normal distribution. Both parametric likelihood estimates under null and nonparametric likelihood
estimates under alternative were calculated for each of these samples. The kernel density estimate of generalized
likelihood ratio test statistic Tĥ (solid curve) was plotted with superimposed normal fit (i.e., the normal density
curve with the sample mean and variance) shown by red dashed line as reference in Figures 1, 2 and 3 for each
of these samples. Figures 1 and 2 illustrate the departure of the GLR test statistic Tĥ from normality. There is a
skewness in the direction of a slightly heavy right tail. The height of the peak is higher than the parametric fit. For
n = 100 the asymptotic normality holds to a remarkable degree shown by Figure 3. Figures 1, 2 and 3 demonstrate
that the generalized likelihood ratio behaves closer and closer to a normal distribution as sample size n is larger
and larger.
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To assess power, we considered the problem of testing the composite hypothesis of normality when both the mean
and the variance are unspecified against ten alternatives that were used in previous studies of nonparametric tests
for sample size n = 20, n = 50 and n = 100 at the level α = 0.05 using the triweight kernel. Specifically, these
alternative distributions are standard exponential denoted by Exp(1), gamma distribution with shape parameter
p = 2 and scale parameter λ = 1 denoted by Gamma(2, 1), Uniform distribution on (0, 1) denoted by U(0, 1), Beta
distribution with parameters 2 and 1 denoted by Beta(2, 1), Beta distribution with parameters 2 and 6 denoted by
Beta(2, 6), Laplace distribution with density function given by

f (x, θ) =
1

2ϕ
exp(−|x − µ|/ϕ)

where θ := (µ, ϕ) = (0, 0.25) denoted by Laplace(0, 0.25)), log-normal with density function given by

f (x, θ) =
1

xτ
√

2π
exp(− 1

2τ2 (log x − ν)2)

where θ := (ν, τ) = (2, 0.25) denoted by Lognormal(2, 0.25). The last six alternatives in Table 2 were added to
present various shapes of densities similar to a normal density. To determine critical values of Thn , we generalized
5000 replicate samples of size 20, 50 and 100 respectively from the standard normal distribution. For each sample,
Thn was calculated using triweight kernel on the regular grid of h ranging in order from .05 to .45 by 0.05 and the
corresponding estimated ĥn. Note that the ℓ̂n( f ) might be misleading for small value of h for small sample size
n = 20 and n = 50. This arises when there is data rounding and nh is too small to be close to 0. The (1 − α)th
quantiles of Thn were then estimated. Once these critical values had been determined, the powers of the test were
estimated by simulations, i.e., for each alternative and each hn, 5000 samples of size 20, size 50 and size 100 were
generated from the corresponding alternative distribution and the powers were thus estimated. These Monte Carlo
power estimates are given in Tables 2-3-4. It is not surprising to see poor performance with the pretty low powers
for some alternatives at bandwidth h close to no-smoothing points.

Table 2. Power Estimates for Various Choices of h and Alternatives (n = 20, replicate= 5000, α = 0.05)

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 ĥn

Exp(1) 0.0206 0.2524 0.7030 0.8142 0.8452 0.8594 0.8570 0.8576 0.8518 0.8508
Gamma(2, 1) 0.0000 0.0208 0.2484 0.4018 0.4602 0.4828 0.4790 0.4792 0.4764 0.4670

U(0, 1) 0.0000 0.0004 0.0312 0.1362 0.2576 0.3316 0.3688 0.3966 0.4170 0.3210
Beta(2, 1) 0.0000 0.0000 0.0004 0.0164 0.1322 0.2654 0.3320 0.3826 0.4124 0.2616
Beta(2, 6) 0.0000 0.0010 0.0478 0.1286 0.1702 0.1996 0.2074 0.2148 0.2180 0.1860

Laplace(0, 0.25) 0.0322 0.1532 0.2104 0.1756 0.1360 0.1072 0.0788 0.0640 0.0538 0.1052
Lognormal(2, 0.25) 0.0000 0.0000 0.0050 0.0364 0.0716 0.0948 0.1010 0.1072 0.1102 0.0778

t(3) 0.0310 0.2058 0.2634 0.2340 0.2024 0.1692 0.1442 0.1246 0.1108 0.1686
t(5) 0.0146 0.1006 0.1390 0.1192 0.0980 0.0846 0.0706 0.0654 0.0598 0.0828

Weilbull(2, 0.5) 0.0000 0.0000 0.0250 0.0718 0.1034 0.1234 0.1292 0.1322 0.1338 0.1092

Table 3. Power Estimates for Various Choices of h and Alternatives (n = 50, replicate=5000, α = 0.05)

