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Abstract

This paper deals with the estimation of reliability R = P[Y < X] when X and Y are two independent random
variables with a two-parameter bathtub shaped failure rate distribution with the same second shape parameter.
Likelihood and Bayesian methods are proposed to make inferences about R. We obtain the likelihood interval
and asymptotic confidence interval for R, and we consider Bayesian point estimates of R under both absolute and
squared error loss, using either gamma or uniform priors for the three unknown model parameters. An equal tail
Bayesian credible interval for R is investigated. Analysis of a real data set is presented for illustrative purposes, and
Monte Carlo simulations are performed to compare: (1) the performance of Bayes estimates under two different
loss functions; and (2) the maximum likelihood and Bayesian methods.

Keywords: maximum likelihood estimator, Fisher information matrix, Bayes estimator, reliability.

1. Introduction

Chen (2000) reinvestigates a two-parameter bathtub shaped failure rate distribution which was originally consid-
ered by Gurvich et al. (1997). The cumulative distribution function (cdf) of this distribution with parameters λ > 0
and β > 0 is, Chen (2000),

F(x; λ, α) = 1 − eλ
(
1−exα

)
, x > 0.

The corresponding hazard rate function is

h(x; λ, α) = αλxα−1exα , x > 0,

and the survival function is
S (x;α, β) = eλ

(
1−exα

)
, x > 0.

The probability density function (pdf) is

f (x;α, β) = αλxα−1exαeλ
(
1−exα

)
, x > 0.

Here α and λ are both shape parameters. Henceforth, we will denote this distribution by TPBT(λ, α) or TPBT.

Due to the convenient structure of the TPBT distribution, it can be used in analyzing many lifetime data sets.
The failure rate function takes a bathtub shape when α < 1 and is increasing if α ≥ 1, Chen (2000). The TPBT
distribution is the only known two parameter distribution with a bathtub shaped failure rate function that has exact
joint confidence regions for the parameters Chen (2000). Sarhan et al. (2012) discussed Bayes estimation of the
two parameters of the TPBT distribution.

In a stress-strength model, the stress Y and the strength X are treated as random variables and the reliability, R,
of a component during a given period is taken to be the probability that its strength exceeds the stress during the
entire interval. Due to its practical importance, the estimation of R = P(Y < X) has attracted the attention of
many authors. The maximum likelihood estimate (MLE) of R, under the assumption that X and Y are independent
and normally distributed, is derived by Church and Harris (1970). The uniformly minimum variance unbiased
estimate of R under the same assumption is obtained by Downtown (1973). Recently, Kundu and Gupta (2005)
have considered estimation of P(Y < X) when X and Y are independent generalized exponential random variables.
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Kundu and Gupta (2006) studied the problem when X and Y are independent random variables having Weibull
distributions with different scale parameters but having the same shape parameter, and Kakade et al. (2008) con-
sidered the case when X and Y are independent exponentiated Gumbel distributed random variables. Rezae et al.
(2010) studied the estimation problem for P(Y < X) when X and Y are independent and follow generalized Pareto
distributions with common scale parameter. Ali (2013) discussed Bayes estimation of P(Y < X), using different
loss functions, when X and Y are independent and Lindley distributed. Sharma et al. (2014) studied the same
problem when X and Y are independent and follow the inverse Lindley distribution. Kumar et al. (2014) studied
maximum likelihood maximum likelihood and Bayes estimates for the parameter P(Y < X) when X and Y are
independent and Lindley distributed.

Our main aim in this paper is to focus on inferences for R = P[Y < X] when X and Y are two independent but not
identically distributed random variables with the TPBT distribution. It is assumed that X follows TPBT(λ, α) and
Y follows TPBT(γ, α). Estimation of R is very common in the statistical and reliability literature. For example, if
X is the strength of a component which is subject to a stress Y , then R is a measure of system performance and
arises in the context of mechanical reliability of a system. The system fails if and only if at any time the applied
stress is greater than its strength. We derive the MLE of R and obtain its asymptotic distribution, which is used
to construct an asymptotic confidence interval for R. We approximate Bayes estimators and credible intervals for
R using Markov Chain Monte Carlo (MCMC) sampling. The Bayes and non-Bayes methods are compared using
Monte Carlo simulations and a data set is analysed for illustrative purposes.

The Bayesian approach requires integration over the posterior distribution and this is often impossible to carry out
analytically. In such cases, MCMC techniques can be applied to draw samples from the posterior distribution.
The MCMC methodology provides a convenient and efficient method to sample complex, highly-dimensional
distributions.

The rest of the paper is organized as follows. Section 2 presents the MLE of the unknown parameters and the
reliability. The asymptotic confidence intervals of the unknown parameters and reliability are discussed in Section
3. Sections 4 discusses Bayesian inference. A complete analysis of a real data set is given in Section 5 for
illustrative purposes. Section 6 gives a simulation study, and Section 7 concludes the paper.

