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Abstract

Research has been ongoing for over fifty years with respect to violating the assumption of i.i.d. observations in
the error covariance matrix. However, there exist test statistics and dependency structures for which the sampling
distribution of the test statistic is identical to the test statistic’s distribution under the assumption of i.i.d. observa-
tions. We derive an explicit representation of the general non-i.i.d. error covariance matrix of the general linear
model error vector such that the likelihood ratio test statistic for testing certain linear restrictions on the parameter
vector is robust against certain forms of dependency and heteroscedasticity. In doing so, we correct two proposed
explicit covariance matrix characterizations given in Khatri (1981).
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1. Introduction

1.1 The Problem

Consider the general linear model
y = Xβ + ϵ, (1)

where y is an n × 1 vector of observations, X is an n × p known fixed non-null model (design) matrix with
rank (X) = r ≤ p, β is a p×1 vector of unknown model parameters, and ϵ is an n×1 vector of random perturbations
such that ϵ ∼ N

(
0, σ2Σ

)
, where Σ is symmetric nonnegative definite (s.n.d.) and σ2 > 0. We assume that (1) is

consistent, i.e., y ∈ C (Σ : X), where C (A) represents the column space of a matrix A.

The usual assumptions of the general linear model include the restriction Σ = I on the error covariance structure
for (1). Ignoring this assumption can result in poor statistical references. However, for certain statistics, conditions
on the error covariance matrix exist that allow particular types of perturbations of the usual i.i.d. covariance
Var (y) = σ2I for sampled observations without affecting the characteristics of the sampling distribution of the
statistic. That is, non-i.i.d. covariance structures for the data exist for which the sampling distribution of a statistic
is identical to the sampling distribution under the assumption of i.i.d. observations. We refer to such covariance
structures as independence distribution-preserving (IDP) covariance matrices.

The form of IDP dependency structures yields insight into model-misspecification and error-term dependence ro-
bustness for a statistic of interest. That is, one can see the form of covariance matrices for which the statistic of
interest holds in addition to the often-assumed i.i.d. covariance structure. The existence of IDP covariance struc-
tures for a statistic implies that normally distributed observations need not be independent nor must the marginal
variances be equal for the usual i.i.d.-induced properties of the statistic to hold. Hence, for certain statistics, some
degree of robustness against dependent observations and heteroscedasticity with non-i.i.d. covariance matrices
exists.

Khatri (1981) has proposed one implicit and two explicit expressions for the set of s.n.d. error covariance structures
such that the distributional properties of the likelihood ratio (LR) statistic under Σ = I for testing
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H0 : LXβ = 0 against H1 : LXβ , 0, (2)

are preserved. Unfortunately, his two proposed explicit IDP covariance matrix characterizations are not general
IDP covariance matrices. Here, we explicitly characterize the set of s.n.d. IDP dependency structures Σ≥IDP and
symmetric positive definite (s.p.d). dependency structures Σ>IDP such that the distribution of the LR statistic for
testing (2) is identical to the distribution of the LR statistic under the i.i.d. covariance structure Σ = I for all
nonzero y ∈ C [Σ : X].

1.2 Background

Research on IDP covariance structures for univariate statistics has been ongoing for at least fifty years. In one of
the first papers published in this area, Walsh (1947) studied the effect of equicorrelated data on certain two-group
hypothesis test statistics. Other authors, such as Baldessari (1965), Baldessari and Gallo (1981), Stadje (1984),
and Jensen (1989), have considered the derivation of the general s.p.d. IDP covariance structures for the univariate
sample variance. In addition, Bhat (1962), Rogers (1980), Stadje (1984), and Young, Thompson, and Turner
(2003) have derived the general s.p.d. IDP covariance structures for the univariate sample variance such that the
sample variance is a multiple of a chi-squared random variable and is independent of the sample mean.

Recently, Young, Thompson, and Turner (2003) have characterized the general s.n.d. IDP covariance matrix for
the multivariate sample variance and Young and Turner (2001) have characterized the general s.n.d. IDP joint
covariance structure for the multivariate two-group problem. Also, Young et al. (2003) have characterized the
s.n.d. covariance structures such that the sample covariance matrix is distributed as a central Wishart random
matrix with n − 1 degrees of freedom and is independent of the sample mean vector.

