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Abstract 

In this paper, the behavior of ranked set sampling is analyzed considering the knowledge of the auxiliary variable. The 

suggested estimators are compared with their simple random sampling counterparts. A numerical study is developed using 

data from a study developed on the contamination due to burning compost from solid waste from hospitals. 
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1. Introduction 

1.1 Problem Statement 

Estimation of the population parameters is widely considered in statistical inference. Good estimators are considered as 

those with good properties, for example, that are unbiased, efficient, and consistent. There are unbiased estimators that are 

good estimators due to their very small mean squared error, such as ratio estimators, which were considered in this study. 

When there is not auxiliary information available, using simple random sampling is commonly the only solution in 

statistical inference. When we have information about an auxiliary variable that is correlated with the variable of interest, 

other options are possible. This information about the auxiliary variable can be used to obtain a more efficient estimator 

from the population mean using a ratio estimator or regression estimators. 

We will denote the finite population of interest as U, with N different and identified units, which means 𝑈 =
{1,⋯ , 𝑗,⋯ , 𝑁}. The list that allows us to identify each one of the population units is called frame. The population units 

have many characteristics of interest, some of them known and some others unknown. We will represent for variable  Y  

the population characteristic that we want to study, and we are going to name it, variable of study. The value that takes 

such variable over the population is unknown, but it will be given for the value that each unit j allocates to such 

characteristic 𝑦𝑗, which means, y ={𝑦1, 𝑦2, ⋯ ,  𝑦𝑗 , ⋯ , 𝑦𝑁}. 

Moreover, we can register the known characteristics of a variable 𝑋, that we will suppose 𝑝-dimensional, to provide of 𝑝 

characteristics of each population unit. Thus, for each unit j in the population, we have a vector of additional information,  

x𝑗 = (x𝑗1, ⋯ , x𝑗𝑝). For this, the vector, x = {x1, ⋯ , x𝑁}  receives the name of additional information vector. This 

auxiliary information, that it is supposed to be related with the variable of interest, must be used to help to know the 

associated values with the variable of interest. 

With this auxiliary information, we can find ratio type estimators to improve the precision of the estimation in SRS, 

SRSWOR or any other sampling design.  Additional improvements in the ratio estimator are also obtained through the 

introduction of modified ratio estimators proposed by Singh, Tailor and Tailor (2010) and Al-Omari Amer I., Jaber Kalifa 

and Al-Omari Ahmad (2008). 

1.2 Importance of the Problem 

In applications, obtaining information from an additional variable is often costly, but classification of observations 

according to it, is relatively easy. 

We assume that the “Ranked Set Sampling” (RSS) sample design can be used to improve the accuracy of estimations, 

regarding the simple random sampling (SRS), and at the same time maintaining the cost or time limit on sampling. The 

RSS was first applied by McIntyre (McIntyre, 1952), in his study about the estimation of mean yields of pastures, and later 



 

 

http://ijsp.ccsenet.org         International Journal of Statistics and Probability         Vol. 6, No. 2; 2017 

22 

developed by different statisticians. 

In this paper we consider that due to the relationship between X and Y, RSS can be used to estimate and to classify. Singh 

et al. (Singh, et al., 2010) proposed a class of ratio type estimators, which are expanded using our proposal and we believe 

that they are more accurate due to the reduction of the sampling error, for both, the ratio type estimator and the sampling 

design type RSS. 

Therefore, our objective is to propose new ratio estimators for the population mean generated from an RSS design, to 

compare them with modified ratio estimators proposed by Singh et al. (Singh, et al., 2010) and Al-Omari et al. (Al-Omari, 

et al., 2008) and establish the gain in precision using the relative efficiency (RE) of the estimators.  

1.3 Initial Definitions. 

Let �̅� =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 and 𝜎𝑋

2 =
∑ (𝑋𝑖−�̅�)

2𝑁
𝑖=1

𝑁
 be the population mean and variance of the auxiliary variable X; �̅� =

∑ 𝑌𝑖
𝑁
𝑖=1

𝑁
 and 

𝜎𝑌
2 =

∑ (𝑌𝑖−�̅�)
2𝑁

𝑖=1

𝑁
 are the population mean and variance of the study variable Y; take   as the correlation coefficient 

between X and Y. Using Simple Random Sampling with Replacement (SRSWR) for selecting a sample of size 𝑛 are 

unbiased estimators 

𝑧̅ =
∑ 𝑧𝑖
𝑛
𝑖=1

𝑛
, 𝑠𝑋
2 =

∑ (𝑧𝑖 − 𝑧̅)
2𝑛

𝑖=1

𝑛 − 1
, 𝑧𝑖 = 𝑥𝑖 , 𝑦𝑖 

As we know 𝑋1, … , 𝑋𝑁 and its distribution we are able to determine 𝑋𝑚 = 𝑀𝑖𝑛 {𝑋1, … , 𝑋𝑁 }, 𝑋𝑀 = {𝑋1, … , 𝑋𝑁} and the 

needed quartiles. We will consider only the first and third quartiles of the auxiliary variable X denoted by 𝑞1 and 

𝑞3 These values are perfectly known before sampling. Once a sample of size 𝑚 is selected using SRSWR we are able to 

rank them using the known values of 𝑋 before measuring 𝑌. Hence ranked set sampling (RSS) can be used as an 

alternative sampling design. 