2. Maximum Likelihood Estimate of R

Assume that there are two independent random variables Y and X such that X ∼ TPBT(λ, α) and Y ∼ TPBT(γ, α).
Therefore,

R = P(Y < X) =

∫ ∞
0

∫ x

0
λγα2(xy)α−1exα+yαeλ

(
1−exα

)
+γ
(
1−eyα

)
dy dx

= 1 −
∫ ∞

0
λαxα−1exαe(λ+γ)

(
1−exα

)
dx

=
γ

λ + γ
. (1)

To obtain the MLE of R, we first derive the MLE of the two parameters γ and λ and then use the invariance
property. Now, suppose X1, X2, · · · , Xn is an independent random sample from TPBT(λ, α) and Y1,Y2, · · · ,Ym

is an independent random sample from TPBT(γ, α). Let θ = (α, λ, γ)
′

denote a vector of the three unknown
parameters. The likelihood function, L = L(θ), of θ = (α, λ, γ)

′
is

L(α, λ, γ) ∝ αn+mλnγm

 n∏
i=1

xi

m∏
i=1

yi

α−1

e
∑n

i=1 xαi +
∑m

i=1 yαi e
λ
∑n

i=1

(
1−exαi

)
+γ
∑m

i=1

(
1−eyαi

)
. (2)

Thus, the log-likelihood function, L = L(θ) = L(α, λ, γ), is

L(α, λ, γ) ∝ (n + m) lnα + n ln λ + m ln γ + (α − 1)

 n∑
i=1

ln xi +

m∑
i=1

ln yi


+

n∑
i=1

xαi +
m∑

i=1

yαi + λ
n∑

i=1

(
1 − exαi

)
+ γ

m∑
i=1

(
1 − eyαi

)
. (3)
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The likelihood equations are

∂L
∂α

=
n + m
α
+

n∑
i=1

(
1 + xαi

)
ln xi − λ

n∑
i=1

exαi xαi ln xi +

m∑
i=1

(
1 + yαi

)
ln yi − γ

m∑
i=1

eyαi yαi ln yi = 0, (4)

∂L
∂λ

=
n
λ
+

n∑
i=1

(
1 − exαi

)
= 0, (5)

∂L
∂γ

=
m
γ
+

m∑
i=1

(
1 − eyαi

)
= 0. (6)

From (5) and (6), we obtain the MLE of λ and γ as functions of α, say λ̂(α) and γ̂(α) respectively, as

λ̂(α) =
n

−n +
∑n

i=1 exαi
, (7)

and
γ̂(α) =

m
−m +

∑m
i=1 eyαi

. (8)

Substituting λ̂(α) and γ̂(α) into (3), we get the profile log-likelihood function for α as

L(α, λ̂(α), γ̂(α)) = −(n + m) + n ln n + m ln m + (n + m) lnα + (α − 1)

 n∑
i=1

ln xi +

m∑
i=1

ln yi


+

n∑
i=1

xαi +
m∑

i=1

yαi − n ln
n∑

i=1

(
exαi − 1

)
− m ln

m∑
i=1

(
eyαi − 1

)
. (9)

Therefore, the MLE of α, say α̂, can be obtained by maximizing (9) with respect to α. It can be shown that the α̂
can be obtained as a solution of a non-linear equation of the form

h(α) = α , (10)

where
h(α) =

n + m
n
∑n

i=1 exαi xαi ln xi

−n+
∑n

i=1 exαi
+

m
∑m

i=1 eyαi yαi ln yi

−m+
∑m

i=1 eyαi
−∑n

i=1

(
1 + xαi

)
ln xi −

∑m
i=1

(
1 + yαi

)
ln yi

.

A very simple and effective iterative procedure α( j+1) = h(α( j)) can be used, where α( j) is the jth iterate of α̂. The
iteration procedure should be stopped when

∣∣∣α( j+1) − α( j)
∣∣∣ is sufficiently small. Once we obtain α̂, λ̂ and γ̂ can be

calculated from (7) and (8) respectively, and the MLE of R is

R̂ =
γ̂

γ̂ + λ̂
.

3. Confidence intervals for R

Note that, α̂, λ̂ and γ̂ are not in explicit form. Further, it is not possible to obtain the variances θ̂ = (α̂, λ̂ , γ̂)
′

in an
explicit form. We propose to use two approximate confidence intervals for R.

3.1 Likelihood Interval

The maximum log-relative likelihood function for R, rmax(R), is

rmax(R) = L
(
α̂(R), λ̂ = (1/R − 1)γ̂(R), γ̂(R)

)
− L
(
α̂, λ̂, γ̂

)
,

where
γ̂(R) =

n + m

(1/R − 1)
(∑n

i=1 exα̂(R)
i − n

)
+
∑m

j=1 eyα̂(R)
j − m

and α̂(R) is the solution of the following equation in α for a given R

0 =
1
α
+

1
n + m

n∑
i=1

(
1 + xαi

)
ln xi +

1
n + m

n∑
i=1

(
1 + yαj

)
ln y j −

(1/R − 1)
∑n

i=1 xαi exαi ln xi +
∑m

j=1 yαj eyαj ln y j

(1/R − 1)
(∑n

i=1 exαi − n
)
+
∑m

j=1 eyαj − m
.
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A 100p% likelihood interval (LI) for R is the set of all possible real solutions, in R, of the following inequality

rmax(R) ≥ ln(p), 0 < p < 1. (11)

This inequality has no closed solution in R, so the interval must be obtained numerically. The 100p% LI approxi-
mates a (1 − ϑ)100% CI when p = exp{− 1

2 χ
2
1(ϑ)}, where χ2

1(ϑ) is the upper ϑ quantile of χ2
1.

