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Abstract 

The performance of two line search algorithms, the Quick Convergent Inflow Algorithm and the Modified Quick 

Convergent Inflow Algorithm, used in locating the optimizers of response functions is studied. The methodology 

requires the use of the same starting experimental design. The indicator variables are the number of iterations 

and the optimal point reached at each iteration. The Modified Quick Convergent Inflow Algorithm seems to 

perform generally better than the Quick Convergent Inflow Algorithm in the sense that solutions obtained are 

much closer to the exact solutions than those obtained using the Quick Convergent Inflow Algorithm. As a 

consequence to the study, a new algorithm is developed for solving Linear Programming problems. The 

algorithm iteratively eliminates from an N-sized starting design a point that contributes less to the process as 

measured by the predictive variances at the design points. The design size is immediately recoverd by adding to 

the resulting N-1 sized design a design point from the candidate set that optimizes performance. The new 

algorithm offers approximate solutions to Linear Programming problems as demonstrated with some numerical 

illustrations.  

Keywords: Quick Convergent Inflow Algorithm, Modified Quick Convergent Algorithm, elimination method, 

predictive variance 

1. Introduction 

There have been growing concerns on the development and application of specific designed techniques for 

determining optimal choices. For many decades, Linear Programming problems have been solved using 

graphical method, simplex method, interior point algorithm, Newton’s method, karmarker’s method and many 

others. However, in some few years now, experimental design techniques have been employed as alternative 

methods in solving linear programming problems. These methods, usually based on sequential algorithms, 

include Maximum Norm Exchange Algorithm of Umoren (1999), Quadratic Exchange Algorithm of Umoren 

(2002), Quick Convergent Inflow Algorithm of Odiakosa and Iwundu (2013), Modified Quick Convergent 

Inflow Algorithm of Iwundu and Ebong (2014), etc. Umoren (1999) and Umoren (2002) applied the optimal 

design principles in solving constrained optimization problems. Etukudo and Umoren (2008) showed that it is 

easier and in fact better to use the modified super convergent line series algorithm, which is based on the 

principles of optimal design of experiments, in solving quadratic programming problem rather than using the 

modified simplex method. 

Umoren and Etukudo (2010) presented an algorithm for solving unconstrained optimization problems. The 

algorithm relied on the principles of optimal experimental design. The algorithm was further modified and 

extended to handle constrained optimization problems. Odiakosa and Iwundu (2013) developed the Quick 

Convergent Inflow Algorithm (QCIA), for solving linear programming problems. Iwundu and Hezekiah (2014) 

studied the effect of the Quick Convergent Inflow Algorithm on segmented regions. A stopping rule based on the 

concepts of variance exchange algorithm was proposed. Iwundu and Ebong (2014) presented the Modified Quick 

Convergent Inflow algorithm (MQCIA). The method sequentially adds a point of maximum variance to an initial 

design in a maximization problem and similarly adds a point of minimum variance to an initial design in a 

minimization problem. The MQCIA is a useful alternative particularly when the point reached by the line 
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equation in the QCIA does not satisfy the linear inequality constraints and hence cannot be used as an admissible 

point of the experimental design. 

We seek in this work to compare the working of the  QCIA and the MQCIA in solving linear programming 

problems. In comparing the working of the two line search algorithms, we shall  

(i) attempt to locate the optimizer of a response function using a unique starting design on the Quick 

Convergent Inflow Algorithm and the Modified Quick Convergent Inflow Algorithm.  

(ii) compare the performances of the two techniques as measured by the number of iterations required to reach 

the optimum and the value of the objective function. 

(iii) develop an alternative modification to the Quick Convergent Inflow Algorithm. 

2. Methodology 

For given Linear Programming problem of the form: 

minimize (maximize) f(𝑥1 , ⋯ , 𝑥𝑛) = 𝑐 ′ 𝑥  = ∑ 𝑐𝑖
𝑛
𝑖=1 𝑥𝑖                  (1) 

subject to A𝑥  ≤  𝑏  ;  𝑥  ≥  0 

 

where 𝑥 is the vector of variables sought for, A is a matrix of known coefficients, 𝑐 and 𝑏 are vectors of 

known coefficients, we outline in sections 2.1 and 2.2 the sequential steps of the Quick Convergent Inflow 

Algorithm and the Modified Quick Convergent Inflow Algorithm, respectively. 

2.1 The Quick Convergent Inflow Algorithm (Odiakosa and Iwundu; 2013) 

The Quick Convergent Inflow Algorithm follows the sequence of steps; 

S1: Form the design measure, 𝜉𝑁
𝑘  , at the kth iteration, by selecting N support points 

Nx...,x,x 21
 from X

~ .  

S2: Obtain the optimal starting point 𝑥
∗
. For n-variates, say, x1, x2, ... , xn the average of N support points  can 

be used as the optimal starting point.  

S3: Determine the information matrix, 
kM corresponding to the design measure K

kN ; k = 0. 

S4: Obtain the determinant of the information matrix, say, det (
kM ). 

S5: Obtain the variance-covariance matrix, 1

kM , of the information matrix. 

S6: Relate the coefficients of the objective function with the information matrix by  

gM
Z

Z
Z k

k

k

k 









2

1  

where g  is the vector of the coefficients of the objective function. 