2. Methodology 

This is a theoretical and applied research, due to the new modified ratio estimators are proposed, for which approximate 

variance and bias are estimated using a Taylor series expansion. Once the approximate variance is estimated, the mean 

squared error of each estimator is found. In order to compare the estimators, the mean squared errors (MSE) of the 

estimators are estimated and are compared by quotient, that is 𝑅𝐸 =
𝑀𝑆𝐸(�̂�1)

𝑀𝑆𝐸(�̂�2)
, where the estimator �̂�2 will be more 

efficient than the estimator �̂�1 if 𝑅𝐸 > 1. 

2.1 The SRSWR Estimators 

Singh et al. (Singh, et al., 2010) proposed the use of the transformed variables 

𝑢𝑖 =
𝑥𝑖 + 𝑋𝑚
𝑋𝑚 + 𝑋𝑀

, 𝑤𝑖 =
𝑥𝑖 + 𝑋𝑀
𝑋𝑚 + 𝑋𝑀

 

The corresponding expectations are  

𝐸(𝑢𝑖) =
𝐸(𝑥𝑖) + 𝑋𝑚
𝑋𝑚 + 𝑋𝑀

=
�̅� + 𝑋𝑚
𝑋𝑚 + 𝑋𝑀

= �̅�,  

𝐸( 𝑤𝑖) =
𝐸(𝑥𝑖) + 𝑋𝑀
𝑋𝑚 + 𝑋𝑀

=
�̅� + 𝑋𝑀
𝑋𝑚 + 𝑋𝑀

= �̅� 

Hence �̅� =
�̅�+𝑋𝑚

𝑋𝑚+𝑋𝑀
 and �̅� =

�̅�+𝑋𝑀

𝑋𝑚+𝑋𝑀
 are unbiased estimators  

The ratio type estimators proposed by them are 

�̅�𝑢 = �̅� (
∑ 𝑈𝑖/𝑁
𝑁
𝑖=1

∑ 𝑢𝑖/𝑛
𝑛
𝑖=1

) = �̅� (
�̅�

�̅�
) = 𝑟𝑢�̅� 
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�̅�𝑤 = �̅� (
∑ 𝑊𝑖/𝑁
𝑁
𝑖=1

∑ 𝑤𝑖/𝑛
𝑛
𝑖=1

) = �̅� (
�̅�

�̅�
) = 𝑟𝑤�̅� 

Al-Omari et al. (2008) suggested under SRSWR 

�̅�𝒒𝒉 = �̅� (
∑

𝑋𝑖
𝑁
+ 𝑞ℎ

𝑁
𝑖=1

∑
𝑥𝑖
𝑛
+ 𝑞ℎ

𝑛
𝑖=1

) , ℎ = 1,3 

Using Taylor series approximations the approximate biases were derived. Take 𝐶𝑍 =
𝜎𝑍

�̅�
, 𝑍 = 𝑋, 𝑌 The next theorem 

gives an approximation to the biases. 

Theorem: For the first degree of approximation 

𝐵(�̅�𝑢) ≅
𝑅

𝑛
(

𝜎𝑋
2

�̅� + 𝑋𝑚
)(

�̅�

�̅� + 𝑋𝑚
− 𝜌

𝐶𝑌
𝐶𝑋
) 

𝐵(�̅�𝑤) ≅
𝑅

𝑛
(

𝜎𝑋
2

�̅� + 𝑋𝑀
)(

�̅�

�̅� + 𝑋𝑀
− 𝜌

𝐶𝑌
𝐶𝑋
) 

𝐵(�̅�𝑞ℎ) ≅ 0, ℎ = 1,3  

Proof: 

See Singh et al (Singh, et al., 2010) and Al-Omari et al (Al-Omari, et al., 2008).  

The approximate Mean Squared Errors (MSE) are given by  

Theorem: For the first degree of approximation 

𝑀𝑢 = 𝑀𝑆𝐸(�̅�𝑢) ≅
�̅�2

𝑛
(𝐶𝑌

2 +
𝐶𝑋
2

𝐶𝑚
2
− 2𝜌

𝐶𝑋𝐶𝑌
𝐶𝑚

) , 𝐶𝑚 = 1 +
𝑋𝑚

�̅�
 

𝑀𝑤 = 𝑀𝑆𝐸(�̅�𝑤) ≅
�̅�2

𝑛
(𝐶𝑌

2 +
𝐶𝑋
2

𝐶𝑀
− 2𝜌

𝐶𝑌
𝐶𝑋
) , 𝐶𝑀 = 1 +

𝑋𝑀

�̅�
 

Proof: 

See Singh et al (2010) and Bouza- Al-Olomari (2011).  