3.2 Asymptotic Confidence Interval

The MLE of the vector of unknown parameters θ = (α, λ, γ)
′

is asymptotically normally distributed with mean
of true θ and variance-covariance matrix I−1, and is the inverse of the expected information matrix I(θ). I(θ) is
consistently estimated by Î = I(θ̂), which is given in the Appendix. Let Î j j be the ( j, j)-entry of Î, j = 1, 2, 3, then
the asymptotic (1 − ϑ)100% confidence intervals for θ j, j = 1, 2, 3, are

θ̂ j ± Zϑ/2
√
Î j j,

where Zϑ/2 is the upper ϑ/2 quantile of the standard normal distribution.

One can show that, R̂ is asymptotically normally distributed with mean of R and variance σ2
R. σ2

R is consistently
estimated by

ÎR =
1(

λ̂ + γ̂
)4 [γ̂2Î22 − 2λ̂γ̂Î23 + λ̂2Î33

]
. (12)

Therefore, an asymptotic (1 − ϑ)100% confidence interval for R is

R̂ ± Zϑ/2(
λ̂ + γ̂

)2 √γ̂2Î22 − 2λ̂γ̂Î23 + λ̂2Î33 . (13)

4. Bayesian Inference

In this section, we discuss Bayesian methods for making inferences about R = γ
λ+γ

.

We assume that the prior pdfs of the elements of θ = (α, λ, γ)
′

are independent, and that they are either gamma
distributed π(u) ∝ αa−1 e−b u , u > 0 for fixed values of a, b > 0, or that they are they are uniformly distributed on
(0, B), for some large B.

Using the likelihood function (2) and independent uniform priors, the joint posterior pdf of θ = (α, λ, γ)
′

is propor-
tional to the likelihood function, while using independent gamma priors the joint posterior pdf θ is

π(θ|data) ∝ αa1+n+m−1λa3+n−1γa2+m−1 exp

α
−b1 +

n∑
i=1

ln xi +

m∑
i=1

ln yi

 + n∑
i=1

xαi +
m∑

i=1

yαi

+λ

−b3 +

n∑
i=1

(
1 − exαi

) +γ −b2 +

m∑
i=1

(
1 − eyαi

)
 , θ > 0. (14)

In either case the joint posterior density has a complicated form and it is unlikely that closed form inferences for
the parameters α, β, γ, or for the reliability R, are possible. As indicated by Gilks et al (1996), any feature of the
posterior distribution is a legitimate candidate for Bayesian inference, for example, moments, quantiles, or highest
posterior density regions. Such quantities can often be expressed in terms of posterior expectations of functions of
θ, and while the integrations in such expectations are typically difficult to be evaluate analytically, Markov Chain
Monte Carlo (MCMC) sampling methods can often be used to approximate the integrals. In any event, Bayesian
inferences are always based on the posterior distribution, and where analytical forms are not not available, inference
is most often accomplished using samples from the posterior distribution. Good general references are Aykroyd
(1998) and Gelman et al (2009).

We sampled from the posterior distribution p(θ|data) using the Metropolis-Hastings algorithm (Hastings, 1970),
summarized as follows.

1. Choose an intitial value θ(0) =
(
α(0), λ(0), γ(0)

)′
.
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2. For t = 1, · · · , T repeat the following steps

i. Set θ = θ(t−1).
ii. Generate a candidate value θ∗ from a proposal distribution q(θ∗|θ).

iii. Set θ(t) = θ∗ with probability min
{
1, π(θ

∗ |data)q(θ|θ∗)
π(θ|data)q(θ∗ |θ)

}
, and otherwise set θ(t) = θ.

Here q is the transition probability matrix of a Markov chain whose support is the same as that of the likelihood
function, and q(θ∗|θ) is the probability of a transition from θ to θ∗. Tierney (1994) provides an extensive discussion
on the use of the Metropolis-Hastings and related algorithms for sampling posterior distributions, including the
choice of the proposal distribution. Under quite general conditions the Metropolis-Hastings algorithm generates
a sample path {θ(t), t = 0, 1, . . . T } from an ergodic Markov Chain whose marginal distributions converge to the
equilibrium distribution of the chain - in this case the posterior distribution from which we wish to sample - as
T → ∞. While there are many possible choices for the proposal distribution, in practice the choice of the proposal
is important since a poor choice can delay the convergence towards the equilibrium distribution.

We generated proposals using an independence chain with proposals chosen as i.i.d. samples from N3(θ̂, Î−1). The
Bernstein-von Mises’s theorem (Lecam, 1986) states that this is the limit distribution of the posterior p(θ|data),
as n → ∞. The idea of using an independence chain in which the proposed point is independent of the past and
current states was suggested by Hastings (1970), among other proposal strategies.

In order to assess the sensitivity of inference to the choice of prior, we used two prior distributions with very
different characteristics, either α, λ, γ,∼ i.i.d. U(0,100), or α, λ, γ,∼ i.i.d. gamma(.001, .001).

The sampled values γ(t) = θ(t)3 and λ(t) = θ(t)2 are transformed to provide samples from R as R̂(t) =
γ(t)

λ(t)+γ(t) , and these
are used to carry out Bayesian inference for R.