In addition to Khatri (1981), research has been published on test statistics for the univariate dependent-variable
regression case. For instance, Halperin (1951) has described an IDP covariance structure for a statistic used to
test model adequacy, and Jeyaratnam (1982) has provided a sufficient IDP covariance structure for a statistic in
testing linear hypotheses of the form (2) where L ∈ Rs×n and rank (LX) = s, and X is the design matrix so that
LXβ is a set of estimable functions. Tranquilli and Baldessari (1988) have devised an IDP structure for a test
of model adequacy in multiple regression analysis, and Ghosh and Sinha (1980) have derived conditions on the
design matrix X to yield the usual F-statistic for testing (2).

While these contributions are significant, we note that our primary focus is on the solutions obtained in Khatri
(1981). We improve upon Khatri’s (1981) results in three ways. First, we provide a correct general representation
of the general IDP covariance structure. Second, our IDP characterization has no indeterminate matrices. In other
words, we rigorously define all matrices in our general representation of the IDP covariance structure so that the
structure is s.n.d. Third, our representation is not restricted such that (Σ − θI) is s.n.d., where θ > 0.

1.3 Outline

We have organized the remainder of the paper as follows. In Section 2, we define notation and give two LR statistics
of interest for testing (2). In Section 3, we present Khatri’s (1981) proposed explicit IDP general covariance
structure characterization along with six lemmas needed for the derivation of our main results. We derive our IDP
characterization of the general s.n.d. IDP dependency structure for the LR statistic for testing (2) in Section 4.
Finally, we provide some brief concluding remarks in Section 5.

2. Notation and Previous IDP Results for a Maximum Likelihood-Ratio Statistic

2.1 General Mathematical Notation

We use the following notation throughout the remainder of the paper. The symbol Cm×n (Rm×n) represents the
vector space of all m × n matrices over the complex (real) field C (R). The notation RS

n represents the set of
symmetric matrices in Rn×n. The symbol C≥n

(
R≥n

)
denotes the cone of all Hermitian s.n.d. matrices in Cn×n (Rn×n),

and C>n
(
R>n

)
represents the interior cone composed of the set of Hermitian s.p.d. matrices in Cn×n (Rn×n). The

notation A∗ represents the conjugate transpose of A ∈ Cn×m, and the symbol A′ denotes the transpose of A ∈ Rn×m.
Also, B− ∈ Rn×m represents a generalized inverse of B ∈ Rm×n, and B+ ∈ Rn×m denotes the Moore-Penrose
pseudoinverse of B ∈ Rm×n. Additionally, C (A) and R (A) denote the column space and row space, respectively,
of A, and C (A)⊥ and R (A)⊥ represent the orthogonal complement of C (A) and R (A), respectively. Also, PA
denotes the orthogonal projection matrix onto C (A), RA denotes the orthogonal projection onto R (A), and P⊥A and
R⊥A represent the orthogonal projection matrix onto C (A)⊥ and R (A)⊥, respectively.
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2.2 IDP Notation

We need the following notation and terms to specifically define the IDP problem we address. Let L ∈ Rs×n such
that rank (LX) = s, and let [

V11 V12
V21 V22

]
≡

[
PX
P⊥X

]
Σ

[
PX : P⊥X

]
with rank (V22) = n − r1 and rank

[
LPX

(
V11 − V12V−22V′12

)
PXL′

]
= s1.

Assuming the Gauss-Markov model (1), Khatri (1981) has derived the LR statistic for testing the hypothesis in (2),
which is

FΣ =
(n − r1)

(
PXy − V12V−22P⊥Xy

)′
PXL′

[
LPX

(
V11 − V12V−22V′12

)
PXL′

]−
LPX

(
PXy − V12V−22P⊥Xy

)
s1

(
y′P⊥XV−22P⊥Xy

) , (3)

where FΣ ∼ Fs1,n−r1 if H0 holds and Σ is known. If Σ = I, then because C (L′) ⊂ C (X), s = s1, and r = r1, the test
statistic (3) becomes

FI =
(n − r) y′L′

[
LL′

]− Ly
s
(
y′P⊥Xy

) (4)

where FI ∼ Fs,n−r.