The transformation 

𝑎𝑖 = 𝑋𝑀𝑥𝑖 + 𝑋𝑚
2  

leads to 

�̅�𝑎 = �̅� (
∑ 𝐴𝑖/𝑁
𝑁
𝑖=1

∑ 𝑎𝑖/𝑛
𝑛
𝑖=1

) = �̅� (
�̅�

�̅�
) = 𝑟𝑎�̅� 

�̅� = 𝑋𝑀�̅� + 𝑋𝑚
2 ,  �̅� = 𝑋𝑀�̅� + 𝑋𝑚

2  

Take  

𝑧̅ = �̅�(1 + 𝑒𝑧), 

𝐸(𝑒𝑧) = 0, 𝐸(𝑒𝑧
2) =

𝐶𝑍
2

𝑛
 , 𝑍 = 𝑋, 𝑌, 𝐸(𝑒𝑋𝑒𝑌) =

𝜌𝐶𝑋𝐶𝑌

𝑛
, 

As  

�̅�𝑎 = �̅�(1 + 𝑒𝑦)(
∑

𝐴𝑖
𝑁

𝑁
𝑖=1

𝑋𝑀�̅�(1 + 𝑒𝑥) + 𝑋𝑚
2
) = �̅�(1 + 𝑒𝑦)(1 + 𝛾(𝑋)𝑒𝑥)

−1, 𝛾(𝑎) =
𝑋𝑀�̅�

𝑋𝑀�̅� + 𝑋𝑚
2

 

Assuming that |𝛾(𝑋)𝑒𝑥| < 1  is valid to use the approximation 

�̅�𝑎 ≅ �̅�(1 + 𝑒𝑦) (
∑

𝐴𝑖
𝑁

𝑁
𝑖=1

𝑋𝑀�̅�(1 + 𝑒𝑥) + 𝑋𝑚
2
) = �̅�(1 + 𝑒𝑦 − 𝛾(𝑎)𝑒𝑥 − 𝛾(𝑎)𝑒𝑥𝑒𝑦+, 𝛾(𝑎)

2𝑒𝑥
2 

Then is derived that the bias is given, approximately, by  
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𝐵(�̅�𝑎) ≅
�̅�(𝐶𝑋

2𝛾(𝑎)) (𝛾(𝑎) − 𝜌
𝐶𝑌
𝐶𝑋
)

𝑛
 

and the MSE by 

𝑀𝑎 = 𝑀𝑆𝐸(�̅�𝑎) ≅
�̅�2(𝐶𝑌

2 + 𝐶𝑋
2𝛾(𝑎)) (𝛾(𝑎) − 2𝜌

𝐶𝑌
𝐶𝑋
)

𝑛
 

Another transformation is based on  

𝑏𝑖 = (𝑋𝑀 − 𝑋𝑚)𝑥𝑖 + 𝑋𝑚
2  

and the ratio type estimator derived using it is  

�̅�𝑏 = �̅� (
∑ 𝐵𝑖/𝑁
𝑁
𝑖=1

∑ 𝑏𝑖/𝑛
𝑛
𝑖=1

) = �̅� (
�̅�

�̅�
) = 𝑟𝑏�̅� 

Using 𝛾(𝑏) =
(𝑋𝑀−𝑋𝑚)�̅�

∑ 𝐵𝑖/𝑁
𝑁
𝑖=1

, its bias and MSE are approximately,  

𝐵(�̅�𝑏) ≅
�̅�(𝐶𝑋

2𝛾(𝑏)) (𝛾(𝑏) − 𝜌
𝐶𝑌
𝐶𝑋
)

𝑛
 

and 

 𝑀𝑏 = 𝑀𝑆𝐸(�̅�𝑏) ≅
�̅�2(𝐶𝑌

2+𝐶𝑋
2𝛾(𝑏))(𝛾(𝑏)−2𝜌

𝐶𝑌
𝐶𝑋
)

𝑛
 

2.2 RSS Estimators 

The ranked set sampling (RSS) was first suggested by McIntyre (McIntyre, 1952) for estimating the population mean of 

forage yields. He claimed that it was a more efficient method than the commonly used simple random sampling (SRS). 

The ranked set sampling method can be described as follows:  

The theoretical frame that permits use of the RSS model is based on the hypothesis 

i We wish to enumerate the measurable variable Y. 

ii The units can be ordered linearly without ties. 

iii Any sample sU of size m can be enumerated. 

iiii To identify a unit, order the units in s. To enumerate them is less costly than to evaluate {𝑌𝑖 , 𝑖 ∈ 𝑠} or to order U. 

In survey sampling settings it is logic ranking the units based on the values of an auxiliary variable correlated with the 

variable of interest. The basic RSS procedure is the following: 

Step 1: Randomly select 𝑚2 units from the target population. These units are randomly allocated into 𝑚 sets, each of 

size 𝑚.  

Step2: The 𝑚 units of each set are ranked visually or by any inexpensive method free of cost, say 𝑋,  with respect to the 

variable of interest 𝑌.  

Step2: From the first set of 𝑚 units, the smallest ranked unit is measured; from the second set of 𝑚 units the second 

smallest ranked unit is measured.  

Step 3: Continue until the mth smallest unit (the largest) is measured from the last set.  