5. Application

In this section we present a data analysis of the strength data reported by Badar and Priest [4]. The data represent
the strength, measured in GPa, for single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were
tested under tension at gauge lengths of 1; 10; 20; and 50mm. Impregnated tows of 1000 fibers were tested at
gauge lengths of 20; 50; 150 and 300 mm. For illustrative purposes, we consider the single fibers of 20 mm (Data
Set I) and 10 mm (Data Set II) in gauge length, with sample sizes n = 69 and m = 63, respectively. The data are
presented below for convenience.

Data Set 1 (X :)
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809
2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585

Data Set 2 (Y :)
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614
2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145
3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020

We fit the TPBT model to the two data sets separately, and present the estimated parameters of both generalized
exponential (GE) and TPBT distributions, log-likelihood values L, Kolmogorov-Smirnov (K-S) distances and
corresponding p-values in Table 1. Also, the Akaike information criterion (AIC= −2L + 2k, k is the number of
model parameters) is computed for every model using the two data sets. Based on either the P-value or the AIC,
the TPBT model fits quite well (and better than the GE model) to both the data sets. Empirical and fitted survivor
functions are shown in Figure 1.

Table 1: MLE of the parameters, K-S, P-value, L, and AIC for the two data sets.
Variable Model mles K-S P-value L AIC
X TPBT (0.1516, 1.3675) 0.08471 0.6733 -51.704 107.408

GE (1.8966, 8.8284) 0.10568 0.3965 -56.669 117.383
Y TPBT (0.2809, 1.0375) 0.10126 0.5059 -60.077 124.154

GE (1.6777, 6.4538) 0.17053 0.0452 -64.195 132.390
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Assuming a common parameter α for the TPBT model, we obtained the MLEs α̂ = 1.2015, λ̂ = 0.042308 and
γ̂ = 0.012396 leading to the MLE of R as R̂ = 0.22661. The inverse of the observed information matrix of (α̂, λ̂, γ̂)
is

Î−1 =

 1.0113 × 10−3 −1.6217 × 10−4 −8.8439 × 10−5

−1.6217 × 10−4 5.1948 × 10−5 1.4182 × 10−5

−8.8439 × 10−5 1.4182 × 10−5 1.0173 × 10−5

 (15)

Using (12) and (15), we obtained ÎR = 1.2638 × 10−3. Therefore, using (11) and (13), we obtained the 14.7% LI
(which approximates a 95% CI) and the asymptotic 95% CI for R as (0.17984, 0.28367) and (0.15693, 0.29628)
respectively. The intervals are close, but not identical, reflecting the asymmetry of the maximum log-relative
likelihood function rmax(R), which is plotted in Figure 2 together with the endpoints of the 14.7% LI for R.
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(a) Data 1 (b) Data 2
Figure 1. Empirical and fitted survival functions for the two data sets using GE and TPBT models.
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Figure 2. Max Log-relative likelihood function of R along with the endpoints of 14.7% LI for R.

Figure 3a shows values of α, λ and γ sampled from the joint posterior distribution assuming independent gamma(.001,.001)
priors, after deleting an initial transient of 10,000 points and subsampling each 200’th point. The empirical bivari-
ate marginal distributions are also included in Figures 3b, c and d along with p = 0.01, 01.47 and 0.50 profile
likelihood contours. There is a good agreement between the shape of the contours and the sample from the poste-
rior indicating little dependence on the prior.

Figure 4 shows the 1000 sampled points from the marginal posterior distributions of α, λ, γ and R calculated using
gamma priors, and histograms of the empirical marginal posterior pdfs. The dashed lines on the left hand panels
are positioned at the upper and lower limits of the 14.7% likelihood intervals.
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Figure 3. Scatter plots showing sample values (a) and marginal samples values and likelihood contours (b), (c)
and (d). Contour levels are p = 0.01, p = 0.147 and p = 0.50. * indicates the MLE.
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In order to assess the sensitivity of Bayesian inferences for R to the choice of prior we ran the Metropolis-Hastings
algorithm twice: with independent U(0,100) priors, and with independent gamma(0.001,0.001) priors. The uni-
form distribution was meant to play the role of a non-informative prior, while the gamma prior is relatively infor-
mative, being heavily skewed to the right with a single high mode near 0. We ran the sampler for 100,000 iterations
and discarded the first 50,000 points as a transient. The remaining 50000 points were sub-sampled, retaining every
50th point, and the resulting sequences of 1000 sampled values of R are shown in Figure 5, together with plots
of the associated simulated empirical posterior pdf. These figures suggest that the choice of prior has little influ-
ence on inferences for R, and this is further evidenced in Table 2, which shows the estimated posterior means and
medians.

Equal tail probability 0.95 credible intervals for R were calculated as the interval from the 2.5’th to the 97.5’th
percentile of the empirical distribution of R. The intervals, (0.177, 0.276) using the gamma prior, and (0.180,
0.277) using the uniform prior, again show little sensitivity to the choice of prior.

reliability

D
e
n

s
it
y

0.15 0.20 0.25 0.30

0
5

1
0

1
5

50 60 70 80 90 100

0
.1

5
0

.2
0

0
.2

5
0
.3

0

iteration/1000

re
li
a

b
il
it
y

reliability

D
e
n

s
it
y

0.15 0.20 0.25 0.30

0
5

1
0

1
5

50 60 70 80 90 100

0
.1

5
0
.2

0
0
.2

5
0

.3
0

iteration/1000

re
li
a

b
il
it
y

Figure 5. Simulated points and empirical posterior pdfs of R using gamma (top row) and uniform (bottom row)
priors.