S7: Determine the direction of search 
kd , where 

kd  is an n-component vector defined by  



























 

n

kkk

d

d

d

ZMd

.

.

.

2

1

1  

S8: Obtain the normalized direction of search *

kd  such that 1
1

*
*

kk dd  

S9: Determine the optimal steps-length,
*  by 
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   

    











 


*

21

021*

,...,,

,...,,
minmin

daaa

bxaaa

inii

iinii

kj             (2.7) 

i = 1,2,3, …, n 

j = 1,2,3, …, m 

S10: With 
*

x ;
* ; 

*
d ; make a move to  ,

**
k

**

1 kkk dxx   

where k = 0,1, …, q. 

S11: Evaluate   ;11   kk fxf                 

S12: Setting k = k+1 and N = N+1 add the points 
*

1kx  in step S10 above to the design measure in step S1 and if 

*

kx 1  satisfy the constraints, continue from step S2 to step S11. Thus obtaining 
*

2kx . 

S13:  Is 
**

12   kk xx   <  > 0? 

If No, go to step S12 and continue the process.  

If Yes, the optimizer of the objective function is 
*

kx 1  

2.2 Modified Quick Convergent Inflow Algorithm (Iwundu and Ebong; 2014) 

The sequential steps that make up the Modified Quick Convergent Inflow Algorithm are; 

(i) Obtain  ̃ grid of points 𝑥(1), 𝑥( ), ⋯, 𝑥(𝑁) from the feasible region to make up the candidate set 

S = { 𝑥(1), 𝑥( ), ⋯, 𝑥(𝑁)  from which design points will be selected into the design measure.  

(ii) From the  ̃ grid of points, select an N-point (N ≤  ̃), n-variate non-singular initial design, 𝜉𝑁. 

The initial design measure and the corresponding design matrix are 

 𝜉𝑁 =  

(

 
 

𝑥(1)

𝑥( )

 
𝑥(𝑁)

)

 
 

  and   𝑁  =  (

𝑥11  𝑥1𝑛

𝑥1  𝑥 𝑛

 
𝑥𝑁1  𝑥𝑁𝑛

) 

The information matrix associated with the design measure is 𝑀𝑁 =   𝑁ʹ 𝑁.   

(iii) Obtain the starting point of search as  

𝑥
𝑁

  = *
∑   

𝑁
  ,

∑   

𝑁
  ,     ,

∑   

𝑁
+     (𝑥1𝑁 , 𝑥 𝑁 ,   , 𝑥𝑛𝑁) 

(iv) Obtain the direction vector, d. The direction of search is 𝑐    , where 

  = [

𝑐1
𝑐 
 
𝑐𝑛

] 

is the vector of coefficients of the objective function.  

The normalized direction vector, 𝑑𝑘
∗  , at the 𝑘𝑡ℎ iteration is such that 𝑑𝑘

∗ ʹ𝑑𝑘
∗  = 1. Here k = 0. 

(v) Evaluate the step-length of search. The step-length is taken as  ( ) where 

 ( ) = min {|
∑        

    
 
   

  
|    | 𝑖 |    }  ; i = 1, 2,   , m ;   𝑖 = ∑  𝑖  𝑑 

𝑛
 =1   ; 𝑑  = 

  

‖ ‖
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(vi)  Make a move to the point  

𝑥
(1)

 =  𝑥
𝑁

  -  ( )𝑐  for minimization problem and  

𝑥
(1)

 =  𝑥
𝑁

  +  ( )𝑐  for maximization problem. 

The value of objective function at this point is f ( 𝑥
(1)

). 

(vii) At each grid point in the candidate set S = { 𝑥(1), 𝑥( ), ⋯, 𝑥(𝑁̃)  compute the variance of predicted 

response, namely,   
(𝑁)

 =  𝑥( ) 𝑀𝑁
 1 (𝑥( ))

 
 ;  j = 1, 2,   ,  ̃.  

At this point we add 𝑥(𝑁+1) additional design point to  𝜉𝑁 and thus form the new design measure 

 𝜉𝑁+1 =  

(

 
 
 

𝑥(1)

𝑥( )

 
𝑥(𝑁)

𝑥(𝑁+1)
)

 
 
 

 

and compute  𝑥
𝑁+1

= *
∑   

𝑁+1
  ,

∑   

𝑁+1
  ,     ,

∑   

𝑁+1
+     (𝑥1,𝑁+1, 𝑥 ,𝑁+1 ,   , 𝑥𝑛,𝑁+1). 

In a minimization problem 𝑥(𝑁+1)  is such that 

𝑥(𝑁+1) 𝑀𝑁
 1 (𝑥(𝑁+1))

 
  =   min { 𝑥( ) 𝑀𝑁

 1 (𝑥( ))
 
 };  j = 1, 2,   ,  ̃. 

Similarly, in a maximization problem 𝑥(𝑁+1)  is such that 

𝑥(𝑁+1) 𝑀𝑁
 1 (𝑥(𝑁+1))

 
  =   max { 𝑥( ) 𝑀𝑁

 1 (𝑥( ))
 
 };  j = 1, 2,   ,  ̃. 

(viii) At the (k+1)
st
 iteration, make a move to  

𝑥
(𝑘+1)

 =  𝑥
𝑁+𝑘

  -  (𝑘)𝑐  for minimization problem and  

   𝑥
(𝑘+1)

 =  𝑥
𝑁+𝑘

  +  (𝑘)𝑐  for maximization problem. 

