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Abstract

The paper is drawn from the authors’ experience in teaching general and generalized linear fixed effects models
at the university level. The steps followed include model specification, model estimation, and hypothesis testing
in general linear model setting. Among these steps, estimation of model parameters such as the main effect least
squares means and contrasts were among the most challenging for students. Since no unique solution exists,
students are first exposed to the equivalence between two popular techniques that an over-parameterized model
can be subjected to in order to obtain the parameter estimates. This is particularly important because existing
software do not necessarily follow the same path to produce an Analysis of Variance (or Covariance) of the general,
generalized linear fixed or mixed effects models. These steps are generally hidden from the users. It is therefore
crucial for the students to understand the intermediary processes that ultimately produce the same results regardless
of the software one uses. The equivalent techniques, the set-to-zero and sum-to-zero restrictions, used to obtain
solution of the normal equations of the fixed effects model, are presented. The relationship between them is also
presented and in the process, data analysis makes use of two important concepts: the generalized inverse and
estimable function. The invariance property of estimable functions is also explained in details in addition to the
extra sum of squares principle which is introduced to supplement the other concepts. To exemplify these ideas and
put them in practice, a simple one-way treatment structure analysis of variance is performed.

Keywords: sum-to-zero restrictions, set-to-zero restrictions, general linear model, over-parameterized model, and
extra-sum of squares principle

1. Introduction

The study is drawn from the authors’ experience in teaching general and generalized linear fixed effects models
at the university/polytechnic levels. The steps followed include model specification, model estimation, and hy-
pothesis testing in general linear model setting. Among these steps, estimation of model parameters was the most
challenging area for students. Since no unique solution exists, students are first introduced to the equivalence be-
tween two popular techniques namely, over-parameterized model so as to obtain the parameter estimates. This is
particularly important because existing software do not necessarily follow the same path to produce an Analysis of
Variance (or Covariance) of the general, generalized linear fixed or mixed effects models. These steps are generally
latent from the users. It is therefore crucial for learners to understand the intermediary processes that ultimately
produce the same results regardless of the software one applies. The two equivalent techniques, namely, the set-
to-zero and sum-to-zero restrictions, for obtaining solution of the normal equations of the fixed effects model are
outlined as follows:

In matrix notation, the following equation defines linear regression model:

y = Xβ + ε (1)

The model is also called the model equation of the general linear model (Searle, 1987). The linearity of the model
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equation is in terms of the parameters of β. The X is known as model matrix (Kempthorne, 1952). In the situation
where the data come from an experiment, the matrix X is referred to as the design matrix (Searle, 1987) whereas
the vector y is of order N ×1. The matrix X which is sometimes called incidence matrix is a set of determinist fixed
effects variables. The β is the unknown vector of parameters and ε are the residuals. The expected value of ε

E(ε) = 0 (2)

and its variance is
Var(ε) = σ2 (3)

Thus, the expected value of (1) becomes:
E(y) = Xβ (4)

The following formulation is quite often used for linear model

y ∼ (Xβ, σ2) (5)

The notation in (5) means that the response y is distributed with a mean equal to Xβ and a diagonal variance-
covariance matrix of constant values σ2. In practice, the use of general linear model is motivated by the desire to
determine of how and to what degree variation in the dependent is related to the relevant fixed effects (the random
effects are not treated in this study). These effects are reflected in the right hand side of (1) and more specifically,
in the set up of the X matrix implied by the treatment structure.

2. Estimation Methods

The normal equations and their solution require the use of the least squares method in estimating β. The least
squares method minimize the sum of squares of the residuals,

(y − Xβ)′((y − Xβ)) (6)

leading to the normal equation:
X′XβO = X′y (7)

The solution vector βO minimizes (6) and since the X matrix is rank deficient, (X′X′)−1 does not exist. This
is always true for over-parameterized or over-determined models. There are many least squares estimates βO

satisfying Equation (7). For non-singularity, the estimation procedure uses a pseudo-inverse or generalized inverse
(X′X)−1, which satisfies (8):

X′X(X′X′)−X′X = X′X (8)

The solution β̂O which is an estimator of β is given by

β̂O = (X′X′)−X′y (9)

This solution vector is not unique. There exist a large number of possible solutions to the same normal equations.
To obtain β̂O, the concepts of sum-to-zero and set-to-zero restrictions is introduced (see Searle, 1987; Milliken &
Johnson, 1994).