Table 2. Posterior means and medians (in brackets).

Prior α λ γ R
Gamma(.001,.001) 1.203 (1.204) .042 (.042) .012 (.012) .226 (.226)
U(0,100) 1.198 (1.199) .043 (.043) .013 (.013) .225 (.225)
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6. Simulation Study

A simulation study was carried out to assess the sampling properties of the MLE, the posterior mean and the
posterior median.

At each of several parameter values and several sample sizes, 1000 simulation batches were independently gen-
erated. For each simulation batch, X1, . . . , Xn and Y1, . . . ,Ym were independently drawn from the TPBT(λ, α) and
TPBT(γ, α), respectively. Three values were used for each parameter. These were approximately the MLE and the
MLE plus or minus 2 standard errors, based on the calculations from the data analysis in Section 5.

For each simulation batch, the MLE and asymptotic 95% confidence interval (13) for R were evaluated. In addition,
for each batch the Metropolis-Hastings algorithm was used to generate a sequence of 10000 samples from the
posterior distribution, using independent U(0,100) priors. The data analysis of Section 4 showed little sensitivity
to the choice of prior, and we used the uniform as a non-informative choice. The first 5000 iterates of each sequence
were discarded and the remaining 5000 were assumed to be samples from the stationary posterior distribution of
(α, λ, γ)′. These were transformed to give samples from the posterior distribution of R.

Based on the 1000 simulation batches, estimates of the bias and root mean squared error were made for the
MLE, the posterior mean and the posterior median. The empirical coverage probabilities were estimated for the
asymptotic 95% confidence interval and the equal tail probability .95 credible interval, the latter being the interval
between the 2.5’th and 97.5’th percentiles of the empirical posterior distribution. The results are presented in Table
3.

The Bernstein-von Mises’ theorem guarantees that for any choice of prior, the MLE, the posterior mean and the
posterior median will be close for large sample sizes. In the present case there are only small differences among
the MLE, the posterior mean and median with respect to bias and mean squared error, even at small to moderate
sample sizes. The coverage property of the frequentist intervals is close to nominal, even when m = n = 20.

7. Conclusion

For the situation when two independent random variables follow the TPBT distribution with equal second shape
parameter, the reliability has a particularly simple form, although it still must be estimated numerically. We
have examined the use of both likelihood and Bayesian inference for the reliability in this case. Uniform and
gamma priors were proposed, and MCMC methods were used to examine the posterior density. Point estimates via
maximum likelihood, posterior mean and posterior median all displayed excellent sampling properties. Asymptotic
confidence intervals gave coverage close to the nominal level.

There is no guarantee that Bayesian inferences will have frequentist validity. This is the case in Table 3 which
shows that the probability .95 Bayesian credible intervals for R have frequentist coverage below 95%. There have
been systematic attempts to develop families of prior distributions, so-called probability matching priors, having
frequentist validity (Datta, 1996).

A typical adjunct to a Bayesian analysis involving samples generated with MCMC algorithms is the assessment of
the stationarity of the sampled points. A number of methods for this purpose are discussed, for example, in Gelman
et al (2009). Using several such procedures, there was no indication from the data analysis that more than 10000
points were needed for convergence, using either uniform or gamma priors. Due to the size of the simulation study,
we made no assessment of convergence of the sampled points for the individual simulated data sets.

In future work, we will examine the effect of relaxing two assumptions made in this study: the equality of the
second shape parameter of the TPBT distribution, and the independence of the two random variables.
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Table 3. Sampling properties of estimators. Pmean - posterior mean. Pmed - posterior median.
CP - coverge probability. RMS - root mean squared error.