The objective function has the value f ( 𝑥
(𝑘+1)

) at this point. 

(ix) Stop at (k+1)
st 

iteration if  

f ( 𝑥
(𝑘+1)

) > f ( 𝑥
(𝑘)

) minimization problem or if 

f ( 𝑥
(𝑘+1)

) < f ( 𝑥
(𝑘)

) maximization problem. 

(x) The required optimizer is 𝑥
(𝑘)

   𝑥 
∗ .  

2.3 Comparing The Quick Convergent Inflow Algorithm and the Modified Quick Convergent Inflow Algorithm 

For the two algorithms the feasible region comprises of a continuum of points. The support points that make up 

the design measure must satisfy the m linear inequality constraints and must result in a non-singular information 

matrix. To obtain a non-singular information matrix, the number of distinct support points must not be less than 

the model parameters. The starting point of search is the average of the initial support points and it satisfies the 

linear inequality constraints. Infact, since the region of search is convex, the starting point of search is a feasible 

point of the problem and consequently satisfies the constraints. The direction of search is ∇𝑓 which is 𝑐    , 

the function being linear in the variables. Thus for both algorithms, the search is in the direction of the gradient 

and the step length of the search continues to decrease in the region of optimality.  

In comparing the working of the two algorithms, we commence search for the optimizer of an objective function 

in an LP problem from the same initial experimental design. After a first move has been made, the Quick 

Convergent Inflow Algorithm (QCIA) adds a point reached by the line equation to the initial experimental design 

and the process continues until convergence is established. On the other hand, the Modified Quick Convergent 

Inflow Algorithm (MQCIA) adds a point having minimum predictive variance to the initial experimental design 

in a minimization problem and alternatively adds a point having maximum predictive variance to the initial 

experimental design in a maximization problem. The algorithm stops when the addition of a point on an existing 

experimental design measure does not improve the design as measured by the value of the objective function of 

the optimizer at the current iteration. Where there is no justification to terminate the search at the current 

iteration, the process continues. 
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2.4 The New Method 

The success of the Modified Quick Convergent Inflow Algorithm (MQCIA) of Iwundu and Ebong (2014) lies 

fundamentally on the fact that by improving an experimental design, the optimizer of a response function is 

approached. Many techniques are suggested on the subject of designing experiments, on how to improve an 

existing experimental design. They include single augmentation processes, multiple augmentation processes, 

addition/deletion methods, exchange methods etc. These techniques are available in literatures on optimal design 

of experiments and include Mitchell-Miller (1970), Van Schalkwyk (1971), Fedorov (1972), Mitchell (1974), 

Cook and Nachtsheim (1980), Johnson and Nachtsheim (1983), Atkinson and Donev (1992).  

Elimination technique has been one of the methods employed in obtaining optimal choices. One of such 

techniques is the Backward elimination method used in model building. The process of Elimination, usually 

iterative, identifies entities of interest that do not significantly contribute to the system. The fundamental idea 

embodied in the new algorithm is that from an existing N-point design, we eliminate or delete a point in the 

design having a minimum variance of prediction in a maximization problem or we eliminate or delete a point in 

the design having a maximum predictive variance in a minimization problem. The design size is immediately 

recoverd by adding to the resulting N-1 sized design a design point from the candidate set that optimizes 

performance. Specifically, the point added in a maximization problem has maximum predictive variance and the 

point added in a minimization problem has minimum predictive variance.  

The Elimination technique is an alternative to the Modified Quick Convergent Inflow Algorithm (MQCIA) and 

serve as an approximation to the exact method. Apart from the way the experimental design measure is formed 

and improved, other steps of the new algorithm are as in the Modified Quick Convergent Inflow Algorithm.  

Hence the Elimination technique is defined by the following sequencial steps; 

(i) Obtain from the feasible region  ̃  grid of points 𝑥(1) , 𝑥( ) , ⋯, 𝑥(𝑁) that satisfy the 

constraint equations, to make up the candidate set S = { 𝑥(1), 𝑥( ), ⋯, 𝑥(𝑁)  . 

(ii) From the  ̃ grid of points, select N design points (N ≤  ̃)  to make up an n-variate 

non-singular initial design, 𝜉𝑁.  

Without loss of generality we write 

 𝜉𝑁 =  

(

 
 

𝑥(1)

𝑥( )

 
𝑥(𝑁)

)

 
 

 ,    𝑁  =  (

𝑥11  𝑥1𝑛

𝑥1  𝑥 𝑛

 
𝑥𝑁1  𝑥𝑁𝑛

) 

Where  𝑁  is the design matrix for 𝜉𝑁 and the corresponding information matrix is 𝑀𝑁  =   𝑁 ʹ 𝑁 and 

normalized as N-1𝑀𝑁 . 

(iii) Obtain the starting point of search as  

𝑥
𝑘
  = *

∑   

𝑁
  ,

∑   

𝑁
  ,     ,

∑   

𝑁
+     (𝑥1𝑘 , 𝑥 𝑘 ,   , 𝑥𝑛𝑘) 

where 𝑥
𝑘
 is the average of the initial design points at the k

th
 iteration. Here k = 0. 

(iv) Obtain the direction vector, d. The direction of search is ∇𝑓 which is 𝑐     where 

   = [

𝑐1
𝑐 
 
𝑐𝑛

] is the vector of coefficients of the objective function.  

