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Abstract

This paper considers a fork-join network with a group of heterogeneous servers in each service station, e.g. servers
having different service rate. The main research interests are the properties of such fork-join networks in equi-
librium, such as distributions of response times, maximum queue lengths and load carried by servers. This paper
uses exact Monte-Carlo simulation methods to estimate the characteristics of heterogeneous fork-join networks in
equilibrium, for which no explicit formulas are available. The algorithm developed is based on coupling from the
past. The efficiency of the sampling algorithm is shown theoretically and via simulation.

Keywords: Coupling from the past; Fork-join networks; Heterogeneous service; Homogeneous service; Perfect
sampling.

1. Introduction

A fork-join network consists of K parallel service stations, where each incoming job is split into K subtasks at the
fork station and processed separately in each service station. When all the K subtasks of a job are completed, they
will be joined immediately at the join station and leave the system. Such fork-join networks can be used to model
manufacturing systems or computing systems (see Ko and Serfozo (2004), Lebrecht and Knottenbelt (2007) and
Dai (2011)).

A typical fork-join network is shown in Figure 1, where each service station has waiting capacity N (the number
of task-waiting places). The ith service station has si servers where the jth server has exponential service times
with rate µi j. If µi j = µi,∀ j we say that the network has homogeneous service; if µi j, j = 1, · · · , si are not all the
same we say that the network has heterogeneous service.

Jobs

Fork Station

Tasks

N waiting places

for each service station

service station

Join station

Figure 1. A fork-join network.
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Heterogeneity of service is a common feature of many real multi-server queueing situations. It allows tasks to
receive different quality of service. The heterogeneous service mechanisms are clearly valid for almost any man-
ufacturing system. Detailed discussions about heterogeneous service can be found in Kumar and Madheswari
(2007). However, heterogeneous service were rarely treated in queuing theory (Kumar and Madheswari, 2007),
especially for fork-join networks. The difficulty is that the stationary distribution of the fork-join network, even if
the network is homogeneous, is intractable Ko and Serfozo (2004). The networks with heterogeneous servers are
much more difficult to deal with than the networks with homogeneous servers. This is because for heterogeneous
servers when more than one server is available the waiting task chooses which server to occupy must be specified,
which makes the Markov model to be multi-dimensional instead of one-dimensional (see discussions for queuing
models with heterogeneous servers in Cooper (1976).

For the simplest fork-join network having two service stations with each having a single server, Flatto and Hahn
(1984) and Flatto (1985) derived the generating functions of the queue-length distribution. For more general fork-
join networks with homogeneous service, existing methods focus on finding approximations or bounds of mean
response times and approximations of maximum queue-length distributions with N = ∞ (infinite waiting capacity),
such as Nelson and Tantawi (1988), Baccelli et al. (1989), Balsoma et al. (1998), Raghavan and Viswanadham
(2001) and Ko and Serfozo (2004).

The above methods focused on analytical approximations. However simulation results in Ko and Serfozo (2004)
demonstrate that the accuracy of such approximations may be poor in some cases. Dai (2011) considers the use
of exact Monte Carlo simulations, based on coupling from the past (CFTP) (Propp and Wilson, 1996), to estimate
the distributions of response time and queue length for homogeneous fork-join networks with N < ∞. Comparing
to analytical approximations one advantage of the exact Monte Carlo simulation methods is that the accuracy is
controlled by the number of simulated samples. Note that one may consider using approximate simulations (for
example Markov chain Monte Carlo methods) which draw samples approximately from equilibrium. However it
is very difficult to justify the quality of simulated samples via approximate simulation. On the contrary the exact
Monte Carlo simulation methods, which can draw samples exactly from the target distribution (perfect samples),
are preferable in practice. The other advantage of the exact Monte Carlo simulation methods is that it can provide
empirical distribution estimates for response time and maximum queue length. These empirical estimates can
further provide all characteristics of these distributions such as mean, median and quartiles. Existing analytical
approximations, however, focus on the mean response time approximations which cannot catch much information
about the distribution of response time. For example Dai (2011) showed that the distribution of response time has
a long tail and is highly skewed.

This paper considers stationary distributions of heterogeneous fork-join networks with N < ∞, for which no
analytical formulas are available. We consider different strategies to allocate subtasks to idle servers when more
than one server is available, 1) a subtask chooses the fastest server (fastest strategy); 2) a subtask chooses the
slowest server (slowest strategy); 3) a subtask chooses its server at random from all those idle (random strategy).
We propose exact simulation methods, based on CFTP, to generate exact realisations from the equilibrium of such
networks. Based on the simulated realisations we provide Monte Carlo estimates for load carried by servers, the
distributions of maximum queue lengths and response times.

This paper is organized as follows. In Section 2, we introduce model notations. Then in Section 3 and Section
4 we develop a CFTP algorithm with bounding chains to simulate exact realisations from the equilibrium of het-
erogeneous fork-join networks with different allocation strategies. Complexities of the algorithms and simulation
studies are provided in Section 5. Section 6 provides a discussion.

2. Preliminaries

2.1 Notations

Consider the fork-join network in Figure 1. Jobs arrive at the system according to a Poisson process with rate λ.
Each incoming job is split into K subtasks which are simultaneously assigned to K parallel stations for processing.
The ith station has si servers in which the service rate for the jth server is µi j. When all the K subtasks of a job are
completed, they will be joined immediately at the join station (the service time at the join station is 0) and leave
the system. Service station i can hold Ni = N + si subtasks at most. Denote N = (N1, · · · ,NK). If the subtasks of a
job are not all completed, the completed subtasks will wait in the corresponding buffer of the join station. We also
assume that the join station has enough places to hold all completed waiting subtasks.

Homogeneous fork-join networks (µi j = µi, ∀ j = 1, · · · , si) can be represented as a K-dimensional continuous-

20



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

time Markov chain Q(t) = (Q1(t), · · · ,QK(t)), where Qi(t) means the number of subtasks at service station i at
time t. However, when µi js are different, i.e. each server works at its own characteristic rate, the K-dimensional
continuous time Markov chain Q(t) cannot totally represent the network. For example, Qi(t) = 1 only means that
there is one subtask at service in station i but we do not know which server is active. For such heterogeneous
networks the service rate in station i at time t is

∑si
j=1 µi jRi j(t), where Ri j(t) = 0 if the server is idle and Ri j(t) = 1

is the server is busy at time t (Cooper 1976). Thus the heterogeneous fork-join network can be represented by
Ri j(t), j = 1, · · · , si, i = 1, · · · ,K together with Ri,si+1(t), the number of subtasks waiting in the queue.