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 h=.50 ĥn

Exp(1) 0.0108 0.9970 0.9986 0.9994 0.9990 0.9990 0.9990 0.9978 0.9968 0.9954 0.9992
Gamma(2, 1) 0.0000 0.7652 0.8630 0.9220 0.9174 0.9144 0.8942 0.8714 0.8330 0.7992 0.9200

U(0, 1) 0.0000 0.3626 0.8372 0.9266 0.9486 0.9638 0.9694 0.9724 0.9738 0.9746 0.9248
Beta(2, 1) 0.0000 0.0252 0.7940 0.8994 0.9370 0.9428 0.9438 0.9412 0.9386 0.9348 0.9058
Beta(2, 6) 0.0000 0.2166 0.3922 0.5594 0.5680 0.5786 0.5656 0.5486 0.5230 0.5032 0.5528

Laplace(0, 0.25) 0.0256 0.4128 0.3040 0.2278 0.1302 0.0666 0.0324 0.0190 0.0116 0.0084 0.2280
Lognormal(2, 0.25) 0.0000 0.0302 0.0978 0.2314 0.2156 0.2204 0.1946 0.1780 0.1564 0.1454 0.2242

t(3) 0.0266 0.4792 0.3868 0.3162 0.2288 0.1556 0.1042 0.0682 0.0468 0.0326 0.3156
t(5) 0.0130 0.2148 0.1534 0.1134 0.0690 0.0470 0.0312 0.0236 0.0176 0.0136 0.1136

Weilbull(2, 0.5) 0.0000 0.0916 0.1974 0.3210 0.3276 0.3394 0.3306 0.3186 0.2992 0.2822 0.3144
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Table 4. Power Estimates for Various Choices of h and Alternatives ( n = 100, replicate=5000, α = 0.05 )

Alternative h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 h=.50 ĥn

Exp(1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000
Gamma(2, 1) 0.8404 0.9972 0.9982 0.9976 0.9952 0.9900 0.9816 0.9692 0.9444 0.9150 0.9980

U(0, 1) 0.1562 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Beta(2, 1) 0.0000 0.9932 0.9996 0.9996 0.9998 1.0000 0.9998 0.9996 0.9996 0.9994 0.9996
Beta(2, 6) 0.1050 0.8556 0.9138 0.9132 0.8974 0.8784 0.8524 0.8254 0.7988 0.7708 0.9144

Laplace(0. 0.25) 0.6974 0.6000 0.4374 0.2446 0.1004 0.0324 0.0094 0.0032 0.0024 0.0020 0.2888
Lognormal(2, 0.25) 0.0006 0.3398 0.4376 0.4026 0.3494 0.2952 0.2426 0.2078 0.1764 0.1578 0.4164

t(3) 0.7606 0.6786 0.5154 0.3248 0.1788 0.0914 0.0498 0.0270 0.0140 0.0086 0.3630
t(5) 0.3672 0.2526 0.1464 0.0708 0.0282 0.0134 0.0054 0.0034 0.0028 0.0016 0.0812

Weilbull(2, 0.5) 0.0184 0.5692 0.6724 0.6718 0.6416 0.6042 0.5658 0.5332 0.4996 0.4736 0.6770

These power simulations show that for a fixed n, there does not exist an h which is optimal uniformly for all
alternatives considered. This makes sense in situations when the tests have to take into account departures from
the null hypothesis over all directions in nonparametric density alternatives, since alternatives are vague and the
choice of the bandwidth h is designed to guard against all nonparametric density alternatives, and it is natural not
to expect that the chosen ĥn would beat all other choices of h in terms of power. Our simulation results are very
encouraging. From Tables 2-3-4, we can see that the powers for ĥn are far greater than or as close as the median
powers for all choices of h for sample sizes n = 20, 50 and 100. These results suggest that the data-driven method
of choosing h is a very promising procedure to overcome the dependence problem of the power of the test on h.
These results also suggest one possible way of choosing the optimal h in situations where one has in mind a priori
knowledge on a particular alternative being tested against, i.e., if a specific alternative is of special interest then
the best way of choosing h would be to choose h that yields the highest power in the direction of this alternative
for the given sample size and level α. Furthermore, these results suggest another way to improve power against
all nonparametric density alternatives or a particular alternative in mind is to increase the sample size by its own
nature in nonparametric setting. This was shown in our simulations that all the powers increases as sample size
increases. To see if it was actually the case, we repeated the simulation study with sample size n increased to 200.
The results are presented in Table 5 for h=0.01 to 0.50, which support the fact that the asymptotics of the theory
presented here takes some time to “take effect”.