The normalized direction vector, 𝑑𝑘
∗  , at the 𝑘𝑡ℎ iteration is such that 𝑑𝑘

∗ ʹ𝑑𝑘
∗  = 1.  

(v) Obtain the step-length of search  ( ), where 

 ( ) = min {|
∑        

    
 
   

  
|    | 𝑖 |    }  ; i = 1, 2,   , m ;   𝑖 = ∑  𝑖  𝑑 

𝑛
 =1   ; 𝑑  = 

  

‖ ‖
 

(vi) Make a move to the next point of search 

𝑥
(1)

 =  𝑥
𝑁

  -  ( )𝑐  for minimization problem and  
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𝑥
(1)

 =  𝑥
𝑁

  +  ( )𝑐  for maximization problem. 

At this point the objective function has the value f ( 𝑥
(1)

). 

(vii) Evaluate the variance of predicted response, namely, 

   
(𝑁)

 =  𝑥( ) 𝑀𝑁
 1 (𝑥( ))

 
 ;  j = 1, 2,   ,  ̃ 

at each point in the design measure and the candidate set. 

Let 𝑥𝑁
(𝑚𝑖𝑛)

 be a point in the design measure having the minimum variance of prediction. Then  

 𝑚𝑖𝑛
(𝑁)

  =  𝑥𝑁
(𝑚𝑖𝑛)

 𝑀𝑁
 1(𝑥𝑁

(𝑚𝑖𝑛)
)
 
 

is the predictive variance associated with 𝑥𝑁
(𝑚𝑖𝑛)

. 

Also, let 𝑥
𝑁̃

(𝑚  )
 be a point in the candidate set having the maximum variance of prediction. Then  

 𝑚  
(𝑁)

  =  𝑥
𝑁

(𝑚  )
  𝑀𝑁

 1(𝑥
𝑁

(𝑚  )
 )

 
 

is the predictive variance associated with 𝑥
𝑁

(𝑚  )
 . 

Similarly, let 𝑥𝑁
(𝑚  )

 be a point in the design measure having the maximum variance of prediction. Then  

 𝑚  
(𝑁)

  =  𝑥𝑁
(𝑚  )

 𝑀𝑁
 1(𝑥𝑁

(𝑚  )
)
 
 

is the predictive variance associated with 𝑥𝑁
(𝑚  )

. 

Also, let 𝑥
𝑁̃

(𝑚𝑖𝑛)
 be a point in the candidate set having the minimum variance of prediction. Then  

 𝑚𝑖𝑛
(𝑁)

  =  𝑥
𝑁

(𝑚𝑖𝑛)
  𝑀𝑁

 1(𝑥
𝑁

(𝑚𝑖𝑛)
 )

 
 

is the predictive variance associated with 𝑥
𝑁

(𝑚𝑖𝑛)
 . 

In a maximization problem 𝑥𝑁
(𝑚𝑖𝑛)

is such that 

𝑥𝑁
(𝑚𝑖𝑛)

 𝑀𝑁
 1(𝑥𝑁

(𝑚𝑖𝑛)
)
 
  =   min { 𝑥( ) 𝑀𝑁

 1 (𝑥( ))
 
 };  j = 1, 2,   , N 

Similarly, in a minimization problem 𝑥𝑁
(𝑚  )

  is such that 

𝑥𝑁
(𝑚  )

𝑀𝑁
 1(𝑥𝑁

(𝑚  )
)
 
  =   max { 𝑥( ) 𝑀𝑁

 1 (𝑥( ))
 
 };  j = 1, 2,   ,N 

(viii) At this point in a maximization problem, delete 𝑥𝑁
(𝑚𝑖𝑛)

from the initial N-point  

design measure and form a new N-point design measure by adding 𝑥
𝑁

(𝑚  )
 to the resulting N-1 sized design. 

Similarly in a minimization problem, delete 𝑥𝑁
(𝑚  )

  from the initial N-point design measure and form a new 

N-point design measure by adding 𝑥
𝑁

(𝑚𝑖𝑛)
 to the resulting N-1 sized design.  

(ix) Using the new design points, compute the starting point of search at (k+1)
st 

iteration as  

𝑥
𝑘+1

= *
∑   

𝑁
  ,

∑   

𝑁
  ,     ,

∑   

𝑁
+     (𝑥1,𝑘+1, 𝑥 ,𝑘+1 ,   , 𝑥𝑛,𝑘+1). 

(x) At the (k+1)
st
 iteration, make a move to the next point of search 

𝑥
(𝑘+1)

 =  𝑥
𝑘+1

  -  (𝑘)𝑐  for minimization problem and  

𝑥
(𝑘+1)

 =  𝑥
𝑘+1

  +  (𝑘)𝑐  for maximization problem. 

The objective function has the value f ( 𝑥
(𝑘+1)

) at this point. 

(xi) Stop at (k+1)
st 

iteration if  f ( 𝑥
(𝑘+1)

) > f ( 𝑥
(𝑘)

) in minimization problem or if 

f ( 𝑥
(𝑘+1)

) < f ( 𝑥
(𝑘)

) maximization problem. 
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(xii) The required optimizer is 𝑥
(𝑘)

   𝑥 
∗ .  