Let Ri(t) = (Ri1(t), · · · ,Ri,si (t),Ri,si+1(t)). The fork-join network can then be represented by a Markov process
R(t) = (RT

1 (t), · · · , RT
K(t))T. If we denote the state space of R(t) as R, then its element is a two-dimensional array

with K rows and the ith row has si + 1 elements. The last element Ri,si+1(t), the number of tasks waiting in the
queue of station i, takes integers from 0 to N. Other elements Ri1(t), · · · ,Ri,si (t) take values 0 or 1 which means the
corresponding server is idle or active. If some Rim(t) = 0 for m ∈ {1, · · · , si} then Ri,si+1(t) must be 0.

2.2 Allocation Strategies

If we label the servers from 1 (the fastest) to si (the slowest), the fastest strategy (a subtask chooses the fastest idle
server) can be viewed as that a newly arrived subtask goes to the idle server with the smallest label or will wait in
a queue if all servers are busy. Similarly for the slowest strategy with slowest server labelled as 1 and the fastest
labelled as si. Denote R as the sate space of the network and suppose that the current state of the network is r ∈ R.
The transitions of a new job arrival under the fastest/slowest strategy can be denoted as r′ = r ⊕ 1, where 1 is a
K-dimensional vector with all elements equal to 1 and

r′ = r ⊕ 1⇔ r′i = ri ⊕ 1 for all i;
r′i = ri ⊕ 1

⇔ r′i j =


ri j + 1 if j is the smallest server label such that ri j = 0;
ri j + 1 if j = si + 1 and rim > 0 for all m ∈ {1, · · · , si};
ri j for other label j.

(1)

For the random strategy a subtask chooses its server at random from all those idle. We denote the transitions of a
new job arrival under the random strategy as r′ = r ⊎ 1, which is defined as r′i = ri ⊎ 1 for all i and

r′i = ri ⊎ 1

⇔ r′i j =


ri j + 1 if j is chosen randomly from those such that ri j = 0, j ≤ si;
ri j + 1 if j = si + 1 and rim > 0 for all m ∈ {1, · · · , si};
ri j for other label j.

(2)

2.3 Partial Order

We consider the following partial orders for the state space, which will be used later when we develop CFTP
algorithms. For r, v ∈ R, define r ≺ v if ri j ≤ vi j,∀i, j and ri j < vi j for at least a pair of (i, j). Define r = v if
ri j = vi j,∀i, j.

Note that for r ∈ R, its elements ri j, j = 1, · · · , si, i = 1, · · · ,K are bounded since they are all 0, 1 values. But
ri,si+1, i = 1, · · · ,K can take values from 0 to N which represent the number of waiting tasks. Thus when N = ∞
there is no maximum element in R.

3. Exact Simulation for Heterogeneous Networks with the Fastest/Slowest Strategy

We assume throughout this paper that λ <
∑si

j=1 µi j for all i = 1, · · · ,K. We can simulate R(t) exactly, via the CFTP
algorithm Propp and Wilson (1996), which runs Markov chains starting at all different states from the past and if
all chains coalesce before time 0 we collect the sample at time 0 which is exactly from equilibrium. Such CFTP
algorithm is not practical since it requires heavy computation to monitoring coalescence of all different chains.

Propp and Wilson (1996) also proposed the monotone CFTP algorithm. If the Markov chains preserve some
partial order we only need to run two chains, the upper chain from the maximum state and the lower chain from
the minimum state. All chains are bounded by them and if the two chains coalesce all other chains coalesce. Such
monotone CFTP algorithm is much more efficient than the simple CFTP. When N = ∞, for the partial order defined
in Section 2.3 there is no maximum element in R since ri,si+1 ranges from 0 to N. Therefore the monotone CFTP
algorithm is not readily available. It is very challenging to deal with N = ∞ although it might be possible to use
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the dominated CFTP method in Kendall and Moller (2000). We will provide a discussion on N = ∞ in the end of
this paper, but here we simply assume that N < ∞, which is reasonable in practice. Then the elements in R are
bounded. However, with N < ∞ the partial order defined in Section 2.3 is not always preserved by the Markov
process R(t), which is shown later in this section. Therefore the monotone CFTP algorithm is still not available
for N < ∞. But since R is bounded, we can use CFTP with bounding chains. Examples of CFTP with bounding
chains can be found in Dai (2008), Dai (2011) and Huber (2004).

3.1 Continuous Time Markov Chain Simulation for R(t)

The transition rate for R(t) from a state r to another state v is given by

f (r, v) =


λ if v = r ⊕ 1 and ri,si+1 < N, for all i,
ri jµi j if v = r ⊖ ei j, j = 1, · · · , si and ri,si+1 = 0∑si

m=1 rimµim if v = r ⊖ ei,si+1, and ri,si+1 > 0,
0 otherwise,

(3)

where ei j has the same dimensions as the element in R and it has all elements equal to 0 except that the jth element
in the ith row is equal to 1. Note that in (3) the transition v = r⊕ 1 means a new job arrives, thus the transition rate
is λ. Also note that in (3) v = r ⊖ ei j corresponds to a subtask completion, defined as

v = r ⊖ ei j

⇔ vi j =

{
max{0, ri j − 1} if j ∈ {1, · · · , si} and ri,si+1 = 0;
ri j − 1 if j = si + 1 and ri,si+1 > 0;

vkm = rkm, for all m , j or k , i (4)

In the first line of equation (4) vkm = max{0, rkm − 1} means that either a subtask is completed or no transitions at
all. This can be explained as follows. In the first line the condition ri,si+1 = 0 means that no subtask is waiting
in the queue of station i. Thus ri j = 1 and vi j = 0 correspond to the subtask in the jth server of the ith station is
completed. In addition ri j = 0 and vi j = 0 correspond to no transitions. The corresponding transition rate is ri jµi j

in (3), which is µi j if ri j = 1 and is 0 if ri j = 0.

In the second line of equation (4), ri,si+1 > 0 means that there are subtasks waiting in the queue of station i. Thus
rim = 1 for all m ∈ {1, · · · , si} (all servers are active in station i). If the subtask in any server, say server m, of the
ith station is completed then a subtask in the queue occupies the mth server immediately and the transition is from
ri,si+1 to vi,si+1 = ri,si+1 − 1, which has transition rate

∑si
m=1 rimµim in (3).