Table 5. Power Estimates for Various Choices of h and Alternatives ( n = 200, h=0.01 to 0.50, replicate=5000,
α = 0.05 )

Alternative h=.01 h=.02 h=.03 h=0.04 h=.05 h=.10 h=.15 h=.20 h=.25 h=.30 h=.35 h=.40 h=.45 h=.50

Exp(1) 0.0040 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Gamma(2, 1) 0.0000 0.1000 0.9832 0.9996 1.0000 1.0000 0.9998 0.9998 0.9998 0.9992 0.9974 0.9924 0.9814 0.9642

U(0, 1) 0.0000 0.0000 0.3184 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Beta(2, 1) 0.0000 0.0000 0.0000 0.7154 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Beta(2, 6) 0.0000 0.0000 0.1402 0.8194 0.9764 0.9980 0.9970 0.9938 0.9898 0.9834 0.9708 0.9618 0.9534 0.9404

Laplace(0. 0.25) 0.0194 0.8936 0.9292 0.9144 0.9082 0.7778 0.4742 0.1850 0.0470 0.0090 0.0014 0.0002 0.0000 0.0000
Lognormal(2, 0.25) 0.0000 0.0000 0.0000 0.0494 0.3224 0.7142 0.6246 0.5088 0.4132 0.3318 0.2706 0.2236 0.1870 0.1654

t(3) 0.0124 0.9272 0.9536 0.9466 0.9408 0.8182 0.5286 0.2356 0.0816 0.0328 0.0158 0.0088 0.0038 0.0020
t(5) 0.0052 0.5228 0.6030 0.5640 0.5334 0.2830 0.0784 0.0182 0.0050 0.0020 0.0014 0.0006 0.0006 0.0006

Weilbull(2, 0.5) 0.0000 0.0000 0.0078 0.3576 0.7454 0.9472 0.9210 0.8748 0.8348 0.7898 0.7542 0.7186 0.6858 0.6574

5. Appendix: Proofs of Main Results

This appendix presents the proofs of the lemmas and the theorem in section 3. To keep notation simple, we suppress
the dependence of hn on the sample size n to h. Then the weight whni j is conveniently abbreviated as whi j and q̂n,hn

as q̂n,h.

5.1 Proof of Lemma 2

Let {Ui}ni=1 be independent observations from the uniform distribution U(0, 1) and put U∗(i) equal to 0, U(i), 1
according to i = 0, 1 ≤ i ≤ n, i = n + 1. The following Lemma 3 is quoted for convenience from Rao and Zhao
(1997) and its proof is omitted here.
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Lemma 3. Assume that assumption nh
log n → ∞ holds, then

Tn
de f
= max∗

∣∣∣∣∣((n + 1)
(U∗( j)−U∗(i))

( j−i)

)
− 1

∣∣∣∣∣ a.s.−→ 0,

where max∗ is taken for all (i, j) with 0 ≤ i < j ≤ n + 1 and j − i ≥ Cnh.

Let Dinh :=
f (X(i) )̂qn,hn ( i

n+1 ;Qn)

q̂n,hn ( i
n+1 ;Un)

, then

−Vn,h =
∑
i∈I1

log Dinh +
∑
i∈I2

log Dinh +
∑
i∈I3

log Dinh

= V (1)
nh + V (2)

nh + V (3)
nh ,

where we decompose the index set for i into three segments I1 := {k ∈ N; 1 ≤ k ≤ nh}, I2 := {k ∈ N; nh <
k < n − nh} and I3 := {k ∈ N; n − nh ≤ k ≤ n}. We shall demonstrate the proof for I2.

Lemma 4. Under assumptions H.2 and F.3, there exists 0 < α ≤ 1 such that, for n large,

α ≤
f (Q(U(i)))
f (Q(p))

≤ α−1,

almost surely for all i ∈ I2 and p ∈ (U(mi),U(mi)).

Proof. Under assumptions H.2 and F.3, Lemma 1 of Csörgő and Révész (1978) implies that

f (Q(u1))
f (Q(u2))

≤ ∆γ(u1, u2),

for every pair u1, u2 ∈ (0, 1) with γ as in F.3. and ∆(u1, u2):= u1∨u2(1−u1∧u2)
u1∧u2(1−u1∨u2) . It follows from the symmetry of

∆(u1, u2) that

∆−γ(U(i), p) ≤
f (Q(U(i)))
f (Q(p))

≤ ∆γ(U(i), p).