3. Ilustrative Example

It is relatively easier to explain the concepts of set-to-zero, sum-to-zero restrictions, and extra sum-of squares by
using matrix notation of a simple one-way treatment example. The following example is taken from McLean
(1989):

A researcher is interested in determining whether or not there is any effect due to different rations (αi) in the gain
weight (yi j) of a certain breed of animal over a period of six weeks. Animals were selected at random and placed
in each treatment group. The model to describe this experiment is (1) or alternatively

yi j = µ + αi + εi j (10)

The following set of data is obtained from the experiment:
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Table 1. Effect of ration on weight gain ration

1 2 3
7 3 6
9 4 8

The design matrix X contains the intercept α0, and the individual identification of treatment effects αi.

X =



1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1


and y =



7
9
8
3
6
4


The following illustrates model (1),

7
9
8
3
6
4


=



1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 1




α0
α1
α2
α3

 +


ε1
ε2
ε3
ε4
ε5
ε6


The columns of X define respectively (i) the overall intercept, (ii) the indicator of the first ration, (iii) the indicator
of the second ration type, and (iv) the indicator of the third ration type. The matrix X is a non-full column rank
matrix since one column can be obtained by manipulating other columns. For example, the first column defining
the intercept is equal to the sum of the other columns. Assume αi become the levels of the ith ration, then we can
express α0 the column of the overall intercept, as the sum of the others, i.e., α0 =

∑
αi.

Earlier information leads to the resulting normal equations for not having a unique inverse, making it impossible
to find a unique estimate vector β0 of the true parameter β.

In this example:

X′X =


6 3 1 2
3 3 0 0
1 0 1 0
2 0 0 2

 and X′y =


37
24
3
10


are generalized inverse (g-inverse matrix), G1 is

(X′X)− =


0.1145833 −0.03125 0.13541667 0.0104166
−0.031250 0.281250 −0.218750 −0.093750
0.1354166 −0.21875 0.61458333 −0.260416
0.1041667 −0.09375 −0.2604167 0.3645833

 = G1

This inverse is computed using the SWEEP operation in S AS/IMLR (SAS, 2004).

4. Set-to-Zero Restrictions

The problem could be calculated by the generalized inverse G2 of a modified X′X matrix,
6 3 1 0
3 3 0 0
1 0 1 0
0 0 0 0


by setting the last column and last row to zero. Searle (1987) referred as ‘constraints on the solution’ to obtain
LIN (linear independent) functions of the solutions elements rather than restrictions. The reduced 3x3 matrix has
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a unique inverse. Below is such an inverse in which the zeros are inserted back to the original position.

G2 =


0.5 −0.5 −0.5 0
−0.5 0.83333 0.5 0
−0.5 0.5 1.5 0

0 0 0 0


One can also set-to-zero the column before the last.

6 3 0 2
3 3 0 0
0 0 0 0
2 0 0 2


The resulting generalized inverse G3 is

G3 =


1 −1 0 −1
−1 1.8 0 1
0 0 0 0
1 1 1 1.5


The generalized inverse G4 can be found to be the same way, thus, by setting the second column to zero.

6 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2


G4 =


0.33333 0 −0.33333 −0.33333

0 0 0 0
−0.33333 0 1.33333 0.33333 1
−0.33333 0 −.33333 −0.83333


4.1 Solution Vectors

From each one of the above generalized inverse, a different solution vector to the normal equations is obtained.
The table below presents such solutions:

Table 2. Solutions to the normal equations using each generalized (Gi)

Elements of Solution (see Equation (9))
the solution 1 2 3 4
α̂0 4 5 3 8
α̂1 4 3 5 0
α̂2 -1 -2 0 -5
α̂3 1 0 2 -3

4.2 Sum-of-Zero Restrictions

As for the set-to-zero restrictions, the sum-to-zero restriction converts an over-parameterized model to a model in
which elements of the parameter are estimable and the normal equations have a single solution. These restrictions
are mostly useful in balanced data but are less attractive for cases in which some subclasses are empty (Searle,
1987). If all the columns of the matrix X∗ are independent of each other, then multiplying by its transpose X∗

′

generates a non-singular matrix that has a unique inverse (X∗
′
X∗)−1. This may be achieved by letting one of the

columns of αi be the negative sum of the others, hence the name sum to zero restrictions.