To simulate R(t), we need to simulate the holding time, the amount of time that the continuous Markov chain R(t)
spends in the current state r, and simulate transitions. From (3) we know that the holding time is exponentially
distributed with rate

er :=
{
λ +

∑
i
∑

j ri jµi j, if ri,si+1 < N, for all i;∑
i
∑

j ri jµi j, otherwise. (5)

At the end of the holding time, R(t) jumps to another state v with transition probability

pr,v =


λ/er if v = r ⊕ 1 and ri,si+1 < N, for all i,
ri jµi j/er if v = r ⊖ ei j, j ∈ {1, · · · , si} and ri,si+1 = 0,∑si

m=1 rimµim/er if v = r ⊖ ei,si+1 and ri,si+1 > 0,
0 otherwise.

(6)

It is straightforward to simulate holding times and transitions according to (5) and (6). Suppose the current time
is τl and current state of R(t) is r. We simulate random numbers U(l) := {ξ(l)

0 ∼ exp(λ) and ξ(l)
i j ∼ exp(µi j), j =

1, · · · , si, i = 1, · · · ,K}. If ri,si+1 < N then the holding time of R(t) can be simulated as Tl = min{ξ(l)
0 , ξ

(l)
i j /ri j, j =

1, · · · , si, i = 1, · · · ,K}, since Tl ∼ exp(er) (see Ross (2007) for more details about the properties of exponen-
tial distributions). CFTP algorithm in Propp and Wilson (1996) needs to monitor coalescence of all different
Markov chains. With the above simulation method, different chains have different holding times Tl, which makes
it extremely difficult to monitor coalescence. Thus in order to develop a CFTP algorithm we consider a thinning
algorithm in the following section instead.
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3.2 A Thinning Algorithm

We consider possible holding times, defined as T min
l = min{ξ(l)

0 , ξ
(l)
i j , j = 1, · · · , si, i = 1, · · · ,K}, which is the same

for all different Markov chains. This means that we will consider transitions at the same time τl+1 = T min
l + τl

for all different chains. This makes it possible to monitor coalescence. The time points τ = {· · · , τl, τl+1, · · · } are
possible transition times of R(t). The thinning algorithm can select transition times of R(t) from τ according to
probability er/(λ +

∑
i
∑si

j=1 µi j). Proofs of such thinning algorithms can be found in Ross (2007).

The algorithm includes two parts. One is the case when new jobs can enter the network (there are waiting places
available), the other is the case when new jobs cannot enter the network (no waiting places available).

Case A. First consider that r is such that ri,si+1 < N, for all i. Since P(T min
l = Tl) = er/(λ +

∑
i
∑si

j=1 µi j), if
T min

l = Tl then T min
l will be the holding time and we simulate transitions at τl+1 = T min

l + τl; if T min
l < Tl then the

holding time is greater than T min
l and there is no transition at τl+1.

If T min
l = Tl then T min

l must be equal to ξ(l)
0 or ξ(l)

i j for some i, j such that ri j = 1. We simulate the transitions of R(t)

as follows. If T min
l = Tl = ξ

(l)
0 (a new job arrives) then let R(τl+1) = R(τl) ⊕ 1 since P(T min

l = Tl = ξ
(l)
0 ) = λ/er.

If T min
l = Tl = ξ

(l)
i j for some i, j, then (a) let R(τl+1) = R(τl) ⊖ ei j provided that ri,si+1 = 0 since P(T min

l = Tl =

ξ(l)
i j ) = ri jµi j/er; or (b) let R(τl+1) = R(τl+1) ⊖ ei,si+1 provided that ri,si+1 > 0 since P(∪si

m=1{T min
l = Tl = ξ(l)

im}) =∑
m rimµim/er. So the transitions are correctly simulated according to (6).

Case B. Now consider that the current state r is such that some ri,si+1 = N. This means that new jobs cannot enter
the network since no waiting place is available. Since P(T min

l = Tl , ξ(l)
0 ) =

∑
i
∑si

j=1 ri jµi j/(λ +
∑

i
∑si

j=1 µi j), if

T min
l = Tl , ξ

(l)
0 then T min

l will be the holding time. We then simulate transitions at τl+1 = T min
l + τl, which can

be done similarly as Case A. If T min
l < Tl then the holding time is greater than T min

l and there is no transition at
τl+1 = T min

l + τl; if T min
l = Tl = ξ

(l)
0 then there is no transition at τl+1 since the new job cannot enter the network

due to no waiting place available.

The above method tells us how to simulate R(t) between τl and τl+1. Due to the memoryless property of exponential
distribution we can repeat the whole procedure to simulate R(t) after τl+1. Above all, the thinning method correctly
simulates R(t) according to the transition rate function (3).

3.3 Updating Functions and the Partial Order

The updating rules for R(t) based on the thinning method in previous section can be denoted as a deterministic
function ϕ of the random numbersU(l) = {ξ(l)

0 , ξ
(l)
i j , j = 1, · · · , si, i = 1, · · · ,K},

R(τl + a) = ϕ(R(τl),U(l), a) (7)

=



R(τl), if 0 < a < T min
l ,

R(τl) ⊕ 1, if a = T min
l , T min

l = Tl = ξ
(l)
0 and ri,si+1 < N for all i,

R(τl), if a = T min
l , T min

l = Tl = ξ
(l)
0 and ri,si+1 = N for some i,

R(τl) ⊖ ei j, if a = T min
l , T min

l = Tl = ξ
(l)
i j and ri,si+1 = 0

R(τl) ⊖ ei,si+1, if a = T min
l , T min

l = Tl = ξ
(l)
i j and ri,si+1 > 0

R(τl), if a = T min
l and T min

l < Tl,

The following theorem tells us that in some cases the partial order between a lower chain R(t) and an upper chain
R′(t) is preserved by the updating function ϕ.

Suppose that the current time is τl and that R(τl) = r ≼ R′(τl) = r′.

Condition 3.1 The upper chain state r′ is such that r′i,si+1 < N for all i.

