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Abstract

A five-parameter model, called the Burr XII negative binomial distribution, is defined and studied. The new model
contains as special cases some important lifetime distributions discussed in the literature, such as the log-logistic,
Weibull, Pareto type II and Burr XII distributions, among several others. We derive the ordinary and incomplete
moments, generating and quantile functions, mean deviations, reliability and two types of entropy. The order
statistics and their moments are investigated. The method of maximum likelihood is proposed for estimating the
model parameters. We obtain the observed information matrix. An application to real data demonstrates that the
new distribution can provide a better fit than other classical lifetime models.

Keywords: Negative Binomial distribution, Burr XII distribution, Maximum likelihood, observed information
matrix

1. Introduction

The negative binomial distribution has been widely used in mixing procedures of distributions. Several new models
have been proposed and applied in survival analysis. Percontini et al. (2013) pionnered a family of univariate
distributions generated by compouding the negative binomial distribution with any continuos model. For any
baseline cumulative distribution function (cdf) G(x), and x ∈ R, they defined the G-Negative Binomial (G-NB)
family of distributions with probability density function (pdf) f (x) and cdf F(x) given by

f (x) =
sβ

[(1 − β)−s − 1]
g(x) {1 − β[1 −G(x)]}−s−1 (1)

and

F(x) =
(1 − β)−s − {1 − β[1 −G(x)]}−s

[(1 − β)−s − 1]
, (2)

respectively. The corresponding hazard rate function (hrf) is

h(x) =
s β g(x) {1 − β[1 −G(x)]}−s−1

{1 − β[1 −G(x)]}−s − 1
.

The G-NB family has the same parameters of the G distribution plus two additional shape parameters s > 0 and
β ∈ (0, 1). If X is a random variable having pdf (1), we write X ∼ G-NB(s, β). This generalization is obtained
by increasing the number of parameters compared to the G model, this increase being the price to pay for adding
more flexibility to the generated distribution. A first positive point of the G-NB model is that it includes the G
distribution as a sub-model when s = 1 and β → 0. A second one is that it includes as special cases important
lifetime models published in recent years.
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Zimmer et al. (1998) introduced the three-parameter Burr XII distribution. This distribution, having logistic and
Weibull as sub-models, is a very popular distribution for modeling lifetime data and phenomenon with monotone
failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of
its negatively and positively skewed density shapes. However, it does not provide a reasonable parametric fit for
modeling phenomena with non-monotone failure rates such as the bathtub-shaped and the unimodal failure rates
that are common in reliability and biological studies. Such bathtub hazard curves have nearly flat middle portions
and the corresponding densities have a positive anti-mode. Unimodal failure rates can be observed in the course of
a disease whose mortality reaches a peak after some finite period and then declines gradually.

In this paper, we use Percontini et al. (2013)’s generator to define a new model, so-called the Burr XII negative
binomial (BXIINB) distribution, which generalizes the Burr XII (BXII) distribution.

The cdf and pdf of the BXII distribution are given by

G(x; c, k, a) = 1 −
[
1 +

( x
a

)c]−k
and g(x; c, k, a) = cka−c xc−1

[
1 +

( x
a

)c]−k−1
, (3)

respectively, where k > 0 and c > 0 are shape parameters and a > 0 is a scale parameter. The nth moment about
zero of the BXII distribution (for n < kc) is given by

µ′n = an k B(k − n c−1, n c−1 + 1). (4)

Some other mathematical properties of this distribution are discussed by Silva et al. (2008) and Paranaiba et al.
(2011).

The BXII cdf has closed-form, thus it simplifies the computation of the percentiles and the likelihood function
for censored data. This distribution has algebraic tails which are effective for modeling failures that occur with
lesser frequency than with those models based on exponential tails. Hence, it represents a good distribution for
modeling failure time data (Zimmer et al., 1998). Shao (2004a) discussed maximum likelihood estimation for the
BXII distribution. Shao et al. (2004b) studied models for extremes using the BXII distribution with application
to flood frequency analysis. According to Soliman (2005), this distribution covers the curve shape characteristics
for a large number of distributions. The versatility and flexibility of the BXII distribution turns it quite attractive
as a tentative model for fitting data real whose underlying distribution is unknown. Wu et al. (2007) studied the
estimation problems for its model parameters based on progressive type II censoring with random removals, where
the number of units removed at each failure time has a discrete uniform distribution. Silva et al. (2008) proposed a
location-scale regression model based on this distribution, refereed to as the log-Burr XII regression model, which
is a feasible alternative to the log-logistic regression model. Silva et al. (2011) defined a residual for the log-Burr
XII regression model whose empirical distribution is close to normality. More recently, Paranaiba et al. (2011,
2012) studied the beta Burr XII and Kumaraswamy Burr XII distributions.