Step 4: Repeat the whole process 𝑟(𝑖) times (cycles) 

Step 5: Evaluate the corresponding units. 

We can denote it a follows 

𝑋𝑖1
𝑋𝑖2
⋮
𝑋𝑖𝑚

}

𝑟

~ > 𝑋(𝑖𝑖)𝑟  𝑎𝑛𝑑 𝑚𝑒𝑠𝑢𝑟𝑒 𝑌(𝑖𝑖)𝑟, 𝑟 = 1,… , 𝑟(𝑖);   𝑖 = 1,… ,𝑚 
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Let 𝑌1, ⋯ , 𝑌𝑚,  be a sample selected using SRSWR from probability density function 𝑓(𝑦), with mean 𝜇𝑌 and variance 

𝜎𝑌
2.  Considering the selection of 𝑚 independent samples selected using a SRSWR design, each of size 𝑚, we have 

𝑌11, ⋯ , 𝑌1𝑚, 𝑌21, ⋯ , 𝑌2𝑚, ⋯ , 𝑌𝑚1, ⋯ , 𝑌𝑚𝑚. Let 𝑌𝑖(1𝑚), ⋯ , 𝑌𝑖(𝑚𝑚), be the order statistics of the sample 𝑌1𝑖 , ⋯ , 𝑌1𝑚, ⋯ , 𝑌𝑖𝑚 

Y1i, for (𝑖 = 1,⋯ ,𝑚). The probability density function (pdf) and cumulative distribution function (cdf), mean and 

variance of the jth order statistics 𝑌(jm), are given by 

𝑓(𝑗𝑚)(𝑦) =
𝑚!

(𝑗 − 1)! (𝑚 − 𝑗)!
(𝐹(𝑦))

𝑗−1
(1 − 𝐹(𝑦))

𝑚−𝑗
 

𝐹(𝑗𝑚)(𝑦) =
𝑚!

(𝑗 − 1)! (𝑚 − 𝑗)!
∫ 𝑣𝑗−1(1 − 𝑣)𝑚−𝑗𝑑𝑣
𝐹(𝑥)

0

 

 𝜇𝑌(𝑗𝑚) = ∫ 𝑦𝑓(𝑗𝑚)(𝑦)𝑑𝑦,   𝜎𝑌(𝑗𝑚)
2 =

∞

−∞

∫ (𝑦 − 𝜇𝑌(𝑗𝑚))
2𝑓(𝑗𝑚)(𝑦)𝑑𝑦,   

∞

−∞

 

respectively, see David and Nagaraja (2003).  

Takahasi and Wakimoto (1968) provided the mathematical theory of RSS and showed that 

𝑓(𝑦) =
∑ 𝑓(𝑗𝑚)(𝑦)
𝑚
𝑗=1

𝑚
 

𝜇𝑌 =
∑ 𝜇𝑌(𝑗𝑚)(𝑦)
𝑚
𝑗=1

𝑚
, 

and  

𝑉(𝑌(𝑗𝑚) = 𝜎𝑌
2 − ∆𝑌(𝑗𝑚)

2 , ∆𝑌(𝑗𝑚)
2 = (𝜇𝑌(𝑗𝑚) − 𝜇𝑌)

2

, 𝑗 = 1,… ,𝑚  

Without losing in generality we will drop the value 𝑚 of the sample size in the notation in the sequel when it provides no 

further information. 

Note that if 𝑟 = 1 we observe only a RSS of size 𝑚 = 𝑛.  

We will consider generically 𝑧�̅�𝑆𝑆 =
∑ ∑ 𝑧(𝑖)𝑡

𝑚
𝑖=1

𝑟
𝑡=1

𝑟𝑚
, 𝑟𝑚 = 𝑛 then a RSS counterpart of �̅�𝑢 is  

�̅�𝑢𝑅𝑆𝑆 = �̅�𝑅𝑆𝑆 (
�̅�

�̅�𝑅𝑆𝑆
) = 𝑟𝑢𝑅𝑆𝑆𝑈,̅ 

Take 

𝑧�̅�𝑆𝑆 = �̅�(1 + 𝑒𝑧𝑅𝑆𝑆), 𝑒𝑧𝑅𝑆𝑆 =
𝑧�̅�𝑆𝑆 − �̅�

�̅�
 

It is clear that 

𝐸(𝑒𝑧𝑅𝑆𝑆) = 0, 𝐸(𝑒𝑧𝑅𝑆𝑆
2 ) =

𝑉(𝑧�̅�𝑆𝑆)

�̅�2
, 

𝐶𝑜𝑣(�̅�𝑅𝑆𝑆�̅�𝑅𝑆𝑆) = 𝜌√(
𝑉(�̅�𝑅𝑆𝑆)

�̅�
×
𝑉(�̅�𝑅𝑆𝑆)

�̅�
) = 𝜌𝐶𝑌𝑅𝑆𝑆𝐶𝑋𝑅𝑆𝑆, 

We can write  

𝑧�̅�𝑆𝑆 = �̅� (1 +
𝑧�̅�𝑆𝑆 − �̅�

�̅�
) 

�̅�𝑢𝑅𝑆𝑆 = �̅�(1 + 𝑒𝑦𝑅𝑠𝑠) (
�̅�

�̅�𝑅𝑆𝑆
) =

�̅�(1 + 𝑒𝑦𝑅𝑠𝑠)

1 + 𝜏(𝑢)𝑒𝑥𝑅𝑆𝑆
, 𝜏(𝑢) =

�̅�

�̅� + 𝑋𝑚
 

We will consider the terms of order larger than 2 to be negligible in the needed Taylor series developments. 