If U(mi) ≤ p ≤ U(i), then

∆−γ(U(i), p) ≥
[
1 −

U(i) − U(mi)

1 − U(mi)

]γ [
1 −

U(i) − U(mi)

U(i)

]γ
.

By Lemma 3, with probability one, for n large, we have for all i ∈ I2 that

0 ≤
U(i) − U(mi)

1 − U(mi)
≤

U(i) − U(mi)

1 − U(i)
≤ 1

2
,

and

0 ≤
U(i) − U(mi)

U(i)
≤ 1

2
.

Hence ∆−γ(U(i), p) ≥
(

1
4

)γ
.

If U(i) ≤ p ≤ U(mi), then

∆−γ(U(i), p) ≥
[
1 −

U(mi) − U(i)

1 − U(i)

]γ [
1 −

U(mi) − U(i)

U(mi)

]γ
.

Again by using the same arguments given above, we have, with probability one, for n large,

0 ≤
U(mi) − U(i)

1 − U(i)
≤ 1

2
and 0 ≤

U(mi) − U(i)

U(mi)
≤ 1

2
,

for all i ∈ I2, which proves that ∆−γ(U(i), p) ≥
(

1
4

)γ
.

So almost surely for all i ∈ I2 and U(mi) ≤ p ≤ U(mi), we have ∆−γ(U(i), p) ≥
(

1
4

)γ
. The lemma follows by observing

∆γ(U(i), p) ≤ (4)γ, almost surely for all i ∈ I2. �
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Lemma 5. If nh
log n → ∞, then

√
h
∣∣∣∣V (2)

n,h

∣∣∣∣ ≤ C
√

h
∑
i∈I2

|Dinh − 1| .

Proof. Using mean value theorem,

Dinh =

f (X(i))
∑

j∈Ji

whi jX( j)∑
j∈Ji

whi jU( j)

=
f (Q(U(i)))
f (Q(U∗ih))

,

where U(mi) < U∗ih < U(mi).

It follows from lemma 4 that there exists a positive constant α ≤ 1 such that for n large, α ≤ Dinh ≤ α−1 almost
surely for all i ∈ I2. This fact together with Taylor’s theorem implies that for all i ∈ I2∣∣∣log Dinh

∣∣∣ ≤ C |Dinh − 1| ,

and hence

√
h
∣∣∣V (2)

nh

∣∣∣ = √h

∣∣∣∣∣∣∣∣
∑
i∈I2

log Dinh

∣∣∣∣∣∣∣∣
≤ C
√

h
∑
i∈I2

|Dinh − 1| .

�

Lemma 6. If n2h3 log4 n→ 0 as n→ ∞, then
√

h
∑
i∈I2

|Dinh − 1| = oP(1).

Proof. Since

Dinh =

f (X(i))
∑

j∈Ji

whi jX( j)∑
j∈Ji

whi jU( j)

=

f (Q(U(i)))
∑

j∈Ji

whi jQ(U( j))∑
j∈Ji

whi jU( j)
.

Applying Taylor’s theorem with an integral form of the remainder, we have

∑
j∈Ji

whi jQ(U( j))

=
∑
j∈Ji

whi j

[
Q(U(i)) + q(U(i))(U( j) − U(i)) +

∫ U( j)

U(i)

(U( j) − p)
dq(p)

dp
dp

]

=q(U(i))
∑
j∈Ji

whi jU( j) +
∑
j∈Ji

whi j

∫ U( j)

U(i)

(U( j) − p)
dq(p)

dp
dp.

46



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 3; 2015

So

f (Q(U(i))
∑
j∈Ji

whi jQ(U( j)) −
∑
j∈Ji

whi jU( j) =
∑
j∈Ji

whi j

∫ U( j)

U(i)

(U( j) − p) f (Q(U(i))
dq(p)

dp
dp.

We have

Dinh − 1 =

∑
j∈Ji

whi j
∫ U( j)

U(i)
(U( j) − p) f (Q(U(i)))

dq(p)
dp dp∑

j∈Ji

whi jU( j)

=

∑
j∈Ji

whi j(U( j) − U(i))
∫ U( j)

U(i)

U( j)−p
U( j)−U(i)

f (Q(U(i)))
dq(p)

dp dp∑
j∈Ji

whi jU( j)
.