We define a new five-parameter BXIINB distribution inserting equations (3) into (1) and (2). Then, the pdf and cdf
of the generated distribution (for x > 0) are given by

f (x) =
s β c k a−c

[(1 − β)−s − 1]
xc−1

[
1 +

( x
a

)c]−k−1 {
1 − β

[
1 +

( x
a

)c]−k}−s−1

(5)

and

F(x) =
(1 − β)−s −

{
1 − β

[
1 +

(
x
a

)c]−k}−s

[(1 − β)−s − 1]
, (6)

respectively, where a > 0 is a scale parameter and s > 0, c > 0, k > 0 and β ∈ (0, 1) are shape parameters.
Henceforth, the random variable X having density function (5) is denoted by X ∼ BXIINB(s, β, c, k, a).

Some possible shapes of the density function (5) for selected parameter values, including well-known distributions,
are displayed in Figure 1.

The BXIINB hazard rate function (hrf) (for x > 0) is given by

h(x) =
s β c k a−c xc−1

[
1 +

(
x
a

)c]−k−1 {
1 − β

[
1 +

(
x
a

)c]−k}−s−1

−1 +
{
1 − β

[
1 +

(
x
a

)c]−k}−s . (7)
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Figure 1. Plots of the BXIINB density function for some parameter values. (a) For β = 0.5, c = 1.5, k = 1.2 and
a = 1. (b) For c = 0.8, k = 0.5 and a = 2. (c) For s = 2 and β = 0.5.

Special BXIINB hazard rate shapes are displayed in Figure 2 for some parameter values. This hrf can be increasing,
decreasing, constant and unimodal.

Some distributions arise as special cases of the BXIINB model:

• When s = 1 and β→ 0, the BXII distribution is a limiting case of (5);

• For s = 1, λ → 0, a = m−1 and k = 1, it becomes the log-logistic (LL) distribution, whose survival function
is S (t; m, c) = [1 + (tm)c]−1;

• For s = 1, λ→ 0 and c = 1, it reduces to the Pareto type II (PII) distribution;

• If k → ∞ in addition to s = 1, λ→ 0, it becomes the Weibull distribution;

• When s = 1 in (6), we obtain the Burr XII geometric (BXIIG) distribution;

• For s→ ∞ and β = λ/s, equation (6) becomes the Burr XII Poisson (BXIIP) distribution.
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Figure 2. Plots of the BXIINB hrf for some parameter values. (a) For s = 2, β = 0.5, c = 0.5 and k = 0.5. (b) For
s = 2, k = 0.5 and a = 2. (c) For s = 3 and β = 0.5.

The BXIINB distribution is well-motivated for industrial applications and biological studies. As a first example,
consider that the number, say N, of carcinogenic cells for an individual left active after an initial treatment follows
a random variable Z with zero truncated negative binomial distribution and let Xi be the time spent for the ith
carcinogenic cell to produce a detectable cancer mass, for i ≥ 1. If {X1, . . . , XN} is a sequence of independent
and identically distributed (iid) random variables independent of N having the BXII distribution, then the time
to relapse of cancer of a susceptible individual can be modeled by the BXIINB distribution. Another example
considers that the failure of a device occurs due to the presence of an unknown number N of initial defects of the
same kind, which can be identifiable only after causing failure and are repaired perfectly. Define by Xi the time
to the failure of the device due to the ith defect, for i ≥ 1. If we assume that the Xi’s are iid random variables
independent of N, which follow a BXII distribution, then the time to the first failure is appropriately modeled by
the BXIINB distribution. In fact, for reliability studies, the random variable X =Min{Xi}Ni=1 can be used in serial
systems with identical components, which appear in many industrial applications and biological organisms.