Theorem 3.1 If Condition 3.1 is true (there are waiting places free for a new job in the upper chain R′(t)) then for
any chain v(t) such that R(τl) = r ≼ v(τl) ≼ R′(τl) = r′ we have that given the exponential random numbersU(l),

R(τl + a) = ϕ(R(τl),U(l), a) ≼ v(τl + a) = ϕ(v(τl),U(l), a)
≼ R′(τl + a) = ϕ(R′(τl),U(l), a), (8)

for 0 < a ≤ T min
l .
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If Condition 3.1 is not true, i.e. when a new job arrives the upper chain cannot increase due to no waiting place
available, the partial order of chains v(t) between R(t) and R′(t) may not be preserved since the lower chain may
still increase. Although the partial order is not always preserved, we can still find two bounding chains, an upper-
bound chain R̄(t) and a lower-bound chain R(t), which bound all Markov chains. When the two bounding chains
coalesce, all Markov chains coalesce. This is shown in the following section.

3.4 CFTP with Bounding Chains

Define an upper-bound chain R̄(t) and a lower-bound chain R(t), which are updated simultaneously as follows.
The upper chain updating function is

R̄(τl + a) = ϕ̄(R̄(τl),U(l), a) (9)

=



R̄(τl), if 0 < a < T min
l ,

R̄(τl) ⊕ 1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) < N for all i,

R̄(τl)⊕̄1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) = N for some i,

R̄(τl) ⊖ ei j, if a = T min
l ,T min

l = ξ(l)
i j and R̄i,si+1(τl) = 0,

R̄(τl) ⊖ ei,si+1, if a = T min
l ,T min

l = ξ(l)
i j and R̄i,si+1(τl) > 0,

where R̄(τl)⊕̄1 is defined as R̄i(τl)⊕̄1 for each i and

R̄i(τl)⊕̄1

⇔


R̄i j(τl) + 1 if j is the smallest server label such that R̄i j(τl) = 0;
min{N, ri j + 1} j = si + 1; if R̄im(τl) > 0 for all m = 1, · · · , si;
R̄i j(τl) for other label j.

(10)

The lower-bound chain updating function is

R(τl + a) = ϕ(R(τl), R̄(τl),U(l), a) (11)

=



R(τl), if 0 < a < T min
l ,

R(τl) ⊕ 1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) < N for all i,

R(τl), if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) = N for some i,

R(τl) ⊖ ei j, if a = T min
l ,T min

l = ξ(l)
i j and Ri,si+1(τl) = 0,

R(τl) ⊖ ei,si+1, if a = T min
l ,T min

l = ξ(l)
i j and Ri,si+1(τl) > 0.

The following theorem holds for such upper-bound and lower-bound chains.

Theorem 3.2 Suppose that the upper-bound chain and lower-bound chain are define with update functions (9) and
(11) respectively as above. If R(t) ≼ R(t) ≼ R̄(t) then R(t + a) ≼ R(t + a) ≼ R̄(t + a) for a > 0.

Define the maximum point as r̄ which is such that r̄i j = 1, j = 1, · · · , si and r̄i,si+1 = N. Define the minimum
point as r with all elements equal to 0. Suppose that the upper-bound chain R̄(t) starting from R̄(−M) = r̄ and the
lower-bound chain R(−M) = r. Here M is a large fixed number. Then any Markov chain R(−M) starting from an
element r ∈ R is bounded by R̄(−M) and R(−M). According to Theorem 3.2 all different chains {R(t), t ∈ [−M, 0]}
will be bounded by the two bounding chains. Thus we can run the upper-bound chain and lower-bound chain
simultaneously and when the two chains coalesce, all Markov chains coalesce. After coalescence, say coalescence
time −∆, we simply run R(t) from time −∆ to 0 with R(−∆) = R̄(−∆) and R(0) is from equilibrium distribution.

4. Perfect Sampling for Heterogeneous Networks with the Random Strategy

For random allocation strategy the transition rate function for R(t) becomes

f (r, v) =


λ if v = r ⊎ 1 and ri,si+1 < N, for all i,
ri jµi j if v = r ⊖ ei j, j = 1, · · · , si and ri,si+1 = 0∑si

m=1 rimµim if v = r ⊖ ei,si+1, and ri,si+1 > 0,
0 otherwise,

(12)

where ⊎ is defined in (2).

We can still use formula (5) to simulate holding times, since different allocation strategies only change the transition
probabilities but not changing holding time distributions. At the end of the holding time, R(t) jumps from r to v
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with transition probability

pr,v =


λ/er if v = r ⊎ 1 and ri,si+1 < N, for all i,
ri jµi j/er if v = r ⊖ ei j, j = 1, · · · , si and ri,si+1 = 0∑si

m=1 rimµim/er if v = r ⊖ ei,si+1, and ri,si+1 > 0,
0 otherwise,

(13)

which is similar to (6). The only difference is that in the above equation we use ⊎ instead of ⊕ when a new job
arrives. Thus we can use a similar thinning algorithm as that in Section 3.2 to simulate the Markov chains, except
that when a new job arrives random allocation (operator ⊎) need to be considered.

At time τl apart from the simulated random numberU(l), we also need to simulate the random allocation ‘⊎’ of the
new job. We simulate a sequence of random integers for each station i, denoted as η(l)

i = {Y
(l)
i1 ,Y

(l)
i2 ,Y

(l)
i3 , · · · }, where

each Y (l)
ig is taken uniformly from the server labels {1, · · · , si} of station i. Suppose the current state is R(τl) = r. If

r is such that at least one ri j = 0, j = 1, · · · , si then in the sequence η(l)
i , Y (l)

ig∗ is the label of the randomly chosen
server for the new subtask, where g∗ = min{g : such that ri,Y (l)

ig
= 0}. Denote this randomly chosen label as a

function, g∗ = J(η(l)
i , ri). Such a method is a rejection sampling method, which draws a server randomly from

{1, · · · , si} and accepts it if this server is free. Then following (2), r′i = ri ⊎ 1 can be further written as

r′i = ri ⊎ 1

⇔ r′i j =


ri j + 1 if at least one rim = 0,m ∈ {1, · · · , si} and j = J(η(l)

i , ri);
ri j + 1 if j = si + 1 and rim > 0 for all m ∈ {1, · · · , si};
ri j for other label j.

(14)

Such a rejection sampling method guarantees that the partial order is preserved by ⊎ under some condition. This
is given by the following lemma.

Lemma 4.1 Suppose that r ≼ r′ and Condition 3.1 holds for r′. Then r ⊎ 1 ≼ r′ ⊎ 1.