3. Results  

Illustration 1 

Max Z = 5x1 + 4x2 

Subject to 

6x1+ 4x2 ≤ 24 

x1 + 2x2  ≤ 6 

- x1 + x2 ≤ 1 

x2 ≤ 2 

x1 , x2 ≥ 0 

Using the Quick Convergent Inflow Algorithm with the initial design measure as 

 

ξ   =  

we obtain the results as tabulated in table 1. 

 

Table 1. Iterative steps of the QCIA for problem 1 

No Of 

Iterations 

Determinant 

Of Info Matrix 

Optimizer Value Of 

Objective 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step 

length 

1 9.0 
(
       
       

) 
20.30772 

(
 
 
) (

       
       

) 
0.98510 

2 8.3195 
(
       
       

) 
20.30784 

(
      
      

) (
       
       

) 
0.656777 

3 7.1094 
(
       
       

) 
20.30731 

(
       
       

) (
       
       

) 
0.3941 

The global maximum of the objective function is 𝑥 
∗  = (

       
       

)  and the value of the objective function at 

𝑥 
∗  is 20.30784. The optimizer of the objective function was reached at the second iteration using the Quick 

Convergent Inflow Algorithm. 

Also using the Modified Quick Convergent Inflow Algorithm, we define the candidate set as 

S = {(0   0), (4   0), (3  0 ), (3  3/2), (2  2), (1  2), (0   1), (1   1), (2   1), (1   0), (3  ½ )}. 

With the starting design  

 

ξ   =  
 

we obtain the results as tabulated in table 2 

 

 

 

 

 

1    2 

3      0 
(o) 

3 

1    2 

3      0 
(o) 

3 
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Table 2. Iterative steps of the MQCIA for problem 1 

No of 

Iterations 

K 

Determinant 

Of Info Matrix 

Optimizer Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step length 

1 9.0 
(
       
       

) 
20.30772 

(
 
 
) (

       
       

) 
0.98510 

2 8.3195 
(
       
        

) 
20.75360 

(
      
      

) (
       
       

) 
0.742341 

3 7.4749 
(
       
        

) 
20.9565 

(
   
   

) (
       
       

) 
0.69599 

4 6.4856 
(
       
        

) 
20.7651 

(
   
   

) (
       
       

) 
0.5567757 

The global maximum of the objective function  is  𝑥 
∗  = (

       
        

) and the value of the objective function 

at 𝑥 
∗  is 20.9565. The optimizer of the objective function was reached at the third iteration using the Modified 

Quick Convergent Inflow Algorithm.  

Approaching the process from a new starting design  

 

ξ   =  
 

we obtain the results as tabulated in table 3 using the QCIA. 

Table 3. Iterative steps of the QCIA using a new starting design on problem 1 

No Of 

Iteration 

Determinant 

Of Info Matrix 

Optimizer Value Of 

Obj. 

Function 

Starting point Normalized 

direction of 

search 

Step 

length 

1 
0.2500 (

      
      

) 20.942 (
      
      

) (
       
       

) 0.928030 

2 
0.3362 (

      
      

) 20.942 (
         
         

) (
       
       

) 0.695766 

The global maximum of the objective function  is  𝑥 
∗  = (

      
      

) and the value of the objective function at 

𝑥 
∗  is 20.942. The optimizer of the objective function was reached at the first iteration using the Quick 

Convergent Inflow Algorithm. 

Also using the Modified Quick Convergent Inflow Algorithm with the initial design measure as 

 

ξ   =  
 

we obtain the results as tabulated in table 4 

  

 
 

 
 

3    1 

2     0.5 

2      1 

(o) 

3 

3    1 

2     0.5 

2      1 

(o) 

3 
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Table 4. Iterative steps of the MQCIA using a new starting design on problem 1 

No Of 

Iteration 

Determinan

t Of Info 

Matrix 

Optimizer Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step length 

1 
0.2500 (

      
      

) 20.942 (
      
      

) (
       
       

) 0.928030 

2 
0.3362 (

        
       

) 20.01922 (
   

      
) (

       
       

) 0.861959 

The global maximum of the objective function  is  𝑥 
∗  = (

      
      

) and the value of the objective function at 

𝑥 
∗  is 20.942. The optimizer of the objective function was reached at the first iteration using the Modified Quick 

Convergent Inflow Algorithm. 

Illustration 2  

Min Z = -x1 + 2x2 

Subject to 

-x1+ 3x2 ≤ 10 

x1 + x2  ≤ 6 

x1 - x2 ≤ 2 

x1 , x2 ≥ 0 

Using the Quick Convergent Inflow Algorithm with the initial design measure as 

 

ξ   = 

 

we obtain the results as tabulated in table 5 

Table 5. Iterative steps of the QCIA for problem 2 

No Of 

Iteration 

Determinant 

Of Info Matrix 

Optimizer Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step length 

1 9 
(
      
      

) 
-2.0000 

(
 
 
) (

       
      

) 
2.23614 

2 8.4444 
(
      
      

) 
-1.9999 

(
      
      

) (
       
      

) 
1.4967573 

The global mimimizer of the objective function  is  𝑥 
∗  = (

      
      

) and the value of the objective function at 

𝑥 
∗  is -2.0000. The optimizer of the objective function was reached at the first iteration using the Quick 

Convergent Inflow Algorithm. 