If |𝜏(𝑢)𝑒𝑥𝑅𝑆𝑆| < 1 we can use a Taylor Series development (1 + 𝜏(𝑢)𝑒𝑥𝑅𝑆𝑆)
−1 and: 
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𝐸(�̅�𝑢𝑅𝑆𝑆) ≅ �̅�𝐸(1 + 𝑒𝑦𝑅𝑠𝑠)(1 − 𝜏(𝑢)𝑒𝑥𝑅𝑆𝑆) = �̅� + �̅�[−𝜏(𝑢)𝐸(𝑒𝑦𝑅𝑆𝑆𝑒𝑥𝑅𝑆𝑆) + 𝜏
2(𝑢)𝐸(𝑒𝑥𝑅𝑆𝑆

2 ])

= �̅� + �̅� (−𝜏(𝑢)𝜌√(
𝑉(�̅�𝑅𝑆𝑆)

�̅�2
×
𝑉(�̅�𝑅𝑆𝑆)

�̅�2
) +

𝜏2(𝑢)𝑉(�̅�𝑅𝑆𝑆)

�̅�2
) 

Hence 

𝐵(�̅�𝑢𝑅𝑆𝑆) ≅ �̅�

(

 
 
 

𝜏2(𝑢)

𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
�̅�2

−

𝜏(𝑢)𝜌√(
𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)(
𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)

�̅��̅�

)

 
 
 

=
𝑅

𝑛
(

�̅�𝜎𝑋
2

(�̅� + 𝑋𝑚)
2
−
�̅� ∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚(�̅� + 𝑋𝑚)
2
) −

𝑅�̅�𝜌

𝑛(�̅� + 𝑋𝑚)
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)√(𝐶𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚�̅�2
)

   

) 

Let us consider the MSE. Now  

𝑀𝑢𝑅𝑆𝑆 = 𝑀𝑆𝐸(�̅�𝑢𝑅𝑆𝑆)=𝐸(�̅�𝑢𝑅𝑆𝑆 − �̅�)
2 ≅ �̅�2𝐸(𝑒𝑦𝑅𝑆𝑆

2 )+𝜏2(𝑢)(𝑒𝑥𝑅𝑆𝑆
2 ) − 2𝜏(𝑢)[𝑒𝑦𝑅𝑆𝑆𝑒𝑥𝑅𝑆𝑆]) =

𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
+

𝑅2

𝑛
𝜏2(𝑢) (𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
) 

−2
(𝑅𝜏(𝑢)𝜌)

𝑛
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)(𝜎𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚
)) 

These results support the following proposition 

Proposition. Consider the use of an RSS design of size 𝑛 = 𝑚𝑟, 𝜏(𝑢) =
�̅�

�̅�+𝑋𝑚
 and the estimator  

�̅�𝑢𝑅𝑆𝑆 = �̅�𝑅𝑆𝑆 (
�̅�

�̅�𝑅𝑆𝑆
) = 𝑟𝑢𝑅𝑆𝑆𝑈,̅ 

Then  

𝐵(�̅�𝑢𝑅𝑆𝑆) ≅
𝑅

𝑛
(

�̅�𝜎𝑋
2

(�̅� + 𝑋𝑚)
2
−
�̅� ∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚(�̅� + 𝑋𝑚)
2
) −

𝑅�̅�𝜌

𝑛(�̅� + 𝑋𝑚)
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)√(𝐶𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚�̅�2
)

   

) 

𝑀𝑆𝐸(�̅�𝑢𝑅𝑆𝑆)≅
𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
+
𝑅2

𝑛
𝜏2(𝑢) (𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
) − 2

(𝑅𝜏(𝑢)𝜌)

𝑛
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)(𝜎𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚
)) 

Remark 1. Rewriting  

𝐵(�̅�𝑢) ≅
𝑅

𝑛
(

𝜎𝑋
2

�̅� + 𝑋𝑚
)(

�̅�

�̅� + 𝑋𝑚
) −

𝑅

𝑛
�̅�𝜌 (

𝜎𝑋

�̅� + 𝑋𝑚
)𝐶𝑌 

is evidenced that  

𝐵(�̅�𝑢𝑅𝑆𝑆) ≤ 𝐵(�̅�𝑢) 

Remark 2. As 

�̅�2

𝑛
(𝐶𝑌

2 +
𝐶𝑋
2

𝐶𝑚
2) ≥

𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
+

�̅�2

𝑛(�̅� + 𝑋𝑚)
2
(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
) 

the two first terms of 
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𝑀𝑆𝐸(�̅�𝑢) ≅
�̅�2