n=20, m=20
MLE Pmean Pmed CP

α λ γ R bias RMS bias RMS bias RMS MLE Bayes
1.100 0.020 0.0005 0.024 -0.0004 0.0139 0.0021 0.0145 -0.0002 0.0140 0.95 0.89
1.100 0.020 0.0100 0.333 -0.0043 0.0761 -0.0020 0.0751 -0.0041 0.0759 0.93 0.82
1.100 0.020 0.0200 0.500 -0.0009 0.0824 -0.0008 0.0813 -0.0009 0.0822 0.94 0.82
1.100 0.040 0.0005 0.012 -0.0002 0.0083 0.0015 0.0089 -0.0001 0.0084 0.95 0.90
1.100 0.040 0.0100 0.200 -0.0038 0.0609 -0.0001 0.0604 -0.0032 0.0608 0.94 0.80
1.100 0.040 0.0200 0.333 -0.0033 0.0796 -0.0010 0.0785 -0.0030 0.0794 0.93 0.79
1.100 0.060 0.0005 0.008 0.0001 0.0061 0.0015 0.0067 0.0002 0.0062 0.95 0.91
1.100 0.060 0.0100 0.143 -0.0049 0.0490 -0.0010 0.0487 -0.0043 0.0489 0.95 0.82
1.100 0.060 0.0200 0.250 -0.0043 0.0657 -0.0010 0.0650 -0.0038 0.0656 0.94 0.83
1.200 0.020 0.0005 0.024 -0.0002 0.0137 0.0023 0.0144 -0.0000 0.0139 0.95 0.90
1.200 0.020 0.0100 0.333 -0.0070 0.0763 -0.0046 0.0751 -0.0067 0.0761 0.94 0.82
1.200 0.020 0.0200 0.500 0.0015 0.0876 0.0016 0.0864 0.0014 0.0874 0.90 0.78
1.200 0.040 0.0005 0.012 -0.0004 0.0080 0.0013 0.0085 -0.0003 0.0081 0.95 0.91
1.200 0.040 0.0100 0.200 -0.0054 0.0593 -0.0018 0.0586 -0.0050 0.0591 0.94 0.83
1.200 0.040 0.0200 0.333 0.0005 0.0789 0.0028 0.0780 0.0009 0.0787 0.93 0.80
1.200 0.060 0.0005 0.008 0.0001 0.0065 0.0015 0.0071 0.0002 0.0066 0.94 0.91
1.200 0.060 0.0100 0.143 -0.0071 0.0498 -0.0032 0.0494 -0.0065 0.0498 0.94 0.82
1.200 0.060 0.0200 0.250 -0.0032 0.0673 0.0001 0.0666 -0.0026 0.0672 0.93 0.82
1.300 0.020 0.0005 0.024 -0.0005 0.0144 0.0020 0.0150 -0.0003 0.0145 0.94 0.88
1.300 0.020 0.0100 0.333 -0.0075 0.0771 -0.0050 0.0760 -0.0071 0.0769 0.93 0.80
1.300 0.020 0.0200 0.500 0.0064 0.0813 0.0065 0.0802 0.0065 0.0812 0.93 0.82
1.300 0.040 0.0005 0.012 -0.0002 0.0082 0.0015 0.0088 -0.0001 0.0083 0.94 0.91
1.300 0.040 0.0100 0.200 -0.0057 0.0611 -0.0021 0.0606 -0.0052 0.0610 0.94 0.82
1.300 0.040 0.0200 0.333 -0.0047 0.0775 -0.0022 0.0764 -0.0042 0.0773 0.94 0.80
1.300 0.060 0.0005 0.008 0.0001 0.0062 0.0015 0.0068 0.0002 0.0062 0.94 0.90
1.300 0.060 0.0100 0.143 -0.0024 0.0482 0.0015 0.0482 -0.0018 0.0482 0.95 0.83
1.300 0.060 0.0200 0.250 -0.0024 0.0655 0.0009 0.0648 -0.0019 0.0653 0.94 0.83

n=20, m=40
1.100 0.020 0.0005 0.024 -0.0003 0.0112 0.0011 0.0116 -0.0001 0.0113 0.94 0.83
1.100 0.020 0.0100 0.333 -0.0041 0.0639 -0.0017 0.0634 -0.0035 0.0639 0.95 0.83
1.100 0.020 0.0200 0.500 -0.0042 0.0739 -0.0032 0.0732 -0.0036 0.0738 0.93 0.81
1.100 0.040 0.0005 0.012 -0.0001 0.0065 0.0008 0.0068 0.0000 0.0065 0.94 0.81
1.100 0.040 0.0100 0.200 -0.0074 0.0500 -0.0043 0.0496 -0.0067 0.0500 0.95 0.82
1.100 0.040 0.0200 0.333 -0.0066 0.0641 -0.0042 0.0634 -0.0059 0.0640 0.94 0.83
1.100 0.060 0.0005 0.008 -0.0001 0.0045 0.0006 0.0048 -0.0000 0.0046 0.95 0.84
1.100 0.060 0.0100 0.143 -0.0042 0.0402 -0.0012 0.0402 -0.0036 0.0402 0.95 0.82
1.100 0.060 0.0200 0.250 -0.0034 0.0564 -0.0004 0.0560 -0.0026 0.0563 0.95 0.83
1.200 0.020 0.0005 0.024 -0.0012 0.0109 0.0002 0.0112 -0.0010 0.0109 0.94 0.82
1.200 0.020 0.0100 0.333 -0.0104 0.0643 -0.0080 0.0634 -0.0097 0.0641 0.94 0.83
1.200 0.020 0.0200 0.500 -0.0035 0.0687 -0.0026 0.0680 -0.0030 0.0686 0.94 0.83
1.200 0.040 0.0005 0.012 0.0000 0.0069 0.0010 0.0073 0.0002 0.0070 0.93 0.81
1.200 0.040 0.0100 0.200 -0.0085 0.0497 -0.0054 0.0492 -0.0078 0.0497 0.96 0.82
1.200 0.040 0.0200 0.333 -0.0091 0.0654 -0.0066 0.0647 -0.0084 0.0653 0.94 0.82
1.200 0.060 0.0005 0.008 0.0001 0.0049 0.0008 0.0052 0.0002 0.0050 0.94 0.83
1.200 0.060 0.0100 0.143 -0.0045 0.0396 -0.0014 0.0396 -0.0038 0.0397 0.95 0.82
1.200 0.060 0.0200 0.250 -0.0046 0.0581 -0.0017 0.0576 -0.0039 0.0580 0.93 0.81
1.300 0.020 0.0005 0.024 -0.0005 0.0110 0.0009 0.0114 -0.0003 0.0110 0.95 0.84
1.300 0.020 0.0100 0.333 -0.0078 0.0686 -0.0053 0.0680 -0.0071 0.0686 0.92 0.79
1.300 0.020 0.0200 0.500 -0.0023 0.0723 -0.0015 0.0715 -0.0019 0.0721 0.93 0.79
1.300 0.040 0.0005 0.012 -0.0003 0.0063 0.0007 0.0066 -0.0001 0.0063 0.95 0.84
1.300 0.040 0.0100 0.200 -0.0042 0.0494 -0.0010 0.0492 -0.0034 0.0494 0.94 0.83
1.300 0.040 0.0200 0.333 -0.0029 0.0631 -0.0005 0.0625 -0.0022 0.0630 0.95 0.82
1.300 0.060 0.0005 0.008 -0.0001 0.0046 0.0006 0.0049 -0.0000 0.0047 0.94 0.83
1.300 0.060 0.0100 0.143 -0.0039 0.0401 -0.0008 0.0401 -0.0032 0.0401 0.96 0.83
1.300 0.060 0.0200 0.250 -0.0061 0.0580 -0.0031 0.0575 -0.0053 0.0579 0.94 0.80
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Table 3. Continued ...
n=40, m=40