Using Lemma 4 and whi j(U( j) − U(i)) ≥ 0 for all j ∈ Ji, we have
√

h
∑
i∈I2

|Dinh − 1|

≤
√

h
∑
i∈I2

∑
j∈Ji

whi j(U( j) − U(i))
∣∣∣∣∫ U( j)

U(i)

U( j)−p
U( j)−U(i)

f (Q(U(i)))
dq(p)

dp dp
∣∣∣∣∑

j∈Ji

whi jU( j)

≤
√

h
∑
i∈I2

∑
j∈Ji

whi j(U( j) − U(i))
(∫ U(mi)

U(i)
C f (Q(p))| dq(p)

dp |dp +
∫ U(i)

U(mi)
C f (Q(p))| dq(p)

dp |dp
)

∑
j∈Ji

whi jU( j)

= C
√

h
∑
i∈I2

(∫ U(mi)

U(i)
|J(p)|dp +

∫ U(i)

U(mi)
|J(p)|dp

) ∑
j∈Ji

whi j(U( j) − U(i))∑
j∈Ji

whi jU( j)

= C
√

h
∑
i∈I2

∫ U(mi )

U(i)

|J(p)|dp +
∫ U(i)

U(mi )

|J(p)|dp

 .

Let g(n)
r,s (x, y) denote the joint density of the order statistic U(r) and U(s) of a random sample of size n from the

uniform U(0, 1) distribution, where 1 ≤ r < s ≤ n, and let bu,v(x) denote the beta density function with parameters
u and v, then

E
∫ U(i)

U(mi)

|J(p)|dp ≤
"

0<x1≤x2<1

g(n)
(mi),i

(x1, x2)

x1(1 − x2)

∫ x2

x1

p(1 − p)|J(p)|dpdx1dx2

≤
"

0<x1≤x2<1

(x2 − x1)
g(n)

(mi),i
(x1, x2)

x1(1 − x2)
G0(x1)dx1dx2

=
ani − mi

nh

"
0<x1≤x2<1

nh · n
(mi − 1)(n − i)

g(n−1)
(mi−1),i(x1, x2)G0(x1)dx1dx2

=
ani − mi

nh
· n2h

(mi − 1)(n − i)

∫ 1

0
G0(x1)b(mi−1),n−mi+1(x1)dx1

≤C
n2h

(mi − 1)(n − i)
(Rn−1 − Rmi−2 + 1),
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where G0(x) = sup
1>y≥x

1
y−x

∫ y
x p(1− p)|J(p)|dp. The last equality follows from the fact that g(n−1)

(mi−1),i(x1, x2) is the joint

density of the uniform order statistics U(mi−1) and U(i) of the sample size (n − 1).

Noting that n2h
(mi−1)(n−i) =

n2h
n−i+mi−1 ( 1

mi−1 +
1

n−i ), we have

√
h
∑
i∈I2

E
∫ U(i)

U(mi)

|J(p)|dp = O((n2h3 log4 n)
1
2 ) + O((n2h3 log2 n)

1
2 )

= O((n2h3 log4 n)
1
2 ).

By the same argument, it can be shown that

√
h
∑
i∈I2

E
∫ U(mi)

U(i)

|J(p)|dp = O((n2h3 log4 n)
1
2 ).

Hence, by assumption n2h3 log4 n −→ 0 as n −→ ∞, we have

√
h
∑
i∈I2

|Dinh − 1| = oP(1).

�

Lemma 2 is proved by combining Lemmas 5 and 6 with an analogous lengthy arguments as the above proofs
establishing that the parts corresponding to I1 and I3 with less than nh terms are asymptotically negligible.

5.2 Proof of Theorem 1

Put Zk = log(1/Uk), k = 0, 1, · · · , S 0 = 0, S j =
∑ j

k=1 Zk, k = 1, 2, · · · ,

Ũn(y) = S k
S n+1
, if

k − 1
n
< y ≤ k

n
, k = 1, 2, · · · , n.

Then Zk are independent exponential random variables with mean value one and, for each n,

{Un(y); 0 ≤ y ≤ 1} D
= {Ũn(y); 0 ≤ y ≤ 1}.

A Taylor expansion shows that

Un,h
D
= −

n∑
i=1

log q̂n,h( i
n+1 ; Ũn)

= : −
n∑

i=1

∆i +
1
2

n∑
i=1

∆2
i + R̃nh,

where ∆i = q̂n,h( i
n+1 ; Ũn) − 1 and R̃nh = − 1

3
∑n

i=1
∆3

i

1+θi∆3
i
, 0 < θi < 1. We define the centered standard exponential

variables as ξk = Zk − 1, 1 ≤ k ≤ N with N = n + 1. Let Ti,n := 1
N

∑
j∈Ji

(whi jξ· j) where ξ· j :=
j∑

k=1
ξk, Yn := 1

N
∑N

i=1 ξi,

Cnhik := K( ani−k+1
nh ) − K( ani−⌊ani+nh⌋

nh ) and Di,n := 1
N

∑
j∈Ji

jwhi j. Then

Un,h := −
∑

i∈I1

+
∑
i∈I2

+
∑
i∈I3

 log q̂n,hn ( i
n+1 ;Un)

= U (1)
nh +U (2)

nh +U (3)
nh ,
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Lemma 7. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies conditions
(H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Under null hypothesis H0, we have

2
√

h

− n∑
i=1

∆i +
1
2

n∑
i=1

∆2
i + R̃nh

 = √h
n∑

i=1

T 2
i,n + oP(1).