𝑛
(𝐶𝑌

2 +
𝐶𝑋
2

𝐶𝑚
2 − 2𝜌

𝐶𝑋𝐶𝑌
𝐶𝑚

) 

are larger than the corresponding terms of the MSE of �̅�𝑢𝑅𝑆𝑆.  The last term can be rewritten, as 𝐶𝑚 = 1 +
𝑋𝑚

�̅�
=

�̅�+𝑋𝑚

�̅�
,obtaining that 

𝑅

𝑛
(2𝜌

�̅�𝜎𝑋𝜎𝑌

�̅�+𝑋𝑚
). Hence 

2
(𝑅𝜏(𝑢)𝜌)

𝑛
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)(𝜎𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚
))

= 2
(𝑅𝜏(𝑢)𝜌)

𝑛

�̅�𝜎𝑋𝜎𝑌

�̅� + 𝑋𝑚
(√1 −

∑ ∆𝑌(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑋
2 −

∑ ∆𝑋(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑌
2 +

∑ ∆𝑌(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑋
2 ×

∑ ∆𝑋(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑌
2 ) 

Therefore, a sufficient condition for having the last term of the bias of �̅�𝑢  smaller than the above equation is  

∑ ∆𝑌(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑋
2 ×

∑ ∆𝑋(𝑗)
2𝑚

𝑗=1

𝑚𝜎𝑌
2 (1 −

𝜎𝑌
2

𝜎𝑋
2∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

−
𝜎𝑋
2

𝜎𝑌
2∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

) > 0 

In such cases we have that �̅�𝑢𝑅𝑆𝑆 is more precise than �̅�𝑢. 

Considering �̅�𝑤 = �̅� (
�̅�

�̅�
) = 𝑟𝑤�̅� the RSS counterpart is 

�̅�𝑤𝑅𝑆𝑆 = �̅�𝑅𝑆𝑆 (
�̅�

�̅�𝑅𝑆𝑆
) = 𝑟𝑤𝑅𝑆𝑆�̅� 

Developing a similar analysis we have  

Proposition. Consider the use of an RSS design of size 𝑛 = 𝑚𝑟, 𝜏(𝑤) =
�̅�

�̅�+𝑋𝑀
 and the estimator �̅�𝑤𝑅𝑆𝑆. Then  

𝐵(�̅�𝑤𝑅𝑆𝑆) ≅
𝑅

𝑛
(

�̅�𝜎𝑋
2

(�̅� + 𝑋𝑀)
2
−
�̅� ∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚(�̅� + 𝑋𝑀)
2
) −

𝑅�̅�𝜌

𝑛(�̅� + 𝑋𝑀)
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)

   

√(𝐶𝑌
2 −

∑ ∆𝑌(𝑗)
2𝑚

𝑗=1

𝑚�̅�2
)) 

𝑀𝑤𝑅𝑆𝑆 = 𝑀𝑆𝐸(�̅�𝑤𝑅𝑆𝑆)≅

𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
+
𝑅2

𝑛
𝜏2(𝑤)(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
) − 2

(𝑅𝜏(𝑤)𝜌)

𝑛
(√(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)(𝜎𝑌

2 −
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚
)) 

Similar remarks can be fixed easily but it is worth noting that using �̅�𝑤𝑅𝑆𝑆 is better than �̅�𝑢𝑅𝑆𝑆 alternative as 𝑋𝑀 > 𝑋𝑚. 

A recommendation it to use an auxiliary variable with a large range 𝑋𝑀 − 𝑋𝑚. 

Let us look for the RSS version of �̅�𝑎. We propose  

Proposition. Consider the use of an RSS design of size 𝑛 = 𝑚𝑟, and the estimator  

�̅�𝑎𝑅𝑆𝑆 = �̅�𝑅𝑆𝑆 (
�̅�

�̅�𝑅𝑆𝑆
) = 𝑟𝑎𝑅𝑆𝑆�̅� 

Its bias and MSE are  

𝐵(�̅�𝑎𝑅𝑆𝑆) ≅
𝑅

𝑛
(
(𝑎)2

�̅�
(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)−

(𝑎)

�̅�
𝜌√(

𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)(
𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)) 

and  

Proof: 
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Take  

�̅�𝑎𝑅𝑆𝑆 ≅ �̅�(1 + 𝑒𝑦𝑅𝑆𝑆) (
∑

𝐴𝑖
𝑁

𝑁
𝑖=1

𝑋𝑀�̅�(1 + 𝑒𝑥𝑅𝑆𝑆) + 𝑋𝑚
2
) = �̅�(1 + 𝑒𝑦𝑅𝑆𝑆 − 𝛾(𝑎)𝑒𝑥𝑅𝑆𝑆 − 𝛾(𝑎)𝑒𝑥𝑅𝑆𝑆𝑒𝑦𝑅𝑆𝑆 + 𝛾(𝑎)