In this paper, we study some mathematical properties of the BXIINB model and illustrate its potentiality. The
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paper is organized as follows. In Section 2, we demonstrate that the pdf of X can be expressed as a mixture
of BXII densities. The quantile function is obtained in Section 3. Explicit expressions for the ordinary and
incomplete moments, generating function and mean deviations are derived in Sections 4, 5 and 6, respectively.
The Rényi and Shannon entropies and the reliability are determined in Sections 7 and 8, respectively. In Section 9,
we investigate the order statistics. Maximum likelihood estimation of the model parameters is performed and the
observed information matrix is derived in Section 10. In Section 11, we illustrate the potentiality of the BXIINB
distribution by means of a real data set. Finally, some conclusions are addressed in Section 12.

2. Useful Expansion

For any real a and |z| < 1, we have the binomial expansion

(1 − z)−a =

∞∑
k=0

(a)k
zk

k!
, (8)

where (a)0 = 1 and (a)k = a(a+ 1)(a+ 2) . . . (a+ k− 1) = Γ(a+ k)/Γ(a) is the ascending factorial. Using the power
series (8), we can write (5) as

f (x) =
∞∑

i=0

c k s βi+1 (s + 1)i

ac [(1 − β)−s − 1] i!
xc−1

[
1 +

( x
a

)c]−k(1+i)−1
,

which gives an infinite linear combination

f (x) =
∞∑

i=0

ωi(s, β) g(x; c, (i + 1)k, a), (9)

where

ωi(s, β) =
s βi+1 (s + 1)i

[(1 − β)−s − 1] (i + 1)!
(10)

and g(x; c, (i + 1)k, a) denotes the BXII density function with parameters c, (i + 1)k and a. We can verify that∑∞
i=0 ωi(s, β) = 1. So, equation (9) reveals that the BXIINB density can be expressed as a linear combination of

BXII densities. By integrating (9), we obtain

F(x) =
∞∑

i=0

ωi(s, β) G(x; c, (i + 1)k, a), (11)

where G(x; c, (i + 1)k, a) denotes the BXII cumulative distribution with parameters c, (i + 1)k and a.

3. Quantile Function

Percontini et al. (2013) demonstrated that the G-NB quantile function can be expressed (for 0 < u < 1) as

Q(u) = QG

{
1 − 1

β

[
1 − (1 − β)(1 − u[1 − (1 − β)s])−

1
s

]}
,

where QG(u) is the baseline quantile function. The BXII quantile function is QBXII(u) = a
[
(1 − u)−1/k − 1

]1/c
.

Then, the BXIINB quantile function reduces to

Q(u) = a


[
1
β

{
1 − β̄

[
1 − u(1 − β̄s)

]− 1
s
}]−1/k

− 1


1/c

, (12)

where β̄ = 1 − β.
Quantiles of interest can be obtained from (12) by substituting appropriate values for u. In particular, the median
of X comes when u = 0.5.

The motivation for using quantile-based measures is because of the non-existence of classical kurtosis for many
generalized distributions. The Bowley’s skewness is based on quartiles (Kenney and Keeping, 1962):

B =
Q(3/4) − 2Q(1/2) + Q(1/4)

Q(3/4) − Q(1/4)
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and the Moors kurtosis (Moors, 1988) is based on octiles:

M =
Q(7/8) − Q(5/8) − Q(3/8) + Q(1/8)

Q(6/8) − Q(2/8)
.

Plots of the skewness and kurtosis for the BXIINB distribution, for some choices of β, c, k and a as functions of s,
and for some choices of s, c, k and a as functions of β are displayed in Figure 3. These plots indicate that there is
a great flexibility of the skewness and kurtosis curves for this distribution.
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Figure 3. Plots of the BXIINB skewness and kurtosis as functions of s for selected values of β and as functions of
β for selected values of s.

4. Moments

The nth ordinary moment of X can be obtained from equation (9) as

E(Xn) =
∞∑

i=0

ωi(s, β) E
(
Yn

i+1

)
,
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where Yi+1 denotes the BXII random variable with density function g(x; c, (i+ 1)k, a). Thus, using (4) (for n < kc),
we obtain

E(Xn) =
∞∑

i=0

ωi(s, β) an (i + 1)k B
[
(i + 1)k − n

c
, 1 +

n
c

]
. (13)

The incomplete moments play an important role for measuring inequality, for example, income quantiles and
Lorenz and Bonferroni curves. These curves depend on the first incomplete moment of the distribution. The nth
incomplete moment of X follows from equation (9) as

mn(y) = E(Xn|X < y) =
∞∑

i=0

ωi(s, β)
∫ y

0
xn g(x; c, (i + 1)k, a)dx

= k c
∞∑

i=0

(i + 1)ωi(s, β)
∫ y

0
xn

[
1 +

( x
a

)c]−k(i+1)−1
a−cxc−1dx.