MLE Pmean Pmed CP
α λ γ R bias RMS bias RMS bias RMS MLE Bayes

1.100 0.020 0.0005 0.024 -0.0004 0.0098 0.0007 0.0100 -0.0003 0.0098 0.94 0.83
1.100 0.020 0.0100 0.333 -0.0017 0.0537 -0.0004 0.0534 -0.0015 0.0537 0.94 0.82
1.100 0.020 0.0200 0.500 -0.0025 0.0577 -0.0024 0.0573 -0.0025 0.0576 0.95 0.82
1.100 0.040 0.0005 0.012 -0.0001 0.0056 0.0007 0.0058 0.0000 0.0056 0.96 0.84
1.100 0.040 0.0100 0.200 -0.0003 0.0420 0.0016 0.0419 -0.0000 0.0419 0.95 0.82
1.100 0.040 0.0200 0.333 -0.0029 0.0537 -0.0017 0.0533 -0.0027 0.0537 0.94 0.82
1.100 0.060 0.0005 0.008 -0.0001 0.0041 0.0005 0.0043 -0.0000 0.0041 0.94 0.85
1.100 0.060 0.0100 0.143 -0.0025 0.0362 -0.0006 0.0362 -0.0022 0.0362 0.92 0.80
1.100 0.060 0.0200 0.250 -0.0019 0.0459 -0.0003 0.0457 -0.0017 0.0458 0.95 0.83
1.200 0.020 0.0005 0.024 -0.0006 0.0096 0.0005 0.0098 -0.0004 0.0096 0.94 0.84
1.200 0.020 0.0100 0.333 -0.0026 0.0545 -0.0013 0.0541 -0.0024 0.0544 0.94 0.81
1.200 0.020 0.0200 0.500 -0.0025 0.0603 -0.0023 0.0598 -0.0024 0.0602 0.93 0.80
1.200 0.040 0.0005 0.012 -0.0002 0.0055 0.0005 0.0058 -0.0001 0.0056 0.95 0.84
1.200 0.040 0.0100 0.200 -0.0025 0.0437 -0.0006 0.0435 -0.0021 0.0437 0.93 0.82
1.200 0.040 0.0200 0.333 -0.0040 0.0533 -0.0027 0.0528 -0.0038 0.0532 0.94 0.82
1.200 0.060 0.0005 0.008 -0.0000 0.0042 0.0005 0.0044 0.0000 0.0043 0.94 0.83
1.200 0.060 0.0100 0.143 -0.0014 0.0353 0.0006 0.0353 -0.0010 0.0352 0.94 0.81
1.200 0.060 0.0200 0.250 -0.0011 0.0471 0.0006 0.0469 -0.0009 0.0471 0.94 0.83
1.300 0.020 0.0005 0.024 -0.0006 0.0098 0.0004 0.0101 -0.0005 0.0099 0.94 0.82
1.300 0.020 0.0100 0.333 -0.0010 0.0516 0.0003 0.0513 -0.0008 0.0516 0.95 0.83
1.300 0.020 0.0200 0.500 -0.0005 0.0557 -0.0003 0.0553 -0.0004 0.0556 0.96 0.82
1.300 0.040 0.0005 0.012 -0.0001 0.0057 0.0007 0.0060 0.0000 0.0058 0.96 0.84
1.300 0.040 0.0100 0.200 -0.0012 0.0412 0.0007 0.0410 -0.0009 0.0412 0.95 0.82
1.300 0.040 0.0200 0.333 -0.0001 0.0527 0.0012 0.0524 0.0001 0.0527 0.95 0.81
1.300 0.060 0.0005 0.008 0.0001 0.0043 0.0007 0.0045 0.0001 0.0043 0.94 0.82
1.300 0.060 0.0100 0.143 -0.0025 0.0339 -0.0005 0.0338 -0.0022 0.0339 0.96 0.84
1.300 0.060 0.0200 0.250 -0.0065 0.0464 -0.0048 0.0460 -0.0062 0.0463 0.95 0.82