X∗ =



1 1 0
1 1 0
1 1 0
1 0 1
1 −1 −1
1 −1 −1
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The created columns under this restriction have the values of 0, 1, or -1 (Cook & Weisberg, 1987; SAS, 1999 and
other standard software). In general for α levels, there are α − 1 independent terms (α1 . . .αa−1). They are

α j =


1, i f S = j
−1, i f S = a
0, otherwise

(11)

In our example, we have three treatment levels (rations). The sum-to-zero restriction implies that one of the level
in α j, say α3 is equal to −α1 − α2. In other words α4 is equal to −∑αi (i = 1, 2). In this case, the usual ordinary
least square (OLS) solution is uniquely defined by:

b = (X∗ ′X∗ ) −1X∗ ′y (12)

which is the solution vector of β and contains [α0, α1, α2] where α0 is the deviation from the overall mean for
ration 1, α1 is the mean deviation for ration 1, and α2 is the mean deviation for ration 2. The restriction allows
direct estimation of the model parameters. This method is also referred to as the Least Squares Dummy Variables
or LSDV3 in Hun (2009). Now from the above we have:

X′X =

 6 1 − 1
1 5 2
−1 2 3

 and X′y =

 37
14
−7


where the g-inverse matrix (G5) is

(X′X)− =

 0.2037037 − 0.092593 0.1296296
−0.092593 0.3148148 − 0.240741
0.1296296 − 0.240741 0.5370370

 = G5

The solution b is

b5 =

 5.33333
2.66667
−2.3333


Alternatively the matrix can be set differently with the restriction α2 = −α1 − α3

Xo =



1 1 0
1 1 0
1 1 0
1 −1 −1
1 0 1
1 0 1


and X0′y =

 37
21
7


Consequently,

Xo′Xo =

 6 2 1
2 4 1
1 1 3


The generalized inverse is

G6 =

 0.2037037 − 0.092593 − 0.037037
−0.092593 0.3148148 − 0.074074
−0.037037 − 0.074074 0.5370370


and the solution is

b6 =

 5.333333
2.666667
−.333333


The last restriction is on α1 setting it equal to −α2 − α3. As before, the important matrices are

Xa =



1 −1 −1
1 −1 −1
1 −1 −1
1 1 0
1 0 1
1 0 1


, Xa′Xa =

 6 − 2 − 1
−2 4 3
−1 3 5

 and Xa′y =

 37
−21
−14
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The generalized inverse matrix (G7) is

(Xa′Xa)− =

 0.2037037 0.1296296 −0.037037
0.1296296 0.537037 −0.296296
−0.037037 −0.2296296 0.3703704

 = G7

The solution b7 is  5.33333
−2.3333
−0.3333


4.3 Estimable Functions

It is obvious by now that there are many solutions to the same question of interest. From the simple example of
Table 1, only seven (7) of all the possible results are shown. These estimators should never be considered valid
estimates of the treatment effects since they are all biased. This property (though not desired) must be overcome.
The use of estimable functions is a very important step to do that. Estimable functions lead to estimates that are
best linear unbiased estimates (BLUE). The estimates such as the means or differences between means are linear
functions of the observations. They are unbiased, thus, their expected values are equal to the true parameters. Such
estimates have, among other possible linear functions, the smallest variances (Scheffe, 1959; Searle, 1987).

We then apply the estimable functions to obtain BLUEs of various descriptive statistics of interest. For this intro-
duction in the treatment of the general linear model (1), we limit ourselves to the estimation of the following:

• Treatment means (or means of the three rations),

• Various contrasts between means and respective variances

• Sum of squares between treatments (i.e., rations)

• Error sum of squares and the corresponding mean squares

• Hypotheses testing of the type H0: K′i β̂ = 0 vs. H1: K′i β̂ , 0, where Ki is an estimable vector.

In particular we exploit the invariance property of the estimable functions. Table 3 presents different vectors,
denoted by K that, when multiplied by the various solution vectors (from both set-to-zero and sum-to-zero restric-
tions). They yield identical results regardless of the solution vector used. Each estimate is defined by (12):

K′β̂ (13)

where β̂ defines any of the seven (7) solution vectors. The check of ‘estimability’ of K′β̂ is done by verifying
whether the product the KHK′ = K is true, where the matrix H = X(X′X′)−X′.