With the definition of random allocation ⊎, the updating function for R(t) can be written as

R(τl + a) = ψ(R(τl),U(l), η(l), a) (15)

=



R(τl), if 0 < a < T min
l ,

R(τl) ⊎ 1, if a = T min
l , T min

l = Tl = ξ
(l)
0 and ri,si+1 < N for all i,

R(τl), if a = T min
l , T min

l = Tl = ξ
(l)
0 and ri,si+1 = N for some i,

R(τl) ⊖ ei j, if a = T min
l , T min

l = Tl = ξ
(l)
i j and ri,si+1 = 0

R(τl) ⊖ ei,si+1, if a = T min
l , T min

l = Tl = ξ
(l)
i j and ri,si+1 > 0

R(τl), if a = T min
l and T min

l < Tl.

Define the upper-bound chain and lower-bound chain updating functions as follows. The upper chain updating
function is

R̄(τl + a) = ψ̄(R̄(τl),U(l), η(l), a) (16)

=



R̄(τl), if 0 < a < T min
l ,

R̄(τl) ⊎ 1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) < N for all i,

R̄(τl)⊎̄1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) = N for some i,

R̄(τl) ⊖ ei j, if a = T min
l ,T min

l = ξ(l)
i j and R̄i,si+1(τl) = 0,

R̄(τl) ⊖ ei,si+1, if a = T min
l ,T min

l = ξ(l)
i j and R̄i,si+1(τl) > 0,

where

R̄i(τl)⊎̄1

⇔


R̄i j(τl) + 1 j = J(η(l)

i , R̄i(τl)); if at least one rim = 0 for m ∈ {1, · · · , si};
min{N, ri j + 1} j = si + 1; if rim > 0 for all m ∈ {1, · · · , si};
ri j for other label j.

(17)
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The lower-bound chain updating function is

R(τl + a) = ψ(R(τl), R̄(τl),U(l), η(l), a) (18)

=



R(τl), if 0 < a < T min
l ,

R(τl) ⊎ 1, if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) < N for all i,

R(τl), if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) = N for some i,

R(τl) ⊖ ei j, if a = T min
l ,T min

l = ξ(l)
i j and Ri,si+1(τl) = 0,

R(τl) ⊖ ei,si+1, if a = T min
l ,T min

l = ξ(l)
i j and Ri,si+1(τl) > 0.

Theorem 4.1 Suppose that the upper-bound chain and lower-bound chain are define with update functions (16)
and (18) respectively as above. For R(t) updated according to (15), if R(t) ≼ R(t) ≼ R̄(t) then R(t+a) ≼ R(t+a) ≼
R̄(t + a) for a > 0.

With Theorem 4.1 we can also use CFTP with bounding chains to simulate R(t) from equilibrium with the random
allocation strategy.

5. Algorithm Complexity and Simulation Studies

5.1 Algorithm Complexity

In the CFTP algorithms we only need to simulate transitions at discrete time points τ = {· · · , τl, τl+1, · · · }, although
the upper-bound and lower-bound chains are continuous time chains. Thus to monitor coalescence we need to con-
sider coalescence of the discrete time chains R̄(l) = R̄(τl) and R(l) = R(τl). Let νc be the number of steps needed for
R̄(l) and R(l) to coalesce. Define the distance between R̄(l) and R(l) as d(R̄(l), R(l)) :=

∑
i
∑

j

∣∣∣∣R̄(l)
i j − R(l)

i j

∣∣∣∣ . Coalescent

occurs when the distance becomes 0. We know that in the CFTP algorithms R̄(l) starts from the maximum and
R(l) starts from the minimum, which have distance N =

∑K
i=1 Ni. We will expect that the larger the value of N the

longer the coalescent time. In this section we will show that the expected coalescence steps Eνc is bounded by a
polynomial function of N, which means that the running time of the CFTP algorithm only increases polynomially
as N increases. This implies the algorithm is very efficient.

According to

Eνc =

∞∑
l=1

P(νc ≥ l) =
∞∑

l=1

P
(
d
(
R̄(l), R(l)

)
≥ 1

)
≤
∞∑

l=1

E
[
d
(
R̄(l), R(l)

)]
, (19)

to calculate a bound for Eνc, we need to work out a bound for E
[
d
(
R̄(l), R(l)

)]
.

Following from the updating rules for the upper-bound and lower-bound chains, from step l − 1 to step l we
have three possible cases: event A(l)

1 for distance not changing, d
(
R̄(l), R(l)

)
= d

(
R̄(l−1), R(l−1)

)
; event A(l)

2 for

distance decreasing, d
(
R̄(l), R(l)

)
= d

(
R̄(l−1), R(l−1)

)
− 1; or event A(l)

3 for distance increasing, d
(
R̄(l), R(l)

)
≤

d
(
R̄(l−1), R(l−1)

)
+ K. Event A(l)

3 corresponds to that when a new job arrives the upper-bound chain increases
but the lower-bound chain does not move. Following the proof of Lemma 4 in Dai (2011) we have that the prob-
ability P(A(l)

3 ) converges to 0 at an exponential rate as l → ∞, provided that λ <
∑

j µi j for i = 1, · · · ,K. The rate
of P(A(l)

3 ) only depends on the network parameters λ and µi j. On the other hand event A(l)
2 corresponds to that a

subtask is completed in a server in the upper-bound chain but no subtask is completed in the lower-bound chain
since the corresponding server is idle in the lower-bound chain. Thus the probability P(A(l)

2 ) ≥ Ψ = min{µi j}/Λ
where Λ = λ +

∑
i j µi j. Event A(l)

1 corresponds to all other possibilities.

With the above arguments, we have

E
[
d
(
R̄(l), R(l)

)]
= E

{
E

[
d
(
R̄(l), R(l)

) ∣∣∣R̄(l−1), R(l−1)
]}

≤ P(A(l)
1 )Ed

(
R̄(l−1), R(l−1)

)
+ P(A(l)

2 )E
[
d
(
R̄(l−1), R(l−1)

)
− 1

]
+P(A(l)

3 )E
[
d
(
R̄(l−1), R(l−1)

)
+ K

]
= Ed

(
R̄(l−1), R(l−1)

)
− P(A(l)

2 ) + KP(A(l)
3 )

≤ Ed
(
R̄(l−1), R(l−1)

) 1 − P(A(l)
2 ) − KP(A(l)

3 )
N

 (20)
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Since P(A(l)
3 ) converges to 0 at an exponential rate, there exist an large constant H (only depends on λ and µi j) and

when l ≥ H we have P(A(l)
2 ) − KP(A(l)

3 ) ≥ Ψ − KP(A(l)
3 ) ≥ Ψ/2. Thus from (20) and d

(
R̄(l), R(l)

)
≤ N we have, for

l ≥ H,

E
[
d
(
R̄(l), R(l)

)]
≤ N

(
1 − Ψ

2N

)l−H

. (21)

Then (19) and (21) imply that

Eνc ≤
∞∑

l=1

E
[
d
(
R̄(l), R(l)

)]
≤ HN + 2N2/Ψ = O(N2). (22)

Therefore the expected coalescence time is bounded by a polynomial function of N.