Setting u = a−cxc, the last equation becomes

mn(y) = k
∞∑

i=0

(i + 1)ωi(s, β)
∫ a−cyc

0
anu

n
c (1 + u)−k(i+1)−1 du

= k
∞∑

i=0

(i + 1) cωi(s, β)
ac (c + n)

yc+n
2F1

[
1 + (i + 1)k, 1 +

n
c
, 2 +

n
c

;−a−cyc
]
, (14)

where 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!

and (a)k = a(a + 1) . . . (a + k − 1) denotes the ascending factorial.

5. Generating Function

A first representation for the moment generating function (mgf) M(t) of X can be obtained from equation (9) as an
infinite weighted sum

M(t) =
∞∑

i=0

ωi(s, β)Mi+1(t), (15)

where Mi+1(t) is the mgf of the BXII(c, (i+ 1)k, a) distribution and ωi(s, β) is defined by (10). We provide a simple
representation for the mgf MBXII(t) of the BXII(c, k, a) distribution. We can write for t < 0

MBXII(t) = ck
∫ ∞

0
ea y tyc−1(1 + yc)−(k+1)dy.

Now, we require the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1
2πi

∫
L

m∏
j=1

Γ
(
b j + t

) n∏
j=1

Γ
(
1 − a j − t

)
p∏

j=n+1

Γ
(
a j + t

) p∏
j=m+1

Γ
(
1 − b j − t

) x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path (Gradshteyn and Ryzhik, 2000, Section

9.3). The Meijer G-function contains as particular cases many integrals with elementary and special functions
(Prudnikov et al., 1986).
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We now assume that c = m/k, where m and k are positive integers. This condition is not restrictive since every
positive real number can be approximated by a rational number. Using the integral (21) given in Appendix A, we
conclude (for t < 0) that

MBXII(t) = mI
(
−a t,

m
k
− 1,

m
k
,−k − 1

)
.

Hence, from equation (15), the mgf of the BXIINB(s, β, c, k, a) distribution (for t < 0) follows as

M(t) = m
∞∑

i=0

wi(s, β)I
(
−a t,

m
(i + 1)k

− 1,
m

(i + 1)k
,−(i + 1)k − 1

)
. (16)

Equation (16) is the main result of this section.

6. Mean Deviation

The scatter in a population can be mesured by the totality of deviations from the mean and median. It is possible
to derive the mean deviations about the mean and about the median from the relations δ1(X) = E(|X − µ′1|) =
2µ′1 F

(
µ′1

)
− 2m1

(
µ′1

)
and δ2(X) = E(|X − M|) = µ′1 − 2m1(M), respectively, where µ′1 = E(X) comes from (13)

with n = 1, the median M comes from (12) as

Q(u) = a


[
1
β

{
1 − β̄

[
1 − 1/2(1 − β̄s)

]− 1
s
}]−1/k

− 1


1/c

,

F(µ′1) is easily obtained from (6) and m1(·) is determined from (14) with n = 1. The first incomplete moment
is useful to obtain the Bonferroni (B) and Lorenz (L) curves since they have applications in several areas. For a
positive random variable X, they are defined by B(π) = m1(q)/(π µ′1) and L(π) = m1(q)/µ′1, where q = F−1(π) =
Q(π) is calculated from (12). The measures B(π) and L(π) are determined from (14) by m1(Q(π)).

7. Entropies

The entropy of a random variable X with density function f (x) is a measure of variation of the uncertainty. Two
popular entropy measures are due to Shannon and Rényi (Shannon, 1951; Rényi, 1061). A large value of the
entropy indicates the greater uncertainty in the random variable. The Rényi entropy is defined by (for δ > 0 and
δ , 1)

IR(δ) =
1

(1 − δ) log
(∫ ∞

0
f δ(x)dx

)
.

Based on the pdf (5), the Rényi entropy of X is given by

IR(δ) =
J

(1 − δ)

∫ ∞

0
xδ(c−1)

[
1 +

( x
a

)c]−δ(k+1) {
1 − β

[
1 +

( x
a

)c]−k}−δ(s+1)

dx

 ,
where J =

[
s β c k a−c

(1−β)−s−1

]δ
. Using (8), we obtain

IR(δ) =
J

(1 − δ)

 ∞∑
i=0

[δ(k + 1)]i β
i

i!