Table 3. Estimable vectors K for the treatment means and contrasts

(*) Ration Contrasts
1 2 3 1 vs. 2 (1+3) vs. 2

α̂0 1 1 1 0 0
α̂1 1 0 0 1 0.5
α̂2 0 1 0 -1 -1
α̂3 0 0 1 0 0.5

For example, to compute the mean of ration 1 using solution 1 of Table 4, we have

K′1β̂ = 1 ∗ 4 + 1 ∗ 4 + 0 ∗ (−1) + 0 ∗ 1 = 8

To compute the same mean using solution 3 of Table 4, we have K′1β̂ = 1 ∗ 3 + 1 ∗ 5 + 0 ∗ 0 + 0 ∗ 2 = 8.

The invariance property of estimable functions is shown in the Table 4 below.
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Table 4. Estimates of K′β̂ from set-to-zero constraints

Elements of Solution (see Equation (9))
the solution 1 2 3 4
α̂0 4 5 3 8
α̂1 4 3 5 0
α̂2 -1 -2 0 -5
α̂3 1 0 2 -3

Means

K′1β̂ 8 8 8 8
K′2β̂ 3 3 3 3
K′3β̂ 5 5 5 5

Contrasts

K′4β̂ 5=(4-(-1)) 5=(3-(-2)) =(5 - 0) =0-(-5)
K′5β̂ -1 - {1/2*4 + (1/2*1)} -3.5 3.5 3.5 3.5

Sum of Squares

a. SS Ration = β̂′X′y − Ny2 are virtually identical for all the β̂′s.

22.833333 22.833314 22.833314 22.833603

b. SSError = e’e = (y − Xβ̂)′(y − Xβ̂) are identical for all β̂′s.

4 4 4 4

Mean Square

c. Ration = S S Ration

22.833333/2 11.4167 11.4167 11.4168

d. Error = SSError/dferror = σ̂
2

4/3 1.3333 1.3333 1.3333

F obs

MSRation
MS Error

8.56 8.56 8.56 8.56

Tests of Hypothesis

e. H0: K′4β̂ = 0 vs. H1: K′4β̂ , 0. This is obtained by applying the following formula to get the appropriate
standard error:

[K′4(X′X)−K′4σ̂
2)1/2

1.33333 1.33333 1.33333 1.33333

Similarly the hypothesis H0: K′5β̂ = 0 vs. H1: K′5β̂ , 0 is computed the same way:

[K′5(X′X)−K′5σ̂
2]1/2

2.538591 2.538591 2.538591 2.538591
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T-test

tobs =
K′5β̂

S EK′5β̂
vs. t(3, 0.025) = 3.18

2.757435 2.757435 2.757435 2.757435

From the above analysis, it is concluded that the contrast in K′5β̂ is not statistically different from 0. However the
analysis shows that the contrast K′4β̂ is statistically different from 0. The tobs for the contrast is 2.85 with a p-value
equal to 0.033.

4.4 Conversion From Sum-Restrictions to Set-to-Zero

Solutions obtained from the sum-to-zero restrictions can be converted to set-to-zero restriction (constraints) by
solving for the restricted element of the sum-to-restriction and put it back in its place to obtain the full solution. This
new solution is in fact one of the solutions to the set-to-zero constraints. Therefore, in the restriction α3 = −α1−α2
the full solution is

b5 =


5.33333
2.66667
−2.3333

−2.66667 − (−2.3333)


For the restriction of the form α2 = − α1 − α3 the expanded solution is

b6 =


5.333333
2.666667

−2.666667 − (−0.333333)
−0.333333


Similarly, in the restriction α1 = − α2 − α3 the full solution is,

b7 =


5.33333

−(−2.3333 − 0.33333)
−2.3333
−0.3333


As shown in Table 3, it is easily verifiable that the different contrasts, means, sum-of-squares are all invariant to
these new solution vectors.

4.5 Cell Means Model

A third alternative is closely related to the set-to-zero restriction above. In this case, the design matrix X is the
same as before except that the column of intercept is not included. Once the indicators of the rations are created,
then one needs to run the regression model through the origin with the response being yi, j and regressors αi. In
this case, we have LIN in the columns and the model parameters are directly interpretable (SAS, 2004; Cook &
Weisberg, 1987). The re-parameterization is analogous to the dummy variables known as Least Squares Dummy
Variables model approach or LSDV2 estimation method (Hun, 2009).