3. Mathematical Preliminaries

3.1 Khatri’s (1981) IDP Solutions

Khatri (1981) has implicitly characterized the set of s.n.d. IDP covariance structures Σ ∈ R≥n such that FΣ = FI as

Σ
KIM
IDP ≡

{
Σ ∈ R≥n :

[
L
P⊥X

] [
Σ − θI

] [
L′ : P⊥X

]
= 0

}
(5)

given θ > 0 is fixed. Khatri (1981) has also proposed two explicit characterizations for the set of IDP covariance
structures such that FΣ = FI. Khatri’s (1981) first IDP characterization, which he found by deriving the general
solution for [Σ − θI] to the matrix equation (5), is

Σ
K1
IDP ≡

{
Σ ∈ R≥n : Σ = θI +W − (I − PXGPX) W (I − PXGPX)

}
, (6)

where G = In − L′ [LPXL′]− L, W ∈ Rn×n is an arbitrary symmetric matrix such that Σ ∈ R≥n and θ > 0.
Unfortunately, Khatri’s (1981) IDP general covariance matrix (6) is not an explicit characterization of the set of
IDP covariance structures such that FΣ = FI (see appendix).

Khatri’s (1981) second proposed general IDP covariance structure is purportedly a sufficient IDP covariance struc-
ture because it is restricted to the case where (Σ − θI) ∈ R≥n . This explicit general IDP covariance matrix is

Σ
K2
IDP ≡

{
Σ ∈ R≥n : Σ = θI + PXGPXWPXGPX

}
, (7)

where θ > 0 and W ∈ R≥n is arbitrary. We remark that (7) has the unnecessary restriction that (Σ − θI) ∈ R≥n .
Because (7) follows from (6), neither the covariance matrices given in (6) nor (7) represents an explicit characteri-
zation of the set of s.n.d. IDP covariance matrices for FΣ = FI.

3.2 Lemmas

We now state six lemmas that we use in the proof of our IDP covariance-matrix characterization result. The first
lemma gives a representation of the general s.n.d. solution to the matrix equation AXA∗ = B. We remark that
Groß (2000) gives another form of a general n.n.d. solution to AXA∗ = B.

Lemma 3.1. (Baksalary 1984, Theorem 3) Let A ∈ Cm×n and B ∈ C≥m such that C (B) = C (A) . Then, a represnta-
tion of the general Hermitian n.d. solution to AXA∗ = B is

X =
[
A−D +

(
In − A−A

)
Z
] [

A−D +
(
In − A−A

)
Z
]∗
,

where D ∈ Cm×n is an arbitrary but fixed matrix such that B = DD∗, and Z ∈ Cn×n is free to vary.
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The following lemma gives a representation of a generalized inverse of a vertically partitioned matrix.

Lemma 3.2. (Harville 1999, Exercise 17.3.11) If A ∈ Rm×p and B ∈ Rn×p, then[
A
B

]−
=

[
A− − FAY−BA− : FAY−

]
,

where FA = Ip − A−A and Y = BFA.

The next lemma provides conditions for two orthogonal projection matrices to commute.

Lemma 3.3 (Werner 2004, Solution to 31.75) Let P,Q ∈ Rn be orthogonal projectors of the same order. Then,
(PQ)+ = PQ if and only if QP = PQ.

We use the following three lemmas in the proof of our main result in Section 4.

Lemma 3.4. Let Σ denote the general covariance matrix given in (8), and let V12 ≡ PXΣP⊥X. Then, V12 =

θ (PX − RL) ZP⊥X.

Proof. Using the fact that PXRL = RLPX and that P⊥XR⊥L = R⊥LP⊥X, which follow from Lemma 3.3, we have that

PXΣP⊥X = θPX
[(

RL + P⊥X
)
+

(
R⊥LPX

)
H +H′

(
PXR⊥L

)]
P⊥X

= θPX
[(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
] [(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
]′

P⊥X
= θ

[
PXRL + PXP⊥X + PXR⊥LPXZ

]
P⊥X

= θ [RL + (PX − RL) Z] P⊥X
= θ (PX − RL) ZP⊥X.

Lemma 3.5. Let Σ denote the general covariance matrix given in (8), and let V11 ≡ PXΣPX. Then,

V11 = θ
[
RL + RLZ′

(
PX − R′L

)
+

(
P′X − RL

)
ZRL + R⊥LPXZZ′PXR⊥′L

]
.