Also using the Modified Quick Convergent Inflow Algorithm  

S  = { (0  0), (0  
10

/3),  (2  4), (2  0), (0  2), (0  1), (1  1), (3  2), (1  3), (1  2), (2  1),  (0  3) } 

With the initial design measure as 

 

ξ   = 

we obtain the results as tabulated in table 6. 

 
 

 
 

2    1 

0      3 
(o) 

2 

2    1 

0      3 
(o) 

2 
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Table 6. Iterative steps of the MQCIA for problem 2 

No Of 

Iteration 

Determinant 

Of Info 

Matrix 

Optimizer 

Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step 

length 

1 9.0000 
(
      
      

) 
-2.0000 

(
 
 
) (

       
      

) 
2.23614 

2 4.0000 
(
      
      

) 
-1.8102 

(
      
      

) (
       
      

) 
1.987649 

The global mimimizer of the objective function  is  𝑥 
∗  = (

      
      

) and the value of the objective function at 

𝑥 
∗  is -2.0000. The optimizer of the objective function was reached at the first iteration using the Modified Quick 

Convergent Inflow Algorithm. 

Similarly, using the Quick Convergent Inflow Algorithm with the initial design measure as 

 

ξ   = 

 

we obtain the results as tabulated in table 7. 

Table 7. Iterative steps of the QCIA using a new starting design on problem 2 

No Of 

Iteration 

Determinant 

Of Info Matrix 

Optimizer Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step 

length 

1 16 
(
       
       

) 
-1.3333 

(
 
 
) (

       
      

) 
1.490757 

2 16.9877 
(
       
       

) 
-1.3333 

(
      
      

) (
       
      

) 
0.99388 

The global mimimizer of the objective function  is  𝑥 
∗  = (

       
       

) and the value of the objective function 

at 𝑥 
∗  is -1.3333. The optimizer of the objective function was reached at the first iteration using the Quick 

Convergent Inflow Algorithm. 

Also using the Modified Quick Convergent Inflow Algorithm with the initial design measure as 

 

ξ   = 

we obtain the results as tabulated in table 8. 

Table 8. Iterative steps of the MQCIA using a new starting design on problem 2 

No Of 

Iteration 

Determinant 

Of Info 

Matrix 

Optimizer 

Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step length 

1 16 
(
       
       

) 
-1.3333 

(
 
 
) (

       
      

) 
1.490757 

2 16.9877 
(
      

 
) 

-2.0000 
(
      
      

) (
       
      

) 
1.4907573 

 
 

 
 

2    4 

2      0 
(o) 

2 

2    4 

2      0 
(o) 

2 
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The global mimimizer of the objective function  is  𝑥 
∗  = (

      
 

)  and the value of the objective function 

at 𝑥 
∗  is -2.0000. The optimizer of the objective function was reached at the first iteration using the Modified 

Quick Convergent Inflow Algorithm. 

We apply the Elimination method to the problems defined in illustrations 1 and 2. For Illustration 1, we select 

grid points from the feasible region to form the candidate set  

S = [(0 , 0), (4 , 0), (3 , 
3
/2), (2 , 2), (1 , 2), (0 , 1), (1 , 1), (2 , 1), (1 , 0), (3 , 

1
/2)] 

From the candidate set we choose N= 6 design points and thus make up the initial design measure  

𝜉 
  = 

(

  
 

  
    
  
  
  
    )

  
 

 

The design matrix associated with the design measure 𝜉 
  is 

   = 

(

  
 

  
    
  
  
  
    )

  
 

 

The starting point of search is 𝑥
 
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
       

) and    = 0.7387578. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
(1)

 = (
      
      

) + 0.7387578 (
       
       

) = (
      
      

). 

f(𝑥
(1)

) = 20.2308 

The minimum predictive variance in the design measure is attained at the design point (0,1) and the maximun 

predictive variance in the candidate set is attained at the design point (4,0). With these we eliminate the point 

(0,1) from the design and form a new design measure  

𝜉 
1 = 

(

  
 

  
    
  
  
  
    )

  
 

 

The design matrix associated with the design measure 𝜉 
1 is 

 1 = 

(

  
 

  
    
  
  
  
    )

  
 

 

 
 



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 2; 2015 

106 

 

The starting point of search is 𝑥
1
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑1 = (
       
       

) and  1 = 0.4176. 

With 𝑥
1
, 𝑑1 and  1 a move is made to 

𝑥
( )

 = (
      
      

) + 0.4176 (
       
       

) = (
      
      

). 

f(𝑥
( )

) = 20.8406 

At this iteration, the minimum predictive variance in the design measure is attained at the design point (3,1.5) 

and the maximun predictive variance in the candidate set is attained at the design point (1,2). With these we 

eliminate the point (3,1.5) from the design and form a new design measure  

𝜉 
  = 

(

  
 

  
  
  
  
  
    )

  
 

 

The design matrix associated with the design measure 𝜉 
  is 

   = 

(

  
 

  
  
  
  
  
    )

  
 

 

The starting point of search is 𝑥
 
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
       

) and    = 0.6496120535. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
( )

 = (
      
      

) + 0.6496120535 (
       
       

) = (
           
           

). 

f(𝑥
( )

) = 20.9929 

At this iteration, the minimum predictive variance in the design measure is attained at the design point (3,0.5) 

and the maximun predictive variance in the candidate set is attained at the design point (4,0). With these we 

eliminate the point (3,0.5) from the design and form a new design measure  

𝜉 
  = 

(

  
 

  
  
  
  
  
  )

  
 

 

The design matrix associated with the design measure 𝜉 
  is 
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   = 

(

  
 

  
  
  
  
  
  )

  
 

 

The starting point of search is 𝑥
 
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
       

) and    = 0.6496120535. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
( )

 = (
      
      

) + 0.5567665834 (
       
       

) = (
      
      

). 

f(𝑥
( )

) = 20.8987. 