The details are as follow:

X =



1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1


, Xb′Xb =

 3 0 0
0 1 0
0 0 2

 and Xb′y =

 24
3
10


A unique inverse G8 is obtained, resulting in the unique solution b8:

G8 = (Xb′Xb)−1 =

 1/3 0 0
0 1 0
0 0 1/2

 ; b8 =

 8
3
5
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Note that the elements of the solution are the means of the ration 1 i.e., K′1β̂, ration 2 i.e., K′2β̂, and ration 3 i.e.,
K′3β̂ respectively (see Table 4). Therefore all the contrasts and the combination of estimable functions are also
estimable (Searle 1971, 1987; Milliken, 1971).

4.6 Special Cases of the General Linear Model

Two special cases deserve to be mentioned. The first is the simple linear model where the predictor is made of one
continuous variable xi measured on each individual i = 1, ..., I leading to the model:

yi = β0 + βxi + εi (14)

The estimation of the parameters β0 and β are straightforward since the columns of the model matrix are LIN.
The second special case is simply a reduction of the number of treatment to two. In the simple case, the two-
sample t-test assumes the response yi j ∼ N(µi, σ

2). The model can use dummy variables to indicate group
membership (Kiebel & Holmes, n.d.). This parameterization of the model without an intercept term is similar to
the one explained above.

4.7 Principle of Conditional Error or Extra-Sum of Squares

The principle for conditional error was first introduced by Bose (1949) in the context of estimates of combinations
of the parameters of a linear model (Milliken, 1971). The basic idea is to compute sum of squares corresponding to
the hypothesis by first obtaining the sum of squares due to error for the restricted or reduced model minus the sum
of squares due to error from the unrestricted model. The degrees of freedom (d f ) are computed by the difference
in degrees-of-freedom of the corresponding sum of squares. Milliken and Johnson (1992) used this procedure
in a strategy to determine the final form of an analysis of covariance model. By other authors, the procedure is
known as the model comparison method (Draper & Smith, 1981), or the extra sum of squares principle (Draper and
Smith, 1998). The principle is quite general (McDonald & Milliken, 1974) and find extensive use in econometrics
(Greene, 2003; Baltagi, 2008; Wooldridge, 2003), in linear models (Searle, 1971, 1987; Milliken & Johnson, 1984;
Gujarati, (1970) as well as in non-linear models (Milliken & Debruin, 1978). The ratio of the difference between
the S S due to error of the restricted model (RS S O) and the S S error due to the unrestricted model (RS S 1) to the
error SS of the full model is:

Fobs =
(RS S 0 − RS S 1)/(p0 − p1)

RS S 1
J−p1−1

∼ Fp0− p1;;J−p1−1 (15)

where p1 is the rank of the full matrix X, p0 is he rank of X2, the matrix of the reduced model, and J is the
total number of observations. The numerator is distributed as a non-central chi-square random variable; and the
denominator is distributed as a central chi- square. Both chi-square variables are independent (Milliken, 1971).
The full and reduced models can be explained in matrix form by partitioning in two parts as follow:

y = [X1 : X2]

 α1
. . .
α2

 + ε (16)

Equation (15) defines the full model where the complete X matrix and consequently the β vector were partitioned
into two components respectively. The interest is to test the hypothesis

H0 : α2 = 0 (17)

In the above example, let the matrix X be subdivided into two matrices: one (X1) to represent the column of
intercept and the other matrix (X2) is for the three levels of ration (treatment). In this special case, the Fobs in (14)
is exactly the standard F-statistics of the usual one-way analysis of variance (ANOVA).

Table 5. Application of extra-sum of squares in one-way ANOVA

Model Residuals
Name Formulation df SS Fobs

Reduced yi j = µ 5 26.8333 (26.833−4.0)/(5−3)
4.0/3 = 8.56

Full yi j = µ + αi 3 4.0000
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The above Fobs = 8.56 is exactly the same as the usually reported test from a one-way analysis of variance (see
also its derivation above). The extra sum of squares principle is easily extended to an analysis that involves more
than one factor. The statistical analysis system (SAS, 2004) produces a partial type of sum of squares known as
Type III SS in which the effects in the full model may each be considered a product of the principle of conditional
error.

4.8 Alternative Formulations to Extra Sum of Squares

The above tests can be re-expressed in terms of R2

(R2
1 − R2

0)/p

(1 − R2
1)/(T − p − 1)

(18)

R2
1 and R2

0 refer to the coefficients of determination for the unrestricted and the restricted model respectively. The
tests can also be articulated in terms of the residuals e for the unrestricted, e∗ for the restricted model respectively.