Proof. Again, using the identities PXRL = RLPX and P⊥XR⊥L = R⊥LP⊥X, we have

PXΣPX = θPX
[(

RL + P⊥X
)
+

(
R⊥LP⊥X

)
H +H′

(
PXR⊥L

)]
PX

= θPX
[(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
] [(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
]′

PX

= θ
[
PXRL + PXP⊥X + PXR⊥LPXZ

] [
R′LPX + P⊥′X PX + Z′P′XR⊥′L PX

]
= θ

(
RL + PXR⊥LZ

) (
R′L + Z′P′XR⊥′L

)
PX

= θ
[
RL + RLZ′

(
PX − R′L

)
+

(
P′X − RL

)
ZRL + R⊥LPXZZ′PXR⊥′L

]
.

Lemma 3.6. Let Σ denote the general covariance matrix given in (8), and let V22 ≡ P⊥XΣP⊥X. Then, V22 = θP⊥X.

Proof. Using the fact that P⊥XR⊥L = R⊥LP⊥X, we have

P⊥XΣP⊥X = θP
⊥
X

[(
RL + P⊥X

)
+

(
R⊥LP⊥X

)
H +H′

(
PXR⊥L

)]
P⊥X

= θP⊥X
[(

RL + P⊥X
)
+

(
R⊥PX

)
Z
] [(

RL + P⊥X
)
+

(
R⊥PX

)
Z
]′

P⊥X
= θ

[
P⊥XRL + P⊥XP⊥X + P⊥XR⊥LPXZ

] [
RL
′P⊥′X + P⊥XP⊥′X + Z′PX

′R⊥′L P⊥X
]

= θ
[
P⊥XRL + P⊥XP⊥X + R⊥L

(
P⊥XPX

)
Z
] [

RL
′P⊥′X + P⊥XP⊥′X + Z′PX

′P⊥XR⊥′L

]
= θP⊥X.

4. The Main Result

We next derive our new general s.n.d. IDP covariance structure such that FΣ = FI.

Theorem. Consider the Gauss-Markov model defined in (1), where Σ ∈ R≥n . Then, the LR statistic FΣ, given in (3)
for testing (2), is the LR statistic FI defined in (4) if and only if Σ ∈ Σ≥IDP such that

Σ≥IDP ≡
{
Σ ∈ R≥n : Σ = θ

(
RL + P⊥X

)
+

(
R⊥LPX

)
H +H′

(
PXR⊥L

)}
, (8)
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where

H ≡ θ
[
Z

(
RL + P⊥X

)
+

1
2

(
R⊥LPX

)]
(9)

such that Z ∈ Rn×n is free to vary and θ > 0.

Proof. First, using the fact that P⊥XR⊥L = R⊥LP⊥X, we have[
L
P⊥X

]+
=

[
L+ − RL

(
P⊥XR⊥L

)+
P⊥XL+ : R⊥L

(
P⊥XR⊥L

)+
P⊥X

]
=

[
L+ : R⊥LP⊥X

]
. (10)

Next, assume FΣ = FI. Then, from (5) and from Lemma 3.1, a s.n.d. solution to[
L
P⊥X

]
Σ

[
L′ : P⊥X

]
= θ

[
LL′ 0

0 P⊥X

]
(11)

exists because C
([

L
P⊥X

])
= C

([
LL′ 0

0 P⊥X

])
. Hence, from Lemma 3.1 and (10), we have

Σ = θ

[[
L
P⊥X

]+ [
L
P⊥X

]
+

(
I −

[
L
P⊥X

]+ [
L
P⊥X

])
Z
] [[

L
P⊥X

]+ [
L
P⊥X

]
+

(
I −

[
L
P⊥X

]+ [
L
P⊥X

])
Z
]′

= θ
[(

L+L + R⊥LP⊥X
)
+

(
I −

(
L+L + R⊥LP⊥X

))
Z
] [(

L+L + R⊥LP⊥X
)
+

(
I −

(
L+L + R⊥LP⊥X

))
Z
]′

= θ
[(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
] [(

RL + P⊥X
)
+

(
R⊥LPX

)
Z
]′

= θ
(
RL + P⊥X

)
+

(
R⊥LP⊥X

)
H +H′

(
PXR⊥L

)
,

where H is given in (9).