Proof. We can write 2
√

h
(
−∑

i∈I2
∆i +

1
2
∑

i∈I2
∆2

i + R̃nh

)
=
√

h
∑

i∈I2
T 2

i,n +
∑11

i=1 Bi,n +
√

hR̃nh,

where

B1,n =
∑
i∈I2

√
h( 1

2 D2
i,n − 2Di,n +

3
2 ),

B2,n =
∑
i∈I2

√
h(Di,n − 1)Ti,n,

B3,n =
∑
i∈I2

√
h(Di,n − D2

i,n)Yn,

B4,n =
∑
i∈I2

√
h(Di,n − 1)Yn,

B5,n =
∑
i∈I2

√
h(Yn − Ti,n),

B6,n =
∑
i∈I2

√
h(2 − 2Di,n)Ti,nYn,

B7,n =
∑
i∈I2

√
h
(

3
2 D2

i,n − 2Di,n

)
Y

2
n,

B8,n =
∑
i∈I2

√
h(−T 2

i,n)Yn,

B9,n =
∑
i∈I2

√
h(3Di,n − 2)Ti,nY

2
n,

B10,n =
∑
i∈I2

√
hT 2

i,nY
2
n,

B11,n =
√

h
∑
i∈I2

[
(D2

i,n + 2Di,nTi,n + T 2
i,n)OP

(
n−

3
2

)
+ (Di,n + Ti,n)OP

(
n−

3
2

)]
.

Using the facts Di,n = 1 + O( 1
nh ) + O( 1

n1+ϵh2+ϵ ) for any ϵ > 0 and Yn = Op( 1√
n ), elementary calculation shows that

Bi,n = oP(1), i = 1, 2, · · · , 11 and
√

hR̃nh = op(1).

�

Lemma 8. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies conditions
(H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Then the mean of

∑n
i=1 T 2

i,n is

E
 n∑

i=1

T 2
i,n

 = 1
h

∫ 1

−1
K2(x)dx + o

(
1

n2h3

)
.

Proof.

E
 n∑

i=1

T 2
i,n

 =E
 1

N2h2

n∑
i=1

∑
ani−nh≤k≤ani+nh

C2
nhikξ

2
k


= 1

N2h2

n∑
i=1

∑
ani−nh≤k≤ani+nh

C2
nhik

= 1
h

∫ 1

−1
K2(x)dx + o

(
1

n2h3

)
.
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�

Lemma 9. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies conditions
(H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Under null hypothesis H0, we have

√
h(Tn,h − µn,h(K))) =

√
h

∑
i∈I2

T 2
i,n − µn,h(K)

 + oP(1),

where µn,h(K)= 1
h

∫ 1
−1 K2(x)dx + o

(
1

n2h3

)
.

Proof.
√

h(Tn,h − µn,h(K))

=
√

h
(
2Unh − µn,h(K)

)
+ 2
√

hVnh + 2
√

hWn(θ̂)

d
=2
√

h

−∑
i∈I2

∆i +
1
2

∑
i∈I2

∆2
i − µn,h(K)

 + R̃nh + oP(1)

=
√

h

∑
i∈I2

T 2
i,n − µn,h(K)

 + oP(1).

�

Hence the limiting behavior of
√

h(Tn,h − µn,h(K)) is determined by
√

h
(∑

i∈I2
T 2

i,n − µn,h(K)
)
. Since T 2

i,n are not
independent, it naturally comes to mind that the martingale approach might be used for the asymptotic results for
Tn,h.

Lemma 10. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). We have

√
h
∑
i∈I2

(T 2
i,n − µn,h(K))

=
∑

(an+1)nh<l≤ann−(an−1)nh

√
hWl + oP(1).

where Wl is a martingale difference sequence w. r. t. Fl−1 = σ(ξ1, ξ2, . . . , ξl−1).