∫ ∞

0
xδ(c−1)

[
1 +

( x
a

)c]−δ(k+1)−ki
dx

 .
So, if δ > (k + 1 − c−1)−1, the BXIINB Rényi entropy becomes

IR(δ) =
J

(1 − δ)

ac+δc−1
∞∑

i=0

[δ(k + 1)]i β
i

i!
B

[
δ

c
+ 1, δ(k + 1 − c−1) + ki − 1

] .
The Shannon entropy of X is given by

E{− log[ f (X)]} = − log(s β c k a−c) + log
[
(1 − β)−s − 1

]
−(c − 1)E

[
log(X)

]
+ (k + 1)E

{
log

[
1 +

(X
a

)c]}
+(s + 1)E

log

1 − β
[
1 +

(X
a

)c]−k

 .
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Using (9), we have

E
[
log(X)

]
=

∞∑
i=0

ωi(s, β)
∫ ∞

0
log(x)g(x; c, (i + 1)k, a)dx

=

∞∑
i=0

ωi(s, β)k(i + 1)
∫ ∞

0
ca−cxc−1 log(x)

[
1 +

( x
a

)c]−k(i+1)−1
dx.

Setting u = acxc, we obtain

E
[
log(X)

]
=

∞∑
i=0

ωi(s, β)k(i + 1)
∫ ∞

0
log(a u

1
c )(1 + u)−k(i+1)−1du

=
1
c

∞∑
i=0

ωi(s, β)
[
γ + c log(a) + ψ((i + 1)k)

]
, (17)

where γ = 0.5772... is the Euler’s constant and ψ(·) is the digamma function.
Now, setting v = 1 + acxc, we have

E
{

log
[
1 +

(X
a

)c]}
=

∞∑
i=0

ωi(s, β)k(i + 1)
∫ ∞

1
log (v) v−k(i+1)−1dv

=

∞∑
i=0

ωi(s, β)
k(i + 1)

.

Analogously, setting v = 1 + acxc, we obtain

E

log

1 − β
[
1 +

(X
a

)c]−k

 =

∞∑
i=0

ωi(s, β) k (i + 1)
∫ ∞

1
log

(
1 − β v−k

)
v−k(i+1)−1dv

=

∞∑
i=0

ωi(s, β) βΦ (β, 1, i + 2) + log(1 − β),

where Φ(·) is the Hurwitz-Lerch transcendent function given by Φ(z, s, α) =
∑∞

n=0
zn

(n+α)s . Then, we can express the
Shannon entropy of X as

E{− log[ f (X)]} = − log(s β c k a−c) + log
[
(1 − β)−s − 1

] − (c − 1)
∞∑

i=0

ωi(s, β)

×
[
γ + c log(a) + ψ((i + 1)k)

c

]
+ (k + 1)

∞∑
i=0

ωi(s, β)
k(i + 1)

+(s + 1)
∞∑

i=0

ωi(s, β) βΦ (β, 1, i + 2) + log(1 − β).

8. Reliability

In the context of reliability, the stress-strength model describes the life of a component which has a random strength
X1 that is subjected to a random stress X2. The component fails at the instant that the stress applied to it exceeds
the strength, and the component will function satisfactorily whenever X1 > X2. Hence, R = Pr(X2 < X1) is a
measure of component reliability. It has many applications especially in engineering concepts. Here, we obtain
the reliability R when X1 and X2 have independent BXIINB(s1, β1, c, k, a) and BXIINB(s2, β2, c, k, a) distributions.
The reliability is defined by

R =
∫ ∞

0
f1(x)F2(x)dx.

The pdf of X1 and cdf of X2 are obtained from equations (9) and (11) as

f1(x) =
∞∑

m=0

ωm(s1, β1)g(x; c, (m + 1)k, a) and F2(x) =
∞∑

n=0

ωn(s2, β2)G(x; c, (n + 1)k, a),
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where

ωm(s1, β1) =
s1 β

m+1
1 (s1 + 1)m

[(1 − β1)−s1 − 1] (m + 1)!
,

and ωn(s2, β2) comes analogously. Hence,

R =

∞∑
m,n=0

ωm(s1, β1)ωn(s2, β2) k(m + 1)
∫ ∞

0
c a−cxc−1

[
1 +

( x
a

)c]−k(m+1)−1

×
{

1 −
[
1 +

( x
a

)c]−k(n+1)}
dx.