n=40, m=60
1.100 0.020 0.0005 0.024 -0.0005 0.0083 0.0004 0.0085 -0.0004 0.0083 0.95 0.83
1.100 0.020 0.0100 0.333 -0.0041 0.0469 -0.0028 0.0466 -0.0037 0.0469 0.96 0.83
1.100 0.020 0.0200 0.500 -0.0028 0.0524 -0.0024 0.0520 -0.0027 0.0523 0.94 0.82
1.100 0.040 0.0005 0.012 -0.0002 0.0048 0.0004 0.0050 -0.0001 0.0049 0.95 0.83
1.100 0.040 0.0100 0.200 -0.0039 0.0397 -0.0022 0.0395 -0.0035 0.0397 0.94 0.81
1.100 0.040 0.0200 0.333 -0.0035 0.0462 -0.0022 0.0459 -0.0031 0.0462 0.95 0.84
1.100 0.060 0.0005 0.008 -0.0001 0.0035 0.0003 0.0037 -0.0001 0.0036 0.94 0.82
1.100 0.060 0.0100 0.143 -0.0018 0.0307 -0.0000 0.0306 -0.0014 0.0307 0.94 0.84
1.100 0.060 0.0200 0.250 -0.0015 0.0429 0.0001 0.0427 -0.0012 0.0429 0.95 0.82
1.200 0.020 0.0005 0.024 -0.0009 0.0084 -0.0001 0.0085 -0.0008 0.0084 0.95 0.82
1.200 0.020 0.0100 0.333 -0.0038 0.0479 -0.0025 0.0476 -0.0035 0.0479 0.94 0.82
1.200 0.020 0.0200 0.500 -0.0033 0.0528 -0.0030 0.0524 -0.0032 0.0527 0.94 0.82
1.200 0.040 0.0005 0.012 -0.0001 0.0051 0.0005 0.0053 -0.0000 0.0051 0.94 0.82
1.200 0.040 0.0100 0.200 -0.0029 0.0372 -0.0012 0.0370 -0.0025 0.0371 0.94 0.84
1.200 0.040 0.0200 0.333 -0.0039 0.0489 -0.0026 0.0486 -0.0036 0.0488 0.95 0.81
1.200 0.060 0.0005 0.008 -0.0003 0.0036 0.0001 0.0037 -0.0003 0.0036 0.95 0.81
1.200 0.060 0.0100 0.143 -0.0021 0.0302 -0.0004 0.0301 -0.0018 0.0302 0.95 0.84
1.200 0.060 0.0200 0.250 -0.0031 0.0430 -0.0015 0.0428 -0.0028 0.0430 0.95 0.82
1.300 0.020 0.0005 0.024 -0.0007 0.0085 0.0002 0.0086 -0.0005 0.0085 0.96 0.82
1.300 0.020 0.0100 0.333 -0.0025 0.0489 -0.0012 0.0486 -0.0022 0.0488 0.94 0.81
1.300 0.020 0.0200 0.500 0.0022 0.0511 0.0026 0.0508 0.0024 0.0511 0.94 0.83
1.300 0.040 0.0005 0.012 0.0001 0.0049 0.0006 0.0051 0.0001 0.0049 0.94 0.84
1.300 0.040 0.0100 0.200 -0.0031 0.0387 -0.0013 0.0386 -0.0027 0.0387 0.94 0.82
1.300 0.040 0.0200 0.333 -0.0044 0.0474 -0.0031 0.0471 -0.0041 0.0474 0.95 0.83
1.300 0.060 0.0005 0.008 -0.0000 0.0038 0.0004 0.0039 0.0000 0.0038 0.94 0.82
1.300 0.060 0.0100 0.143 -0.0024 0.0304 -0.0006 0.0303 -0.0020 0.0304 0.94 0.83
1.300 0.060 0.0200 0.250 -0.0035 0.0424 -0.0019 0.0421 -0.0031 0.0423 0.94 0.83
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Appendix

The second partial derivatives of L(θ) are

∂2L
∂λ2 = − n

λ2 ,
∂2L
∂γ2 = −

m
γ2 ,

∂2L
∂α2 = −n + m

α2 +

n∑
i=1

xαi ln2 xi +

m∑
i=1

yαi ln2 yi

−λ
n∑

i=1

(
1 + xαi

)
exαi xαi ln2 xi − γ

m∑
i=1

(
1 + yαi

)
eyαi yαi ln2 yi ,

∂2L
∂λ∂α

= −
n∑

i=1

exαi xαi ln xi

∂2L
∂γ∂α

= −
m∑

i=1

eyαi yαi ln yi

∂2L
∂γ∂λ

= 0.

The sample information matrix is

Î = −


∂2L
∂α2

∂2L
∂α∂λ

∂2L
∂α∂γ

∂2L
∂α∂λ

∂2L
∂λ2

∂2L
∂λ∂γ

∂2L
∂α∂γ

∂2L
∂λ∂γ

∂2L
∂γ2

 .
The local estimate of the variance-covariance matrix for the MLE of the model parameters is the inverse of the
observed information matrix

Î−1 =

 v̂ar(α̂) ĉov(α̂, λ̂) ĉov(α̂, γ̂)
ĉov(α̂, λ̂) v̂ar(λ̂) ĉov(λ̂, γ̂)
ĉov(α̂, γ̂) ĉov(λ̂, γ̂) v̂ar(γ̂)

 = −

∂2L
∂α2

∂2L
∂α∂λ

∂2L
∂α∂γ

∂2L
∂α∂λ

∂2L
∂λ2

∂2L
∂λ∂γ

∂2L
∂α∂γ

∂2L
∂λ∂γ

∂2L
∂γ2


−1

(16)

where the partial derivatives are evaluated at α = α̂, λ = λ̂ and γ = γ̂.
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