2𝑒𝑥𝑅𝑆𝑆
2  

𝛾(𝑎) =
𝑋𝑚�̅�

�̅�
 

Then 

𝐵(�̅�𝑎𝑅𝑆𝑆) ≅ �̅�(𝐸(𝑒𝑦𝑅𝑠𝑠) − 𝛾(𝑎)𝐸(𝑒𝑦𝑅𝑆𝑆𝑒𝑥𝑅𝑆𝑆) + 𝛾(𝑎)
2𝐸(𝑒𝑥𝑅𝑆𝑆

2 ))

= �̅� (−(𝑎)𝐸 (
�̅�𝑅𝑆𝑆 − �̅�

�̅�
×
�̅�𝑅𝑆𝑆 − �̅�

�̅�
) + 𝛾(𝑎)2𝑉(𝑒𝑥𝑅𝑆𝑆

2 ))

= �̅� (−(𝑎)𝐸 (
𝐶𝑜𝑣(�̅�𝑅𝑆𝑆, �̅�𝑅𝑆𝑆)

�̅��̅�
) + 𝛾(𝑎)2𝑉(𝑒𝑥𝑅𝑆𝑆

2 ))

= �̅� [(
𝛾(𝑎)2

�̅�2
)(
𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
) − 

(𝑎)

�̅��̅�
𝜌√(

𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)(
𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)] 

, ∆𝑍(𝑗)
2 = (𝜇𝑌(𝑗) − 𝜇𝑌)

2

, 𝑗 = 1,… ,𝑚  

Therefore 

𝐵(�̅�𝑎𝑅𝑆𝑆) ≅
𝑅

𝑛
(
(𝑎)2

�̅�
(𝜎𝑋

2 −
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚
)−

(𝑎)

�̅�
𝜌√(

𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)(
𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)) 

The MSE is obtained by calculating 

𝑀𝑎𝑅𝑆𝑆 = 𝑀𝑆𝐸(�̅�𝑎𝑅𝑆𝑆) = 𝐸(�̅�𝑎𝑅𝑆𝑆 − �̅�)
2 ≅ �̅�2(𝐸(𝑒𝑦𝑅𝑆𝑆

2 ) + 𝛾(𝑎)2𝐸(𝑒𝑥𝑅𝑆𝑆
2 ) − 2𝛾(𝑎)𝐸(𝑒𝑦𝑅𝑆𝑆𝑒𝑥𝑅𝑆𝑆)) = �̅�

2 [(
𝜎𝑌
2

𝑛�̅�2
−

∑ ∆𝑌(𝑗)
2𝑚

𝑗=1

𝑚𝑛�̅�2
) + 𝛾(𝑎)2 (

𝜎𝑋
2

𝑛�̅�2
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛�̅�2
) − 2𝛾(𝑎)𝜌√(

𝜎𝑋
2

𝑛�̅�2
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛�̅�2
)

−1

(
𝜎𝑌
2

𝑛�̅�2
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛�̅�2
)].  

We can rewrite the bias of the SRSWR-based estimator as 

𝐵(�̅�𝑎) ≅
𝑅

𝑛
(
𝜎𝑋
2

�̅�
) 𝛾(𝑎)2 −

�̅�𝜎𝑋
2(𝑎)

𝑛�̅�
𝜌
𝐶𝑌
𝐶𝑋
=
𝑅

𝑛
(
𝜎𝑋
2

�̅�
) 𝛾(𝑎)2 − 𝜌(𝑎)

𝜎𝑌𝜎𝑋
𝑛

 

Note that 

(𝜎𝑋
2 −

∑ ∆𝑋(𝑗)
2𝑚

𝑗=1

𝑚
) ≤ 𝜎𝑋

2 

√(
𝜎𝑋
2

𝑛
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛
)(
𝜎𝑌
2

𝑛
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛
) ≤

𝜎𝑌𝜎𝑋
𝑛

 

Hence the proposed RSS counterpart always has a smaller bias. 

Note that 
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𝑀𝑆𝐸(�̅�𝑎) ≅
�̅�2 (𝐶𝑌

2 + 𝐶𝑋
2𝛾2(𝑎) − 2𝜌𝛾(𝑎)

𝐶𝑌
𝐶𝑋
)

𝑛
 

The first two terms of 𝑀𝑆𝐸(�̅�𝑎𝑅𝑆𝑆) are smaller than the corresponding ones of 𝑀𝑆𝐸(�̅�𝑎). Hence is sufficient 

accepting that 
𝐶𝑌

𝐶𝑋
≅ √(

𝜎𝑋
2

𝑛�̅�2
−
∑ ∆𝑋(𝑗)

2𝑚
𝑗=1

𝑚𝑛�̅�2
)

−1

(
𝜎𝑌
2

𝑛�̅�2
−
∑ ∆𝑌(𝑗)

2𝑚
𝑗=1

𝑚𝑛�̅�2
) for ensuring that the RSS counterpart is more accurate 

that the SRSWR estimator. 