Setting u = a−cxc , we have

R =

∞∑
m,n=0

ωm(s1, β1)ωn(s2, β2) k(m + 1)
∫ ∞

0
(1 + u)−k(m+1)−1

[
1 − (1 + u)−k(n+1)

]
du.

Hence, the BXIINB reliability is given by

R =

∞∑
m,n=0

ωm(s1, β1)ωn(s2, β2) k(m + 1)
{
− 1

k(m + n + 2)
− Γ [k(n + 1) + 1]

× 2F̃1 [1, (m + n + 2)k + 1; (n + 1)k + 2; 1]
}
,

where Γ(·) is the gamma function and 2F̃1(·) is the regularized hypergeometric function defined by

2F̃1(a, b; c; x) = 2F1(a, b; c; x)
Γ(c)

.

9. Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. The density function fi:n(x)
of the ith order statistic, for i = 1, . . . , n, from iid random variables X1, . . . , Xn having the G-NB distribution is
given by (Percontini et al., 2013)

fi:n(x) =
∞∑

r,v=0

n−i∑
j=0

mr,v, j (r + v + j + i) g(x) G(x)r+v+ j+i, (18)

where

mr,v, j =
(−1) j i (r + 1)ωr γ j+i−1,v

(r + v + j + i)

(
n
i

) (
n − i

j

)
,

ωr =
(−1)r s

(r + 1)[(1 − β)−s − 1]

∞∑
l=r

(s + 1)l β
l+1

l!

(
l
r

)
,

γ j+i−1,0 = ω
j+i−1
0 and γ j+i−1,v = (vω0)−1

v∑
m=1

[m( j + i) − v]ωm γ j+i−1,v−m.

So, applying (3) in equation (18), the density function fi:n(x) of the ith order statistic, (for i = 1, . . . , n) from iid
random variables X1, . . . , Xn having the BXIINB distribution can be reduced to

fi:n(x) =

∞∑
r,v=0

n−i∑
j=0

mr,v, j (r + v + j + i)
r+v+ j+i−1∑

t=0

(−1)tc k a−cxc−1
(
r + v + j + i − 1

t

)

×
[
1 +

( x
a

)c]−k(t+1)−1

=

∞∑
r,v=0

n−i∑
j=0

r+v+ j+i−1∑
t=0

ϕt(r, v, j) g(x; c, (t + 1)k, a), (19)
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where

ϕt(r, v, j) =
(−1)t

t + 1
(r + v + j + i) mr,v, j

(
r + v + j + i − 1

t

)
.

Equation (19) reveals that the pdf of the BXIINB order statistics is a triple linear combination of BXII density
functions. So, several mathematical quantities of these order statistics, such as the ordinary, incomplete and facto-
rial moments, mgf and mean deviations, can be obtained from those BXII quantities. Clearly, the cdf of Xi:n can
be expressed as

Fi:n(x) =
∞∑

r,v=0

n−i∑
j=0

r+v+ j+i−1∑
t=0

ϕt(r, v, j) G(x; c, (t + 1)k, a).

For example, from equation (19), the moments of the BXIINB order statistics can be expressed directly in terms
of the BXII moments (for p < kc) as

E(Xp
i:n) =

∞∑
r,v=0

n−i∑
j=0

r+v+ j+i−1∑
t=0

ϕt(r, v, j)
∫ ∞

0
xpg(x; c, (t + 1)k, a)

=

∞∑
r,v=0

n−i∑
j=0

r+v+ j+i−1∑
t=0

ϕt(r, v, j) (t + 1) k apB
[
(t + 1)k − p

c
, 1 +

p
c

]
.

10. Maximum Likelihood Estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the BXIINB distribution from
complete samples only. Let x1, . . ., xn be a random sample of size n from the BXIINB(s,β,c,k,a) distribution. The
log-likelihood function for the vector of parameters θ = (s, β, c, k, a)T can be expressed as

l(θ) = n log(s β c k a−c) − n log[(1 − β)−s − 1] + (c − 1)
n∑

i=1

log(x)

−(k + 1)
n∑

i=1

log
[
1 +

( x
a

)c]
− (s + 1)

n∑
i=1

log
{

1 − β
[
1 +

( x
a

)c]−k}
. (20)