The running time comparisons for different values of K and N are summarized in Table 1. The simulations are
performed on a desktop with a 2.13 GHz Intel Core Duo processor and 3.2G memory. We can see that the algorithm
is very efficient.

Note that the above proof is correct for all the three allocation strategies. This is because the coalescence steps only
depends on the probabilities that the distance between the two bounding chains changes (increasing, decreasing
or not changing), which does not depend on the allocation strategies. Therefore the running time for exact Monte
Carlo simulation algorithm of the three allocation strategies should be similar. Of course, the algorithm for the
random allocation strategy should take slightly longer as it involves the extra rejection sampling steps. Table 1
demonstrates that the algorithm for the fastest strategy and slowest strategy have similar running times, but the
algorithm for the random allocation strategy has longer running times.

Table 1: Running time comparisons for simulating 10,000 realisations from a fork-join network with λ = 1,
si = 3, i = 1, · · · ,K and service rates are 0.5, 1.0, 1.5 for the three servers in each station. I: the slowest strategy;
II: the fastest strategy; III: the random strategy.

I II III
N 500 1000 1500 500 1000 1500 500 1000 1500

K = 5 278s 560s 1090s 281s 569s 1068s 318s 641s 1298s
K = 10 822ss 1617s 3241s 773s 1666s 2945s 906s 1751s 3489s
K = 15 1431s 2908s 6048s 1501s 2862s 6060s 1677s 3370s 6664s

5.2 A Toy Example

Before introducing comprehensive simulation studies, we provide a toy example to illustrate how to carry out the
CFTP method. We consider the simplest case with one station (no fork-join but a simple queuing system), which
has two servers with service rates µ11 and µ12 respectively. For simplicity, we assume that there is no waiting space.
Therefore the system can take 2 jobs at most by the two servers. Therefore, the network has the following four
possible states (1, 1), (1, 0) and (0, 1) and (0, 0), where 0 means the corresponding server is idle and 1 means it is
busy. When using CFTP, we should run four Markov chains (starting from the four different states) simultaneously
from a starting time say −M in the past, using the same random numbers.

We generate ξ(1)
11 as the service time for server I, ξ(1)

12 as the service time for server II and ξ(1)
0 as the next job arrival

time. The first potential transition time will occur at T min
1 = min{ξ(1)

11 , ξ
(1)
12 , ξ

(1)
0 }. Suppose that T min

1 = ξ(1)
11 , then

the job in server I (if server I is busy) will be finished at time −M + ξ(1)
11 . Therefore, if the system starts from

R(−M) = (1, 1) (or R(−M) = (1, 0)), it will move to R(−M + ξ(1)
11 ) = (0, 1) (or R(−M + ξ(1)

11 ) = (0, 0) ). On the
other hand, if the system starts from R(−M) = (0, 1) (or R(−M) = (0, 0)) it will not change at time −M + ξ(1)

11 , since
server I is idle at time −M. Therefore, at time −M + ξ(1)

11 the four chains coalesce into two chains (0, 1) and (0, 0).

Then we generate ξ(2)
11 , ξ(2)

12 and ξ(2)
0 for the second potential transition time, which will occur at the T min

2 =

min{ξ(2)
11 , ξ

(2)
12 , ξ

(2)
0 }. Suppose that T min

2 = ξ(2)
12 , then the job in server II (if server II is busy) will be finished at

time −M + ξ(1)
11 + ξ

(2)
12 . Therefore, the system moves from R(−M + ξ(1)

11 ) = (0, 1) to R(−M + ξ(1)
11 + ξ

(2)
12 ) = (0, 0), or

the system stays at R(−M + ξ(1)
11 + ξ

(2)
12 ) = (0, 0) if R(−M + ξ(1)

11 ) = (0, 0). This means that the chains will coalesce
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into a single chain (0, 0) at time −M + ξ(1)
11 + ξ

(2)
12 . If the coalescence time is less than 0, we can keep running the

chain and collect a sample at time 0.

If using the CFTP algorithm with bounding chains, we only need to run the upper chain R̄(−M) = (1, 1) and
R(−M) = (0, 0). At time −M + ξ(1)

11 the upper chain becomes R̄(−M + ξ(1)
11 ) = (0, 1) and the lower chain does not

change R(−M + ξ(1)
11 ) = (0, 0). Then at the next transition R̄(−M + ξ(1)

11 + ξ
(2)
12 ) = (0, 0) and the lower chain is still

R(−M+ξ(1)
11 +ξ

(2)
12 ) = (0, 0). The upper and lower chains coalesce. For the more general fork-join network presented

in this paper, we can follow the formulas presented in previous sections to update R̄(t) and R(t).

5.3 Simulation Studies

In this section, we carried out simulation studies for distributions of maximum queue lengths, work loads for each
server and response times.

Let Ri(t) be the number of uncompleted subtasks (including jobs at service or waiting) in station i. Then R(t) =
maxi Ri(t) represents the number of uncompleted jobs in the network. We are interested in the distribution of R(t)
in equilibrium. Consider a network with K = 3 stations and each station has 4 (s1 = s2 = s3 = 4) servers. The
servers in Station One have service rates 0.2, 0.4, 0.6 and 0.8 respectively. The servers in Station Two have service
rates 0.3, 0.6, 0.9 and 1.2 respectively. Station Three is the same as Station Two. The Monte Carlo simulation
results for the maximum queue length distribution are summarized in Table 2.

Table 2: The entries in the table are the probabilities P(R(t) = k), k = 0, 1, 2, · · · . I: the slowest strategy; II: the
fastest strategy; III: the random strategy. The network has K = 3 stations and each has 4 servers. The results are
based on 10,000 simulations.