Let us look for the RSS version of �̅�𝑏. A natural representation of the RSS counterpart is  

�̅�𝑏𝑅𝑆𝑆 = �̅�𝑅𝑆𝑆 (
�̅�

�̅�𝑅𝑆𝑆
) = 𝑟𝑏𝑅𝑆𝑆�̅� 

Again using the Taylor Series approximation we have  

�̅�𝑏𝑅𝑆𝑆 ≅ �̅�(1 + 𝑒𝑦𝑅𝑆𝑆)(
∑

𝐵𝑖
𝑁

𝑁
𝑖=1

𝑋𝑀�̅�(1 + 𝑒𝑥𝑅𝑆𝑆) + 𝑋𝑚
2
) = �̅�(1 + 𝑒𝑦𝑅𝑆𝑆 − 𝛾(𝑏)𝑒𝑥𝑅𝑆𝑆 − 𝛾(𝑏)𝑒𝑥𝑅𝑆𝑆𝑒𝑦𝑅𝑆𝑆 + 𝛾(𝑏)

2𝑒𝑥𝑅𝑆𝑆
2  

The bias and MSE are then approximated, 𝛾(𝑏) =
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We have proved the proposition. 

Proposition. Consider the use of an RSS design of size 𝑛 = 𝑚𝑟, and the estimator  
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Under the hypothesis used for being sure that �̅�𝑎𝑅𝑆𝑆 is more accurate than �̅�𝑎 the same result holds for �̅�𝑏𝑅𝑆𝑆 with 

respect to �̅�𝑏. 
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3. A Numerical Study 

We evaluated the behavior of the analyzed estimators in terms of their MSE’s derived.  We used data coming from a 

study of leaching of elements from solid waste compost. The grab samples were prepared from multiple grab samples, 

using coning and quartering methods. The compost was collected from hospitals.  The particles were mechanically 

separated and passed through a fine.  Each batch, send for burning, was evaluated in terms of its estimated toxicity. 

This estimation is made from a sample analyzed by a laboratory.  A qualification in the range 0-100 was given to each 

batch. This qualification was used for ranking. For the experiment a sensor was placed in the chimney for measuring the 

content in the smoke of plumb, magnesium, cadmium and the rest was classified as “other contaminants”.  The 

measurement was made for each batch introduced in the furnaces. The study was developed during six months. In the 

period 1678 batches were evaluated.  

With the obtained data the ratios were computed 𝐹(𝛾, 𝜗) =
𝑀𝛾

𝑀
, 𝛾 = 𝑢,𝑤, 𝑎, 𝑏;  𝜗 = 𝑢𝑅𝑆𝑆,𝑤𝑅𝑆𝑆, 𝑎𝑅𝑆𝑆, 𝑏𝑅𝑆𝑆. 

When 𝐹(𝛾, 𝜗) > 1 is preferred the sampling strategy with mean squared error equal to 𝑀𝛾. The results are reported in 

tables 1-4.  In all the cases the RSS estimators were more efficient. The largest gains were obtained by  �̅�𝑢𝑅𝑆𝑆 when 

estimating the contamination in the case of plumb, �̅�𝑤𝑅𝑆𝑆 provided the arger gains in accuracy for magenesium and 

�̅�𝑏𝑅𝑆𝑆 for cadmium and for the rest of the contaminates 

Table 1. Relative efficiency of the estimators for plumb 

 Mu MW Ma Mb 

MuRSS 1,532 1,289 1,427 1,006 

MwRSS 2,151 1,620 1,886 1,215 

MaRSS 2,329 1,725 2,843 1,210 

MbRSS 1,596 1,390 1,687 1,191 

Table 2. Relative efficiency of the estimators for magnesium 

 Mu MW Ma Mb 

MuRSS 1,857 2,295 1,197 1,009 

MwRSS 2,211 2,594 1,566 1,088 

MaRSS 2,471 2,672 1,671 1,106 

MbRSS 2,963 3,059 1,936 1,228 

Table 3. Relative efficiency of the estimators for cadmium 

 Mu MW Ma Mb 

MuRSS 1,075 1,097 2,142 1,157 

MwRSS 1,243 1,111 2,390 1,405 

MaRSS 1,479 1,238 2,561 1,600 

MbRSS 1,442 1,206 2,449 1,499 

Table 4. Relative efficiency of the estimators for other contaminants 

 Mu MW Ma Mb 

MuRSS 1,163 1,673 1,988 1,775 

MwRSS 1,884 2,117 2,996 1,882 

MaRSS 1,376 1,732 3,006 1,984 

MbRSS 2,552 2,769 3,948 2,716 
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4. Conclusion 

According to the obtained results in the numerical study, all ratio estimators constructed from an RSS design are at least as 

efficient as those proposed by Singh et al. (Singh, et al., 2010) and Al-Omari et al. (Al-Omari, et al., 2008), so the 

recommendation is that, the estimators proposed by us are used in the future, because, they do not represent an increase in 

cost and time of the sampling in the estimation phase and its mean squared errors are lower than those obtained by direct 

estimation or by modified ratio type estimation discussed in the present study for simple random sampling. We consider 

that, due to the relationship between X and Y the RSS design can be used to estimate as well as to classify. The ratio type 

estimators are an extension to those proposed by Singh et al. (Singh, et al., 2010), such extension resulted to be more 

accurate due to the reduction of the sampling error, for  both; the use of ratio type estimators and for the RSS sampling 

design. 
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