The components of the score vector U(θ) are

Us(θ) =
n
s
+

n(1 − β)−s log(1 − β)
(1 − β)−s − 1

−
n∑

i=1

log
{

1 − β
[
1 +

( xi

a

)c]−k}
,

Uβ(θ) =
n
β
− n s (1 − β)−s−1

(1 − β)−s − 1
+ (s + 1)

n∑
i=1


[
1 +

(
xi
a

)c]−k

1 − β
[(

xi
a

)c
+ 1

]−k

 ,

Uc(θ) =
n
c
− n log(a) +

n∑
i=1

log (xi) − (k + 1)
n∑

i=1


(

xi
a

)c
log

(
xi
a

)
1 +

(
xi
a

)c


−(s + 1)

n∑
i=1


βk

(
xi
a

)c
log

(
xi
a

) [
1 +

(
xi
a

)c]−k−1

1 − β
[
1 +

(
xi
a

)c]−k

 ,

Uk(θ) =
n
k
−

n∑
i=1

log
[
1 +

( xi

a

)c]
− (s + 1)

n∑
i=1


β
[
1 +

(
xi
a

)c]−k
log

[
1 +

(
xi
a

)c]
1 − β

[
1 +

(
xi
a

)c]−k

 ,
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Ua(θ) = −c n
a
+ (k + 1)

n∑
i=1

 c xi

(
xi
a

)
c−1

a2
[
1 +

(
xi
a

)c]
 + (s + 1)

n∑
i=1

{ β c k xi

(
xi
a

)c−1

a2
{
1 − β

[
1 +

(
xi
a

)c]−k}
×

[
1 +

( xi

a

)c]−k−1 }
.

Let θ̂ be the MLE of θ. The log-likelihood can be maximized either directly by using the Proc NLMixed of
SAS or the sub-routine MaxBFGS of the Ox program (see, Doornik, 2007) or by solving the nonlinear likelihood
equations Us(θ) = Uk(θ) = Uc(θ) = Up(θ) = 0 simultaneously. For interval estimation and hypothesis tests on
the model parameters, we require the 5 × 5 unit observed information matrix J(θ) = −

{
Upq

}
, where p, q vary

over the elements in θ = (s, β, c, k, a). The elements Upq are given in Appendix B. Based on the approximate
multivariate normal N5(0, J(̂θ)−1) distribution, we can construct confidence regions for the model parameters. We
can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio (LR)
statistics for testing some sub-models of the BXIINB distribution. Hypothesis tests of the type H0 : ψ = ψ0 versus
H1 : ψ , ψ0, where ψ is a vector formed with some components of θ and ψ0 is a specified vector, can be based on
LR statistics. For example, the test of H0 : s = 1 and β → 0 versus H1 : H0 is not true is equivalent to compare
the BXIINB and BXII distributions and then the LR statistic reduces to

w = 2{ℓ(̂s, β̂, ĉ, k̂, â) − ℓ(1, 0, c̃, k̃, ã)},

where ŝ, β̂, ĉ, k̂ and â are the MLEs under H1 and c̃, k̃ and ã are the estimates under H0.

11. Application

In this section, we illustrate the usefulness of the BXIINB distribution applied to a real data set. These data on
failure times are reported in the book “Weibull Models” by Murthy et al. (2004, p. 297):
0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578,
0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924,1.281,
2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480,
2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757,
2.324, 3.376, 4.663.

We also fit the density functions of the Exponentiated Burr XII Poisson (Exp-BXIIP), Beta Burr XII (BBXII),
Kumaraswamy Burr XII (KwBXII) and McDonald Burr XII (McBXII) distributions given by

fExp-BXIIP(x; c, k, a, α, λ) =
c k a−c αλ

1 − e−λ
xc−1

[
1 +

( x
a

)c]−k−1 {
1 −

[
1 +

( x
a

)c]−k }α−1

× exp
{
−λ

[
1 −

(
1 +

( x
a

)c)−k ]α}
,

fBBXII(x; c, k, a, d, b) =
c k a−c

B(d, b)
xc−1

[
1 +

( x
a

)c]−k b−1 {
1 −

[
1 +

( x
a

)c]−k }d−1
,

fKwBXII(x; c, k, a, d, b) = d b c k a−c xc−1
[
1 +

( x
a

)c]−k−1 {
1 −

[
1 +

( x
a

)c]−k }α−1

×
{

1 −
{
1 −

[
1 +

( x
a

)c]−k }d
}b−1

and

fMcBXIIP(x; c, k, a, d, b, α) =
c k a−c α

B(d, b)
xc−1

[
1 +

( x
a

)c]−k−1 {
1 −

[
1 +

( x
a

)c]−k }d α−1

×
{

1 −
{
1 −

[
1 +

( x
a

)c]−k }α}b−1

,
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respectively, where all parameters are positive.