I II III
R(t) = N=100 N=300 N=100 N=300 N=100 N=300
0 0.01182 0.01093 0.07934 0.08072 0.02552 0.02568
1 0.12919 0.13052 0.25684 0.25693 0.18196 0.18140
2 0.30050 0.29821 0.28438 0.28328 0.30468 0.30546
3 0.27541 0.27932 0.19338 0.19167 0.24462 0.24650
4 0.14187 0.14396 0.09407 0.09594 0.12499 0.12449
5 0.07165 0.07005 0.04651 0.04695 0.06134 0.06029
6 0.03424 0.03312 0.02295 0.02274 0.02915 0.02918
7 0.01725 0.01712 0.01206 0.01111 0.01475 0.01433
8 0.00909 0.00839 0.00538 0.00542 0.00667 0.00642
9 0.00428 0.00433 0.00247 0.00245 0.00298 0.00320
10 0.00223 0.00199 0.00127 0.00139 0.00170 0.00156

From the results we can see that N = 100 and N = 300 provide similar results. This is because the maximum queue
length is almost no more than 10 and waiting capacity 100 is large enough to hold all waiting jobs in equilibrium.
The results also show that on average the network in equilibrium under the slowest strategy will have the most
jobs, the network in equilibrium under the fastest strategy will have the least jobs.

For the above scenario we also consider the work load analysis for each server. The results are summarized in
Table 3, where the entries are the probabilities of the corresponding server being active. Again the workloads for
each server are similar under N = 100 and N = 300, but the workloads are very different under different allocation
strategies. Servers with smaller service rate have larger workload under the slowest strategy than under the fastest
strategy, which is as we expected. Note that in Table 3 we only provided workloads for servers in Station One and
Station Two since Station Three is the same as Station Two and they have similar results.

Using the simulated realisations of queue lengths from equilibrium, we can easily simulate response times. For the
above scenario with N = 100, based on 10,000 simulations from equilibrium, Figure 2 provides the fitted density
curves for response times under different allocation strategies. The mean response times under the three strategies
are 2.18, 3.53 and 4.14. We can see that the distribution of response times are highly skewed and the distribution
under the slowest strategy has a much longer tail than the others. By simply looking at the mean response times
we do not have any information about the properties of the distribution tails, which represent how extreme the
response time could be. The 90th-percentiles for the response time distribution under different allocation strategies
are estimated as 4.12, 7.08 and 8.76. This suggests that under the slowest strategy the 10% longest jobs would take
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Table 3: The entries are the probabilities of the corresponding server being active. I: the slowest strategy; II: the
fastest strategy; III: the random strategy. The results are based on 10,000 simulations.

Station One Station Two
Server rates 0.2 0.4 0.6 0.8 0.3 0.6 0.9 1.2
I, N=100 0.8529 0.6926 0.5009 0.3148 0.7771 0.5456 0.3072 0.1376
I, N=300 0.8518 0.6919 0.5000 0.3186 0.7791 0.5449 0.3064 0.1325
II, N=100 0.3913 0.4019 0.4821 0.5903 0.1540 0.2019 0.3091 0.4599
II, N=300 0.3896 0.4009 0.4827 0.5891 0.1565 0.2034 0.3103 0.4613
III, N=100 0.6901 0.5598 0.4804 0.4373 0.5372 0.3901 0.3086 0.2724
III, N=300 0.6890 0.5576 0.4789 0.4375 0.5350 0.3896 0.3124 0.2726

time longer than 8.76, but under the fastest strategy 10% longest jobs just take time longer than 4.12.
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Figure 2. Density fitting for response times.

6. Discussion

We presented a perfect sampling method based on CFTP to draw exact realisations from the equilibrium of a
fork-join network with heterogeneous service. The proposed method is very important as there is no analytical
method available for such problems. Similarly as that in Dai (2011) the methods only work for fork-join network
with finite capacity N ≤ ∞. When N = ∞ there is no maximum point in the state space, therefore such CFTP
with bounding chains is not readily available. Although N < ∞ is reasonable in practice, theoretically it is worth
looking for methods for N = ∞.

A feasible method to solve the problem with N = ∞ is to use the dominated CFTP in Kendall and Moller (2000).
The idea requires to finding a dominating process which is reversible, bounds the target chains and can be simulated
easily from its equilibrium in reverse time. In terms of the process R(t) in this paper, Ri,si+1(t), i = 1, · · · ,K are
not bounded. One possible way to apply dominated CFTP is to find a univariate dominating process X(t) to
bound maxi Ri,si+1(t). Note that we can easily find a univariate process Xi(t) (for example the birth-death process
with birth rate λ and death rate min j µi j) to bound Ri,si+1(t). However if Xi(t), i = 1, · · · ,K are independent then
X(t) = maxi Xi(t) may not bound maxi Ri,si+1(t). This is because when Xi(t) increases by 1 (a new job arrives)

29



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015

X(t) may not increase. On the other hand, all Ri,si+1(t) will increase by 1 and thus maxi Ri,si+1(t) increases by 1.
Therefore the dominated CFTP algorithm is not readily available. We leave it as a future research work to solve
the problem with N = ∞.

In realistic situations, the service rates or arrival rates may be unknown and need to be estimated. This will
be a much more challenging problem, since for such fork-join networks the likelihood function is not available
explicitly which is required by traditional likelihood or Bayesian methods. A possible solution will be using
approximate Bayesian computation (ABC) to estimate the service or arrival rates. The fundamental idea of ABC
is to simulate data based on given parameter values. If the simulated data are close to the real data, the given
parameters will be treated as a good estimate. Therefore the proposed Monte Carlo simulation method would find
its application in the area of ABC.

A.1. Proof of Theorem 3.1

Proof. Define Tl and T ′l as,

Tl = min{ξ(l)
0 , ξ

(l)
i j /rim,m = 1, · · · , si, i = 1, · · · ,K},

T ′l = min{ξ(l)
0 , ξ

(l)
i j /r

′
im,m = 1, · · · , si, i = 1, · · · ,K}. (23)

We only need to consider r ≺ r′ which tells us Tl > T ′l ≥ T min
l .

If a < T min
l , we have that R(τl + a) = R(τl) ≺ R′(τl + a) = R′(τl).