Now let the Gauss-Markov model (1) hold, and suppose we wish to test the hypothesis given in (2). We remark
that Khatri (1981) has shown that the LR statistic for testing the hypothesis in (2) is (3) for V , I and (4) for Σ = I.
Also, let Σ ∈ Σ≥IDP, where Σ≥IDP is defined in (8), and let VS ≡ V11 − V12V−22V′12. Then, using Lemmas 3.3 - 3.6,
we have that

FΣ =
(n − r1)

(
PXy − V12V−22P⊥Xy

)′
PXL′ [LPXVS PXL′]− LP′X

(
PXy − V12V−22P⊥Xy

)
s1

(
y′P⊥XV−22P⊥Xy

)
=

(n − r1)
(
PXy − (

PX
′ − RL

)
ZP⊥Xy

)′
PXL′ [LPXVS PXL′]− LP′X

(
PXy − (

PX
′ − RL

)
ZP⊥Xy

)
s1

(
y′P⊥XV−22P⊥Xy

)
=

(n − r1) (y′PX) PXL′ [LV11L′]− LPX (PXy)

s1

(
y′P⊥XV−22P⊥Xy

)
=

(n − r1) (y′PX) PXL′
{
θL

[
RL + RLZ′

(
PX − R′L

)
+

(
P′X − RL

)
ZRL + R⊥LPXZZ′PXR⊥′L

]
L′

}−
LPX (PXy)

s1

(
y′P⊥XV−22P⊥Xy

)
=
θ (n − r1) y′L′

[
LL′

]− Ly
θs1

(
y′P⊥XV−22P⊥Xy

)
=

(n − r1) y′L′
[
LL′

]− Ly
s1y′P⊥Xy

= FI.

The following corollary provides a characterization of the general s.p.d. IDP covariance structures such that FΣ =
FI.

Corollary. Consider the Gauss-Markov model defined in (1) with Σ ∈ R>n . Then, the LR test statistic FΣ given in
(3) for testing (2) is identical to the test statistic FI given in (4) if and only if Σ ∈ Σ>IDP, where

Σ>IDP ≡
{
Σ ∈ R≥n : Σ = θ

(
RL + P⊥X

)
+

(
R⊥LPX

)
H +H′

(
PXR⊥L

)}
, (12)
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where H is given in (9) and Z ∈ SZ with

SZ ≡
{

Z ∈ Rn : N (
Z′

) ∩ N ([
L
P⊥X

])
= {0} ,C

([
L
P⊥X

]′)
∩ C

[
Z′

(
R⊥L − P⊥X

)]
= {0}

}
. (13)

Proof. The proof of the corollary follows from our Theorem and from the theorem in Marsaglia and Styan (1972)
to obtain the conditions given in (13) so that the matrices in (12) are s.p.d.

5. Concluding Remarks

In this paper, we have characterized the general s.n.d. explicit IDP covariance structure for the LR statistic (3) for
testing (2). Thus, in (7) one can see the general form of the non-i.i.d. covariance structures such that (3) yields the
same F-statistic as in the i.i.d. covariance structure case given in (4). That is, we have rigorously characterized the
covariance structures Σ≥IDP such that one can test (2) using the simplified test statistic (4) without loss of power. In
summary, we have completely described the degrees of observation-dependence and heteroscedastic robustness of
the test statistic (4) with respect to the covariance structure Σ in (1).

Appendix.

Khatri (1981) has derived his IDP covariance structure characterization by solving the matrix equation[
L
P⊥X

]
[Σ − θI]

[
L′ : P⊥X

]
= 0 (14)

for (Σ − θI). His general s.n.d. covariance structure is given in (6). One can easily show that θ
(
RL + P⊥X

)
is an IDP

covariance matrix so that FΣ = FI. Thus, θ
(
RL + P⊥X

)
− θI = θ (RL + PX) should satisfy (14). Therefore, from (6),

we should have that
θRL + θP⊥X = θI +W − (I − PXGPX) W (I − PXGPX) (15)

for some W ∈ RS
n and G = In − L′

[
LPXL′

]− L. Hence,

θ [(RL + PX) − I] ∈ {T : T =W + (I − PXGPX) W (I − PXGPX)} ,

where T is a solution to (14). However, from (14),

θ

[
L
P⊥X

]
[RL + PX − I]

[
L′ : P⊥X

]
=

[
2θLL′ LP⊥X
P⊥XL P⊥X

]
, 0.

Therefore, Khatri’s (1981) proposed general s.n.d. solution (6) is not a general s.n.d. solution for Σ such that
FΣ = FI.
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