Proof. ∑
i∈I2

(T 2
i,n − µn,h(K))

=
∑
i∈I2


 1

N

∑
j∈Ji

whi jξ· j

2

− µn,h(K)


=

∑
i∈I2


 1

Nh

∑
ani−nh≤k≤ani+nh

Cnhikξk

2

− µn,h(K)


=

∑
i∈I2


 1

N2h2

∑
ani−nh≤k≤ani+nh

C2
nhikξ

2
k − µn,h(K)

 + 2
N2h2

∑∑
ani−nh≤k<l≤ani+nh

CnhikCnhilξkξl


=

∑
i∈I2

 1
N2h2

∑
ani−nh≤k≤ani+nh

C2
nhikξ

2
k − µn,h(K)


+ 2

N2h2

∑∑
0<k<l≤ann−(an−1)nh

( ∑
1

an
(l−nh)∨nh≤i≤ 1

an
(k+nh)∧(n−nh)

CnhikCnhil

)
ξkξl

:=AI + AII .

50



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 3; 2015

AII =
2

N2h2

∑
(an+1)nh<l<ann−(an−1)nh

∑
0<k<l


∑

1
an

(l−nh)≤i≤ 1
an

(k+nh)∧(n−nh)

CnhikCnhil

 ξkξl

+ 2
N2h2

∑
1<l≤(an+1)nh

∑
0<k<l


∑

nh≤i≤ 1
an

(k+nh)

CnhikCnhil

 ξkξl
= 2

N2h2

∑
(an+1)nh<l≤ann−(an−1)nh

∑
0<k≤(l−1)∧(ann−(an+1)nh)

dnhklξkξl

+ 2
N2h2

∑
ann−(an+1)nh<l<ann−(an−1)nh

∑
ann−(an+1)nh<k<l


∑

1
an

(l−nh)≤i≤(n−nh)

CnhikCnhil

 ξkξl
+ 2

N2h2

∑
1<l≤(an+1)nh

∑
0<k<l

 ∑
nh≤i≤ 1

an
(k+nh)

CnhikCnhil

 ξkξl
:=

∑
(an+1)nh<l≤ann−(an−1)nh

Wl + rnh,

where

dnhkl :=
∑

1
an

(l−nh)≤i≤ 1
an

(k+nh)

CnhikCnhil

Wl := 2
N2h2

∑
0<k≤(l−1)∧[ann−(an+1)nh]

dnhklξkξl

= 2
N2h2

 ∑
(l−2nh)<k≤(l−1)∧[ann−(an+1)nh]

dnhklξk

 ξl.
Then Wl is a martingale difference sequence w. r. t. Fl−1 = σ(ξ1, ξ2, . . . , ξl−1). Thus

∑
(an+1)nh≤l≤ann−(an−1)nh Wl is a

martingale sequence with respect to Fn = σ(ξ1, ξ2, . . . , ξn). It can be shown that AI = oP( 1√
h
) and rnh = oP( 1√

h
).

Hence we have
√

h
∑
i∈I2

(T 2
i,n − µn,h(K)) =

∑
(an+1)nh<l≤ann−(an−1)nh

√
hWl + oP(1).

So the lemma follows. �

The conditional variance is an intrinsic measure of time for a martingale. For many purposes the time taken for a
martingale to cross a level is best represented through its conditional variance rather than the number of increments
up to the crossing (see Hall, 1980, p. 54). The conditional variance is given as follows:

V2
n :=

∑
(an+1)nh<l≤ann−(an−1)nh

E
[(√

hWl

)2
|ξ1, ξ2, . . . , ξl−1

]

=E


 2
√

h
N2h2

∑
0<k≤(l−1)∧⌊ann−(an+1)nh⌋

dnhklξkξl

2 ∣∣∣∣∣ ξ1, ξ2, . . . , ξl−1


=

 2
√

h
N2h2

∑
0<k≤(l−1)∧⌊ann−(an+1)nh⌋

dnhklξk

2

E
(
ξ2l

∣∣∣∣∣ ξ1, ξ2, . . . , ξl−1

)

=
∑

(an+1)nh<l≤ann−(an−1)nh

 2
√

h
N2h2

∑
0<k≤(l−1)∧⌊ann−(an+1)nh⌋

dnhklξk

2

.
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Lemma 11. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Then as n→ ∞,

EV2
n =

∫ 2

0
dz

(∫ 1

−1+z
2K(x)K(x − z)dx

)2

+ O(h).

Proof.