If a = T min
l and T min

l = ξ(l)
0 , then T min

l = Tl = T ′l = ξ
(l)
0 . To show R(τl + a) = r ⊕ 1 ≼ R′(τl + a) = r′ ⊕ 1, we only

need to show that Ri(τl + a) = ri ⊕ 1 ≼ R′i(τl + a) = r′i ⊕ 1 for each i. Let j be the smallest server label in station
i such that ri j = 0, or j = si + 1 if ri j = 1 for all j ∈ {1, · · · , si}. Let h be the smallest server label in station i such
that r′ih = 0 or h = si + 1 if r′ih = 1 for all h ∈ {1, · · · , si}. Then the operation ⊕ means that ri j is added by 1, r′ih is
added by 1 and all other elements in row i will not change. If j = h then the partial order ≼ holds. On the other
hand if j , h we must have that ri j = 0, r′i j = 1, rih = 0 and r′ih = 0 due to r ≺ r′. Then the partial order ≼ also
holds.

If a = T min
l and T min

l = ξ(l)
i j = T ′l = Tl, there are three possible cases. (1) If r′i,si+1 = 0 then ri,si+1 = 0. Thus

the partial order R(τl + a) = r ⊖ ei j ≼ R′(τl + a) = r′ ⊖ ei j holds. (2) If ri,si+1 > 0 then r′i,si+1 > 0. Thus the
partial order R(τl + a) = r ⊖ ei,si+1 ≼ R′(τl + a) = r′ ⊖ ei,si+1 holds. (3) If ri,si+1 = 0 and r′i,si+1 > 0, we also have
R(τl + a) = r ⊖ ei j ≼ R′(τl + a) = r′ ⊖ ei,si+1. Thus partial order is preserved for all cases.

If a = T min
l and T min

l = ξ(l)
i j = T ′l < Tl, then we have that Ri j(τl) = 0 and Ri,si+1(τl) = 0 and no transitions at

time τl+1. We also have that either R′i j(t) decreases from 1 to 0 or R′i,si+1(t) decreases by 1 at time τl+1. Therefore
R(τl + a) = r ≼ R′(τl + a) = r′ − ei j or R(τl + a) = r ≼ R′(τl + a) = r′ − ei,si+1. The partial order is preserved.

Above all the theorem is proved. �

A.2. Proof of Theorem 3.2

Proof. Suppose the current time is τl, we only need to show that if R(τl) ≼ R(τl) ≼ R̄(τl) then R(τl + a) ≼
R(τl + a) ≼ R̄(τl + a) for a = T min

l since all chains do not change for a ∈ (0,T min
l ).

We can see that the upper-bound chain updating function ϕ̄ is similar to the updating function ϕ for R(t). The
only difference is that at time τl+1 = τl + T min

l when T min
l = ξ(l)

0 and R̄i,si+1(τl) = N we use ⊕̄ instead of ⊕, i.e.
R̄(τl+1) = R̄(τl)⊕̄1. When R̄i,si+1(τl) = N, the chains R(t) may be either such that Ri,si+1(τl) = N or Ri,si+1(τl) < N.
(a) If T min

l = ξ(l)
0 and Ri,si+1(τl) = N for some i then R(τl+1) = R(τl) ≼ R̄(τl) ≼ R̄(τl+1) = R̄(τl)⊕̄1. The partial

order is preserved. (b) If T min
l = ξ(l)

0 and Ri,si+1(τl) < N for all i then R(τl+1) = R(τl)⊕ 1 ≼ R̄(τl+1) = R̄(τl)⊕̄1 since
Ri,si+1(τl) + 1 ≤ min{N, R̄i,si+1(τl) + 1}. Therefore the chain R(t) is always bounded by R̄(t).

The lower-bound chain updating function ϕ is also similar to ϕ. The only difference is that if T min
l = ξ(l)

0 and
R̄i,si+1(τl) = N we keep R(τl+1) unchanged, i.e. R(τl+1) = R(τl). On the other hand, if a new job arrives then we
must have R(τl+1) = R(τl) ⊕ 1 or R(τl+1) = R(τl). Therefore R(τl+1) = R(τl) ≼ R(τl) ≼ R(τl+1). Therefore the
chain R(t) is always bounded below by R(t). �
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A.3. Proof of Lemma 4.1

Proof. If ri j > 0 for j = 1, · · · , si then r′i j > 0 for j = 1, · · · , si since r ≼ r′. Therefore ri ⊎ 1 ≼ r′ ⊎ 1 as both ri,si+1
and r′i,si+1 are added by 1.

If rim = 0 for at least one m in {1, · · · , si} then ri ⊎ 1 means that ri j, j = J(ηi, ri) will be added by 1. On the other
hand since r ≼ r′, we have that the upper one r′ is such that r′i j = 0 or r′i j > 0. If r′i j = 0 then r′i ⊎ 1 based on
rejection sampling also means that r′i j will be added by 1. This implies ri ⊎ 1 ≼ r′ ⊎ 1. If r′i j > 0 then r′ih, h , j will
be added by 1 which also gives ri ⊎ 1 ≼ r′ ⊎ 1.

Above all, the Lemma is proved. �

A.4. Proof of Theorem 4.1

Proof. Suppose that the current time is τl. Following the proof of Theorem 3.2, we only need to show that upper-
bound chain and lower-bound chain bound all chains when a = T min

l and T min
l = ξ(l)

0 . This is because all other
cases can be proved similarly as Theorem 3.2.

(1) If a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) < N for all i and R(τl) ≼ R(τl) ≼ R̄(τl) then R(τl + a) = R(τl) ⊎ 1 ≼

R(τl + a) = R(τl) ⊎ 1 ≼ R̄(τl + a) = R̄(τl) ⊎ 1, which is proved in Lemma 4.1.

(2) We also need to show that if a = T min
l , T min

l = ξ(l)
0 and R̄i,si+1(τl) = N for some i and R(τl) ≼ R(τl) ≼ R̄(τl) then

R(τl + a) = R(τl) ≼ R(τl + a) ≼ R̄(τl + a) = R̄(τl)⊎̄1. (24)

There are two cases to be considered. (a) If a = T min
l , T min

l = ξ(l)
0 and Ri,si+1(τl) = N for some i then (24) holds since

R(τl + a) = R(τl) in such cases. (b) If a = T min
l , T min

l = ξ(l)
0 and Ri,si+1(τl) < N for all i, then R(τl + a) = R(τl) ⊎ 1.

In such case (24) also holds since R(τl + a) = R(τl) ⊎ 1 ≼ R̄(τl + a) = R̄(τl)⊎̄1.

Above all the theorem is proved. �
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