Since f(𝑥
( )

) = 20.8987< f(𝑥
( )

) = 20.9929, we stop. The required optimizer is 

𝑥 
∗  = (

           
           

). 

The results for Illustration 1 using the Elimination technique are as tabulated in table 9 

Table 9. Iterative steps of the Elimination technique on Illustration 1 

No Of 

Iteration 

Determinant 

Of Info 

Matrix 

Optimizer 

Value Of 

Obj. 

Function 

Starting 

point 

Normalized 

direction of 

search 

Step length 

1 
8.4583 (

      
      

) 20.2308 (
      
      

) (
       
       

) 0.7387578 

2 
12.0417 (

      
      

) 20.8406 (
      
      

) (
       
       

) 0.4176 

3 
13.4861 (

          
          

) 20.9929 (
      
      

) (
       
       

) 0.649612054 

4 
16.2222 (

      
      

) 20.8987 (
      
      

) (
       
       

) 0.556766583 

For illustration 2, we select grid points from the feasible region to form the candidate set  

S  = (0 , 
10

/3), (2 , 4), (2 , 0), (0 , 2), (4 , 2), (1 , 1), (3 , 2), (1  3) (1  2)] 

From the candidate set we choose N= 6 design points and thus make up the initial design measure  

𝜉 
  = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The design matrix associated with the design measure 𝜉 
  is 



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 2; 2015 

108 

 

   = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The starting point of search is 𝑥
 
 = (

   
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
      

) and    = 2.1533. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
(1)

 = (
   

      
) - 2.1533 (

       
      

) = (
          
          

). 

f(𝑥
(1)

) = -1.5369788 

The maximum predictive variance in the design measure is attained at the design point (4,2) and the minimun 

predictive variance in the candidate set is attained at the design point (1,1). With these we eliminate the point 

(4,2) from the design and form a new design measure  

𝜉 
1 = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The design matrix associated with the design measure 𝜉 
1 is 

 1 = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The starting point of search is 𝑥
1
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑1 = (
       
      

) and  1 = 2.401759094. 

With 𝑥
1
, 𝑑1 and  1 a move is made to 

𝑥
( )

 = (
   

      
) - 2.1533 (

       
      

) = (
          
          

). 

f(𝑥
( )

) = -1.92593333 

At this iteration the maximum predictive variance in the design measure is attained at the design point (2,0) and 

the minimun predictive variance in the candidate set is attained at the design point (1,1). With these we eliminate 

the point (2,0) from the design and form a new design measure  
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𝜉 
  = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The design matrix associated with the design measure 𝜉 
  is 

   = 

(

 
 
 
 

 
1 

 

  
  
  
  
  )

 
 
 
 

 

The starting point of search is 𝑥
 
 = (

      
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
      

) and    = 2.650268336. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
( )

 = (
      
      

) - 2.650268336(
       
      

) = (
      
      

). 

f(𝑥
( )

) = -1.9815 

At this iteration the maximum predictive variance in the design measure is attained at the design point (0, 
1 

 
 ) 

and the minimun predictive variance in the candidate set is attained at the design point (1,2). With these we 

eliminate the point (0, 
1 

 
) from the design and form a new design measure  

𝜉 
  = 

(

  
 

  
  
  
  
  
  )

  
 

 

The design matrix associated with the design measure 𝜉 
  is 

   = 

(

  
 

  
  
  
  
  
  )

  
 

 

The starting point of search is 𝑥
 
 = (

   
      

) 

The direction of search and optimal step length are respectively, 

𝑑  = (
       
      

) and    = 2.360390578. 

With 𝑥
 
, 𝑑  and    a move is made to 

𝑥
( )

 = (
   

      
) - 2.360390578 (

       
      

) = (
      
      

). 
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f(𝑥
( )

) = -1.9444 

Since f(𝑥
( )

) = -1.9444 > f(𝑥
( )

) = -1.9815, we stop. The required optimizer is 

𝑥 
∗  = (

      
      

) 

The results for Illustration 1 using the Elimination technique are as tabulated in table 10. 

Table 10. Iterative steps of the Elimination technique on Illustration 2 

No of 

Iteration 

Determinant of 

Info Matrix 
Optimizer 

Value of Obj. 