(e ∗′ e ∗ − e′ e)/p
e′ e)/(T − rk)

(19)

A third way of testing the linear restriction hypothesis is by way of matrices presented earlier

K′βo(K′GK)−1Kβo ′

σ2 (20)

If one replaces σ2 by its sample estimate rk∗ S 2 adjusted for the d f , then (19) is the F-statistic

K′βo(K′GK)−1Kβo ′

rkS 2 (21)

Asymptotically all three tests described are equivalent. However, they can give different or conflicting results in
a finite sample. This fact was raised by Greene (2003) and Geweke, 1984). It is therefore advised that, for a
given sample, and whenever possible, one should run them all and pay particular consideration to the choice of
significance level. Bozivich, Bancroft and Hartley (1956) proposed to use an α > 0.05 in order to control for Type
II error. Hendrix et al. (1982) used 0.25.

Table 6. Equivalence of the alternative formulations

Alternative Formulas to (14)
(R2

1 − R2
0)/p

(1−R2
1)/(T−p−1)

(e∗′e∗ − e′ e)/p
e′ e)/(T−rk)

K′βo(K′GK)−1Kβo ′

rkS 2

Fobs =
(0.850932−0.0/2

(1−0.850932 )/(6−2−1) =
(26.833−4.0)/2

4
3

=

[3 −2]

 1.5 −0.5
−0.5 0.8333


 3
−2


2∗( 4

3 )
= 8.56

The result from K′βo(K′GK)−1Kβo ′ is not affected by use of any of the G and βo presented earlier.

4.9 Goodness-of-Fit Using Likelihood Ratio Test

A likelihood ratio test is often used in linear and nonlinear (fixed/mixed) models to compare the goodness of fit of
two competing models, one nested within the other. Both the full and the reduced nested models fit the data by the
method of maximum likelihood and the values of the respective log-likelihoods are retained. The likelihood ratio
test (LRT) is

τ =
l(β0)
l(β)

(22)

Under the null,
LRT = −2ln (τ) = −2ln{l(β) − l(β0)} (23)

Equivalently one can compute −2ln(τ∗) where τ∗ is

τ∗ = {1 + Q
S S R1

}− 1
2 T (24)
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where Q is the quadratic given by
K′βo{K′GK)−1Kβo ′/rk (25)

To put in the LRT the frame of the principle conditional error, Equations (22) and (24) are reformulated as

−2ln { RS S 1

S S R0
} 1

2 T ∼ Chi − S quare (26)

The test-statististic is chi square distributed with the number of degrees of freedom (d f ) equal the number of
restrictions of the so-called parameter space (that is, the number of restrictions imposed by the null hypothesis).
In our particular case, d f = 2 since the interest lies on whether the inclusion of the rations is above the model
containing the intercept only.

Table 7. Some choices of LRT formulas in linear models

Likelihood Ratio Tests
−2ln{l(β) − l(β0)} −2ln{[1 + Q

S S R1
]−

1
2 T } −2ln{RS S 1

S S R0
} 1

2 T

−2ln(−7.297 + 13.007) −2ln{(1 + 11.41333
4.00 ]−

1
2 6} −2ln{ 4

26.833 }
1
2 6

4.10 Additional Resources

Searle R. S. et al. (1981) presented additional computational and model equivalence in analyses of variance of
unequal-subclass-numbers data. More on these issues is found in Speed et al. (1978), Manzumdar S. et al. (1980),
Milliken and Johnson (1984), McClean (1989), Kiebel and Holmes (1986), Healy (1986), Searle (1971, 1987),
Mould (1989), Hocking (1986), Draper and Smith (1999) among others.

5. Conclusion

In this study , we have shown four ways of how a general linear unbalanced model can be analyzed. These different
methods of analysis lead to exactly the same estimates regardless of how the re-parameterization of the linear model
was done and what generalized inverse used. Importantly, we showed that the results are not software dependent.
This was made possible through the use of estimable functions. The study also outlined the concepts of least
squares means and the partition of sum-of squares in more complex design of experiments and again extended the
property of estimable functions to derive interaction terms in a model that doest not specify such interaction in its
original formulation. All these concepts have been explained and illustrated using a practictical examples.
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