( N2h2

2
√

h
)2 EV2

n

=
∑

(an+1)nh≤l≤ann−(an−1)nh

E

 ∑
0<k≤(l−1)∧⌊an−(an+1)⌋nh

dnhklξk

2

=
∑

(an+1)nh≤l≤ann−(an−1)nh

∑
0<k≤(l−1)∧⌊an−(an+1)⌋nh

d2
nhkl

=
∑

(an+1)nh≤l≤ann−(an−1)nh

∑
0<k≤(l−1)∧⌊an−(an+1)⌋

 ∑
l−nh≤ani≤k+nh

CnhikCnhil

2

=

 ∑
(an+1)nh≤l≤ann−(an+1)nh

∑
0<k≤(l−1)

+
∑

ann−(an+1)nh≤l≤ann−(an−1)nh

∑
0<k<ann−(an+1)nh

∑∑
l−nh≤ani≤k+nh
l−nh≤an j≤k+nh

K(
ani − k + 1

nh
)K(

an j − k + 1
nh

)K(
ani − l + 1

nh
)K(

an j − l + 1
nh

) + O(n4h4)

=

 ∑
(an+1)nh≤l≤ann−(an+1)nh

∑
1<l−k≤2nh

+
∑

−(an+1)nh≤l−ann≤−(an−1)nh

∑
l−ann+(an+1)nh<l−k≤2nh

∑∑
l−k−nh≤ani−k≤nh
l−k−nh≤an j−k≤nh

K(
ani − k + 1

nh
)K(

an j − k + 1
nh

)K(
ani − l + 1

nh
)K(

an j − l + 1
nh

) + O(n4h4)

=n4h3
∫ 2

0
dz

∫ 1

z−1

∫ 1

z−1
K(x)K(y)K(x − z)K(y − z)dxdy + O(n4h4).

So

EV2
n =

∫ 2

0
dz

(∫ 1

−1+z
2K(x)K(x − z)dx

)2

+ O(h).

�

Lemma 12. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Then as n −→ 0,

Var(V2
n ) = O(h).
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Proof.

Var

 ∑
(an+1)nh≤l≤ann−(an−1)nh

E((
√

hWl)2|ξ1, . . . , ξl−1)


=Var

 ∑
(an+1)nh≤l≤ann−(an−1)nh

(
∑

0<k<(l−1)∧⌊ann−(an+1)nh⌋
( 2
√

h
N2h2 )2dnhklξk)2


= 16

N8h6

E
 ∑

(an+1)nh≤l≤ann−(an−1)nh

∑∑
l−2nh<r<(l−1)∧⌊ann−(an+1)nh⌋
l−2nh<s<(l−1)∧⌊ann−(an+1)nh⌋

dnhrldnhslξrξs


2

−

E ∑
(an+1)nh≤l≤ann−(an−1)nh

∑∑
l−2nh<r<(l−1)∧⌊ann−(an+1)nh⌋
l−2nh<s<(l−1)∧⌊ann−(an+1)nh⌋

dnhrldnhslξrξs


2

= 16
N8h6 O(n8h7)

=O(h).

�

The following lemma follows immediately by lemma 11 and lemma 12.

Lemma 13. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Then

V2
n

P−→ σ2(K).

Lemma 14. Assume kernel function K(x) satisfies conditions (K.1-2-3); smoothing parameter h satisfies condi-
tions (H.1-2-3); and f (x) satisfies conditions (F.1-2-3). Then for any ε > 0, we have

∑
(an+1)nh≤l≤ann−(an−1)nh

E
[(√

hWl

)2
I(
√

h|Wl |>ε)

∣∣∣∣∣ ξ1, ξ2, . . . , ξl−1

]
P−→ 0.

Proof. ∑
(an+1)nh≤l≤ann−(an−1)nh

E(
√

hWl)4

= 16
N8h6

∑
(an+1)nh≤l≤ann−(an−1)nh

E

 ∑
l−2nh≤k≤(l−1)∧⌊ann−(an+1)nh⌋

dnhklξkξl

4

= 16
N8h6

 ∑
(an+1)nh≤l≤ann−(an−1)nh

∑∑
l−2nh≤r<s≤(l−1)∧⌊ann−(an+1)nh⌋

6d2
nhrld

2
nhsl E ξ

4
l

+
∑

(an+1)nh≤l≤ann−(an−1)nh

∑
l−2nh≤k≤(l−1)∧⌊ann−(an+1)nh⌋

d4
nhkl(E ξ

4
l )2


= 16

N8h6 O(n7h6)

= O( 1
N ).

By Markov inequality, ∀ε > 0, ∑
(an+1)nh≤l≤ann−(an−1)nh

E
[(√

hWl

)2
I(
√

h|Wl |>ε)

∣∣∣∣∣ξ1, . . . , ξl−1

]
P−→ 0.

�
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Theorem 1 follows immediately from lemma 13 and lemma 14 (See Corollary 3.1 of Hall, 1980, p. 58).
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