Function 

Starting 

Point 

Direction Step Length 

1 
20.60493827 (

          
          

) -1.5369788 (
   

      
) (

       
      

) 2.1533 

2 
7.419753087 (

          
          

) -1.9259333 (
      
      

) (
       
      

) 2.401759094 

3 
3.493827161 (

      
      

) -1.9815 (
      
      

) (
       
      

) 2.650268336 

4 
1.527777778 (

      
      

) -1.9444 (
      
      

) (
       
      

) 2.360390578 

4. Discussion 

In assessing the performance of the Quick Convergent Inflow Algorithm and Modified Quick Convergent Inflow 

Algorithm we observe that both algorithms converge. However from the maximization problem in Illustration 1, 

the Quick Convergent Inflow Algorithm converged to a lower value of objective function, f(𝑥) = 20.30784 using 

the starting design 𝜉 
( )

 = (
  
  

). On the other hand, the Modified Quick Convergent Inflow Algorithm 

converged to the value of objective function, f(𝑥) = 20.9565 using the same starting design 𝜉 
( )

 = (
  
  

). The 

optimizers (
       
       

) obtained using the Quick Convergent Inflow Algorithm is farther from the exact solution 

(
 
   

). The algorithm converged at k = 2 and the norm of the two vectors of optimizers is 0.2580. As compared 

with the Modified Quick Convergent Inflow Algorithm, the optimizer (
       
        

) obtained is closer to the 

exact solution. The algorithm converged at k = 3 and the norm of the two vectors of optimizers is 0.0784. With a 

different starting design 𝜉 
( )

 = (
  
    
  

), the Quick Convergent Inflow Algorithm converged at k = 1 to the 

value of objective function, f(𝑥) = 20.942 with (
      
      

) as the optimizers. As with the Quick Convergent 

Inflow Algorithm, the Modified Quick Convergent Inflow Algorithm converged at k = 1  to the value of 

objective function, f(𝑥) = 20.942 with (
      
      

) as the optimizers. Similarly, the norm of the two vectors of 

optimizers is 0.0784. Although the Quick Convergent Inflow Algorithm obtained f(𝑥) = 20.942 as the optimal 

value of objective function, the value as well as the optimizers remained stationary at the next iteration. For the 

minimization problem in Illustration 2, the Quick Convergent Inflow Algorithm as well as the Modified Quick 

Convergent Inflow Algorithm arrived at the optimal solution f(𝑥) = -2.0000 using the starting design 𝜉 
( )
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= (
  
  

). The two algorithms converged at k = 1 to the exact solution (
 
 
). Unfortunately, with the starting 

design 𝜉 
( )

 =  (
  
  

) , the Quick Convergent Inflow Algorithm could not arrive at an optimal or near-optimal 

solution as the value of objective function remained stationary from one iteration to another. Furthermore, the 

solution reached is far away from the exact optimum, the norm of the two vectors being 0.9428.  

As opposed to the Quick Convergent Inflow Algorithm, the Modified Quick Convergent Inflow Algorithm 

converged at k = 2 to the value of objective function, f(𝑥) = -2.0000 with (
      

 
) as the optimizers. The norm 

of the vector of optimizers reached by the Modified Quick Convergent Inflow Algorithm and vector of the exact 

solution is 0.0001. The Modified Quick Convergent Inflow Algorithm seems to perform generally better than the 

Quick Convergent Inflow Algorithm in the sense that solutions obtained are much closer than those obtained 

using the Quick Convergent Inflow Algorithm. 

The introduction of the Elimination method stems from the success of the Modified Quick Convergent Inflow 

Algorithm. In addition to adding to an existing experimental design a point that optimizes performance as seen in 

the Modified Quick Convergent Inflow Algorithm, the elimination method expunges from the experimental 

design a point that contributes less to the process. The Elimination method, though an approximate method, 

serves as an alternative to the Modified Quick Convergent Inflow Algorithm. The method converges and has 

proven comparatively satisfactory. For the maximization problem in Illustration 1, the elimination method 

converged at k=3 to the optimizer (
          
          

) with value of objective function 20.9929. The norm of the 

vector reached and the exact optimal vector (
 
   

) is 0.01309. For the minimization problem in Illustration 2, 

the Elimination method converged at k=3 to the optimizers (
      
      

) with the value of objective function being 

f(𝑥) = -1.9815. The exact solution to this problem is (
 
 
) and the corresponding value of objective function is -2. 

The norm of the vectors of approximate and exact solutions is 0.1859. 

It may be helpful when applying any of the three algorithms to commence search from r starting designs. By so 

doing, we generate a sequence of r optimizers namely, 𝑥1
∗ ,  𝑥  

∗ , ⋯ , 𝑥 
∗  with corresponding values of 

objective function namely, f(𝑥1
∗) , f(𝑥  

∗ ) , ⋯ , f(𝑥 
∗).  The best approximate solution is 𝑥 

∗  = max { 𝑥1
∗,  𝑥  

∗ , 

⋯ , 𝑥 
∗ } in a maximization problem or 𝑥 

∗  = min { 𝑥1
∗,  𝑥  

∗ , ⋯ , 𝑥 
∗ } in a minimization problem. 𝑥 

∗  has 

the value of objective function f(𝑥 
∗ ). 

5. Conclution 

The performance of two line search algorithms has been studied numerically. The effectiveness of the algorithms 

is influenced by the starting experimental design. It is therefore important to commence search from several 

starting designs. The new Elimination algorithm is a useful alternative to the Modified Quick Convergent Inflow 

Algorithm. It preserves the design size from one iteration to another. In particular, it eliminates from an N- sized 

starting design a point that contributes less to the process as measured by the predictive variances at the design 

points. The design size is immediately recovered by adding to the resulting N-1 sized design a design point from 

the candidate set that optimizes performance. Numerical illustrations show that the Elimination algorithm 

converges to a near-optimum solution. 
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