Further, we apply the Cramér-von Mises (W∗) and Anderson-Darling (A∗) statistics described in details in Chen
and Balakrishnan (1995) to verify which distribution fits better to these data. Table 1 lists the MLEs, their standard
errors in parentheses and the statistics W∗ and A∗. These statistics indicate that the BXIINB distribution is the best
model to describe the data.

Table 1. MLEs and the measures W∗ and A∗

Distribution Estimates Statistics
BXIINB ŝ β̂ ĉ k̂ â W∗ A∗

19.1368 0.9607 2.4613 0.2565 19.7483 0.0602 0.6047
(18.9036) (0.0868) (0.2213) (1.0065) (23.7111)

Exp-BXIIP ĉ k̂ â α̂ λ̂ W∗ A∗

6.7808 9.5540 5.6803 0.2673 0.6577 0.0961 0.6838
(0.0079) (15.5828) (1.5101) (0.0548) (1.0049)

BBXII ĉ k̂ â d̂ b̂ W∗ A∗

7.3601 5.5584 4.3671 0.2180 0.4961 0.2317 1.9095
(0.0046) (3.1054) (0.0046) (0.0278) (0.2190)

KwBXII ĉ k̂ â d̂ b̂ W∗ A∗

5.9787 6.1332 6.2593 0.3216 1.8375 0.0777 0.6050
(0.0464) (6.2411) (0.0454) (0.0529) (1.1272)

McBXII ĉ k̂ â d̂ b̂ α̂ W∗ A∗

6.3865 11.0209 6.4909 0.5411 1.6177 0.5016 0.0939 0.8799
(0.0140) (0.0671) (0.0140) (0.7742) (0.3525) (0.6585)

More information is provided by a visual comparison of the fitted densities to the histogram of the data. The plots
of the fitted BXIINB, Exp-BXIIP, BBXII, KwBXII and McBXII density functions are displayed in Figure 4. They
show that the new distribution provides a good fit to these data and that it is also a very compettitive model to the
other lifetime distributions.

12. Concluding Remarks

We define and study a new five-parameter lifetime distribution, referred to as the Burr XII negative binomial (BXI-
INB) distribution, which extends several distributions widely used in the lifetime literature. The proposed model is
much more flexible than the Burr XII, Weibull and log-logistic models. It is useful for modeling lifetime data with
a unimodal-shaped hazard rate function. We provide a mathematical treatment of the distribution including expan-
sions for the BXIINB density function and plots of its skewness and kurtosis. We derive explicit expressions for the
ordinary and incomplete moments, generating and quantile functions, order statistics and their moments, Rényi and
Shanon entropies, mean deviations and reliability. The estimation of the model parameters is approached by the
method of maximum likelihood and the observed information matrix is derived. One application of the BXIINB
distribution shows that it could provide a better fit than other statistical models used in lifetime data analysis.

Appendix A

We have the following result which holds for m and k positive integers, µ > −1 and p > 0 (Prudnikov et al., 1992,
p. 21)

I
(
p, µ,

m
k
, ν

)
=

∫ ∞

0
exp(−px) xµ (1 + x

m
k )νdx

=
k−νmµ+ 1

2

(2π)
(m−1)

2 Γ(−ν)pµ+1
×

Gk,k+m
k+m,k

(
mm

pm

∣∣∣∣∣∣ ∆(m,−µ),∆(k, ν + 1)
∆(k, 0)

)
, (21)

where ∆(k, a) = a
k ,

a+1
k , · · · , a+k

k .
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Figure 4. Some fitted densities to the histogram of the current data.

Appendix B

Uss = −
n
{[

(1 − β)s − 1
]2 − s2(1 − β)s log2(1 − β)

}
s2 [

(1 − β)s − 1
]2 ,

Usβ =
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[
1 − (1 − β)s + s(1 − β)s log(1 − β)

]
(β − 1)
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)
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(
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(
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[
1 +

(
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a
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[
1 +

(
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)c]
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[
1 +

(
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)c]−k ,
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(
xi
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1 +

(
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{
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[
1 +

(
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a
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Uββ = n

 s
[
s(1 − β)s + (1 − β)s − 1

]
(β − 1)2 [

(1 − β)s − 1
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β2
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Uβc = −(s + 1)
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